
Package: lidR (via r-universe)
October 8, 2024

Type Package

Title Airborne LiDAR Data Manipulation and Visualization for Forestry
Applications

Version 4.1.2

Description Airborne LiDAR (Light Detection and Ranging) interface for
data manipulation and visualization. Read/write 'las' and 'laz'
files, computation of metrics in area based approach, point
filtering, artificial point reduction, classification from
geographic data, normalization, individual tree segmentation
and other manipulations.

URL https://github.com/r-lidar/lidR

BugReports https://github.com/r-lidar/lidR/issues

License GPL-3

Depends R (>= 3.5.0), methods

Imports classInt, data.table (>= 1.12.0), glue, grDevices, lazyeval,
Rcpp (>= 1.0.3), rgl, rlas (>= 1.5.0), sf, stats, stars, terra
(>= 1.5-17), tools, utils

Suggests EBImage, future, geometry, gstat, raster, RCSF, RMCC, rjson,
mapview, mapedit, progress, sp, testthat (>= 2.1.0), knitr,
rmarkdown

RoxygenNote 7.3.1

LinkingTo BH (>= 1.72.0),Rcpp,RcppArmadillo

Encoding UTF-8

ByteCompile true

VignetteBuilder knitr

NeedsCompilation yes

Author Jean-Romain Roussel [aut, cre, cph], David Auty [aut, ctb]
(Reviews the documentation), Florian De Boissieu [ctb] (Fixed
bugs and improved catalog features), Andrew Sánchez Meador
[ctb] (Implemented wing2015() for segment_snags()), Bourdon

1

https://github.com/r-lidar/lidR
https://github.com/r-lidar/lidR/issues


2 Contents

Jean-François [ctb] (Contributed to Roussel2020() for
track_sensor()), Gatziolis Demetrios [ctb] (Implemented
Gatziolis2019() for track_sensor()), Leon Steinmeier [ctb]
(Contributed to parallelization management), Stanislaw
Adaszewski [cph] (Author of the C++ concaveman code), Benoît
St-Onge [cph] (Author of the 'chm_prep' function)

Maintainer Jean-Romain Roussel <jean-romain.roussel.1@ulaval.ca>

Repository CRAN

Date/Publication 2024-07-09 08:40:02 UTC

Contents
lidR-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
add_attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
asprs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
catalog_apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
catalog_boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
catalog_intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
catalog_retile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
classify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
clip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
decimate_points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
dsm_pitfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
dsm_point2raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
dsm_tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
dtm_idw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
dtm_kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
dtm_tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
engine_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
gnd_csf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
gnd_mcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
gnd_pmf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
interpret_waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
itd_lmf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
itd_manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
its_dalponte2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
its_li2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
its_silva2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
its_watershed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
LAS-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents 3

LAScatalog-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
LASheader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
LASheader-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
las_check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
las_compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
las_utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
lidR-LAScatalog-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
lidR-parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
lidR-spatial-index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
locate_trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
merge_spatial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
noise_ivf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
noise_sor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
nstdmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
old_spatial_packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
pitfill_stonge2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
plot.lasmetrics3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
plot_3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
point_metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
print.LAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
range_correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
rasterize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
readLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
readLAScatalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
readLASheader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
retrieve_pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
sample_homogenize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
sample_maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
sample_per_voxel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
sample_random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
set_lidr_threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
shape_detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
smooth_height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
snag_wing2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
stdmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
st_area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
st_bbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
st_coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
st_crs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
st_hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
st_transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
track_sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
track_sensor_gatziolis2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
track_sensor_roussel2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



4 lidR-package

voxelize_points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
writeLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Index 142

lidR-package lidR: airborne LiDAR for forestry applications

Description

lidR provides a set of tools to manipulate airborne LiDAR data in forestry contexts. The package
works with .las or .laz files. The toolbox includes algorithms for DSM, CHM, DTM, ABA, normal-
isation, tree detection, tree segmentation, tree delineation, colourization, validation and other tools,
as well as a processing engine to process broad LiDAR coverage split into many files.

Details

To learn more about lidR, start with the vignettes: browseVignettes(package = "lidR"). Users can
also find unofficial supplementary documentation in the lidR book. To ask "how to" questions
please ask on gis.stackexchange.com with the tag lidr.

Package options

lidR.progress Several functions have a progress bar for long operations (but not all). Should
lengthy operations show a progress bar? Default: TRUE

lidR.progress.delay The progress bar appears only for long operations. After how many sec-
onds of computation does the progress bar appear? Default: 2

lidR.raster.default The functions that return a raster are raster agnostic meaning that they
work either with rasters from packages ‘raster‘, ‘stars‘ or ‘terra‘. By default they return rasters
from ‘stars‘. Can be one of "raster", "stars" or "terra". Default: "terra"

lidR.check.nested.parallelism The catalog processing engine (catalog_apply) checks the par-
allel strategy chosen by the user and verify if C++ parallelization with OpenMP should be dis-
abled to avoid nested parallel loops. Default: TRUE. If FALSE the catalog processing engine
will not check for nested parallelism and will respect the settings of set_lidr_threads.

Author(s)

Maintainer: Jean-Romain Roussel <jean-romain.roussel.1@ulaval.ca> [copyright holder]

Authors:

• David Auty (Reviews the documentation) [contributor]

Other contributors:

• Florian De Boissieu (Fixed bugs and improved catalog features) [contributor]

• Andrew Sánchez Meador (Implemented wing2015() for segment_snags()) [contributor]

• Bourdon Jean-François (Contributed to Roussel2020() for track_sensor()) [contributor]

https://r-lidar.github.io/lidRbook/
https://gis.stackexchange.com/


add_attribute 5

• Gatziolis Demetrios (Implemented Gatziolis2019() for track_sensor()) [contributor]

• Leon Steinmeier (Contributed to parallelization management) [contributor]

• Stanislaw Adaszewski (Author of the C++ concaveman code) [copyright holder]

• Benoît St-Onge (Author of the ’chm_prep’ function) [copyright holder]

See Also

Useful links:

• https://github.com/r-lidar/lidR

• Report bugs at https://github.com/r-lidar/lidR/issues

add_attribute Add attributes into a LAS object

Description

A LAS object represents a las file in R. According to the LAS specifications a las file contains a
core of defined attributes, such as XYZ coordinates, intensity, return number, and so on, for each
point. It is possible to add supplementary attributes.

Usage

add_attribute(las, x, name)

add_lasattribute(las, x, name, desc)

add_lasattribute_manual(
las,
x,
name,
desc,
type,
offset = NULL,
scale = NULL,
NA_value = NULL

)

add_lasrgb(las, R, G, B)

add_lasnir(las, NIR)

remove_lasattribute(las, name)

https://github.com/r-lidar/lidR
https://github.com/r-lidar/lidR/issues
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf


6 add_attribute

Arguments

las An object of class LAS

x a vector that needs to be added in the LAS object. For add_lasattribute* it
can be missing (see details).

name character. The name of the extra bytes attribute to add in the file.

desc character. A short description of the extra bytes attribute to add in the file (32
characters).

type character. The data type of the extra bytes attribute. Can be "uchar", "char",
"ushort", "short", "uint", "int", "uint64", "int64", "float", "double".

scale, offset numeric. The scale and offset of the data. NULL if not relevant.

NA_value numeric or integer. NA is not a valid value in a las file. At time of writing it will
be replaced by this value that will be considered as NA. NULL if not relevant.

R, G, B, NIR integer. RGB and NIR values. Values are automatically scaled to 16 bits if they
are coded on 8 bits (0 to 255).

Details

Users cannot assign names that are the same as the names of the core attributes. These functions are
dedicated to adding data that are not part of the LAS specification. For example, add_lasattribute(las,
x, "R") will fail because R is a name reserved for the red channel of a .las file that contains RGB
attributes. Use add_lasrgb instead.

add_attribute Simply adds a new column in the data but does not update the header. Thus the
LAS object is not strictly valid. These data will be temporarily usable at the R level but will
not be written in a las file with writeLAS.

add_lasattribute Does the same as add_attribute but automatically updates the header of the
LAS object. Thus, the LAS object is valid and the new data is considered as "extra bytes".
This new data will be written in a las file with writeLAS.

add_lasattribute_manual Allows the user to manually write all the extra bytes metadata. This
function is reserved for experienced users with a good knowledge of the LAS specifica-
tions. The function does not perform tests to check the validity of the information. When
using add_lasattribute and add_lasattribute_manual, x can only be of type numeric,
(integer or double). It cannot be of type character or logical as these are not supported
by the LAS specifications. The types that are supported in lidR are types 0 to 10 (Table 24 on
page 25 of the specification). Types greater than 10 are not supported.

add_lasrgb Adds 3 columns named RGB and updates the point format of the LAS object for a
format that supports RGB attributes. If the RGB values are ranging from 0 to 255 they are
automatically scaled on 16 bits.

Value

An object of class LAS



aggregate 7

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las <- readLAS(LASfile, select = "xyz")

print(las)
print(header(las))

x <- 1:30

las <- add_attribute(las, x, "mydata")
print(las) # The las object has a new attribute called "mydata"
print(header(las)) # But the header has not been updated. This new data will not be written

las <- add_lasattribute(las, x, "mydata2", "A new data")
print(las) # The las object has a new attribute called "mydata2"
print(header(las)) # The header has been updated. This new data will be written

# Optionally if the data is already in the LAS object you can update the header skipping the
# parameter x
las <- add_attribute(las, x, "newattr")
las <- add_lasattribute(las, name = "newattr", desc = "Amplitude")
print(header(las))

# Remove an extra bytes attribute
las <- remove_lasattribute(las, "mydata2")
print(las)
print(header(las))

las <- remove_lasattribute(las, "mydata")
print(las)
print(header(las))

aggregate Metric derivation at different levels of regularization

Description

template_metrics() computes a series of user-defined descriptive statistics for a LiDAR dataset
within each element of a template. Depending on the template it can be for each pixel of a raster
(area-based approach), or each polygon, or each segmented tree, or on the whole point cloud. Other
functions are convenient and simplified wrappers around template_metrics() and are expected
to be the actual functions used. See Details and Examples.

Usage

cloud_metrics(las, func, ...)

crown_metrics(
las,



8 aggregate

func,
geom = "point",
concaveman = c(3, 0),
attribute = "treeID",
...

)

hexagon_metrics(las, func, area = 400, ...)

pixel_metrics(las, func, res = 20, start = c(0, 0), ...)

plot_metrics(las, func, geometry, ..., radius)

polygon_metrics(las, func, geometry, ...)

template_metrics(las, func, template, filter = NULL, by_echo = "all", ...)

voxel_metrics(las, func, res = 1, ..., all_voxels = FALSE)

Arguments

las An object of class LAS or LAScatalog.

func formula or expression. An expression to be applied to each element of the tem-
plate (see section "Parameter func").

... propagated to template_metrics i.e. filter and by_echo. pixel_metrics()
also supports pkg = "terra|raster|stars" to get an output in SpatRaster,
Raster* or stars format. Default is getOption("lidR.raster.default").

geom character. Geometry type of the output. Can be ’point’, ’convex’, ’concave’ or
’bbox’.

concaveman numeric. Only if type = "concave". Vector with the two parameters of the
function concaveman.

attribute character. The column name of the attribute containing tree IDs. Default is
"treeID"

area numeric. Area of the hexagons

res numeric. The resolution of the output. Can optionally be a RasterLayer or a
stars or a SpatRaster. In that case the raster is used as the template.

start vector of x and y coordinates for the reference raster. Default is (0,0) meaning
that the grid aligns on (0,0). Not consiered if res is a raster

geometry A spatial vector object. sp and sf’ objects are supported. plot_metrics()
supports point and polygons but polygon_metrics() supports only polygons.

radius numeric. If the geometry is spatial points a radius must be defined. Support one
radius or a vector of radii for variable plot sizes.

template can be of many types and corresponds to the different levels of regularization.
RasterLayer/stars/SpatRaster, sf/sfc (polygons), numeric, bbox, NULL.
The metrics are computed for each element of the template. See examples.



aggregate 9

filter formula of logical predicates. Enables the function to run only on points of
interest in an optimized way. See examples.

by_echo characters. The metrics are computed multiple times for different echo types.
Can be one or more of "all", "first", "intermediate", "lastofmany", "single", and
"multiple". See examples. Default is "all" meaning that it computes metrics
with all points provided.

all_voxels boolean. By default the function returns only voxels that contain 1 or more
points. Empty voxels do not exist as the metrics are undefined. If all_voxels
= TRUE all the voxels are returned and metrics are NA for voxels with 0 points.

Details

pixel_metrics Area-based approach. Computes metrics in a square tessellation. The output is a
raster.

hexagon_metrics Computes metrics in an hexagon tessellation. The output is a sf/sfc_POLYGON

plot_metrics Computes metrics for each plot of a ground inventory by 1. clipping the plot in-
ventories with clip_roi, 2. computing the user’s metrics for each plot with cloud_metrics, and
3. combining spatial data and metrics into one data.frame ready for statistical modelling with
cbind. The output is of the class of the input.

cloud_metrics Computes a series of user-defined descriptive statistics for an entire point cloud.
The output is a list

crown_metrics Once the trees are segmented, i.e. attributes exist in the point cloud that reference
each tree, computes a set of user-defined descriptive statistics for each individual tree. The
output can be spatial points or spatial polygons (sf/sfc_POINT or sf/sfc_POLYGON)

voxel_metrics Is a 3D version of pixel_metrics. It creates a 3D matrix of voxels with a given
resolution. It creates a voxel from the cloud of points if there is at least one point. The output
is a data.frame

point_metrics Is a bit more complex and is documented in point_metrics

Value

Depends on the function, the template and the number of metrics. Can be a RasterLayer, a
RasterBrick, a stars, a SpatRaster a sf/sfc, a list, a SpatialPolygonDataFrame, or a
data.table. Functions are supposed to return an object that is best suited for storing the level
of regularization needed.

Parameter func

The function to be applied to each cell is a classical function (see examples) that returns a labelled
list of metrics. For example, the following function f is correctly formed.

f = function(x) {list(mean = mean(x), max = max(x))}

And could be applied either on the Z coordinates or on the intensities. These two statements are
valid:

pixel_metrics(las, f(Z), res = 20)
voxel_metrics(las, f(Intensity), res = 2)



10 aggregate

The following existing functions allow the user to compute some predefined metrics: stdmetrics en-
tropy, VCI, LAD. But usually users must write their own functions to create metrics. template_metrics
will dispatch the point cloud in the user’s function.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, filter = "-keep_random_fraction 0.5")
col <- sf::sf.colors(15)
fun1 <- ~list(maxz = max(Z))
fun2 <- ~list(q85 = quantile(Z, probs = 0.85))

set_lidr_threads(1) ; data.table::setDTthreads(1) # for cran only

# ================
# CLOUD METRICS
# ================

cloud_metrics(las, .stdmetrics_z)

# ================
# PIXEL METRICS
# ================

m <- pixel_metrics(las, fun1, 20)
#plot(m, col = col)

# ================
# PLOT METRICS
# ================

shpfile <- system.file("extdata", "efi_plot.shp", package="lidR")
inventory <- sf::st_read(shpfile, quiet = TRUE)
inventory # contains an ID and a Value Of Interest (VOI) per plot

m <- plot_metrics(las, fun2, inventory, radius = 11.28)
#plot(header(las))
#plot(m["q85"], pch = 19, cex = 3, add = TRUE)

# Works with polygons as well
inventory <- sf::st_buffer(inventory, 11.28)
#plot(header(las))
#plot(sf::st_geometry(inventory), add = TRUE)
m <- plot_metrics(las, .stdmetrics_z, inventory)
#plot(m["zq85"], pch = 19, cex = 3, add = TRUE)

# ================
# VOXEL METRICS
# ================

m <- voxel_metrics(las, length(Z), 8)



aggregate 11

m <- voxel_metrics(las, mean(Intensity), 8)
#plot(m, color = "V1", colorPalette = heat.colors(50), trim = 60)
#plot(m, color = "V1", colorPalette = heat.colors(50), trim = 60, voxel = TRUE)

# ================
# CROWN METRICS
# ================

# Already tree-segmented point cloud
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
trees <- readLAS(LASfile, filter = "-drop_z_below 0")

metrics <- crown_metrics(trees, .stdtreemetrics)
#plot(metrics["Z"], pch = 19)

metrics <- crown_metrics(trees, .stdtreemetrics, geom = "convex")
#plot(metrics["Z"])

metrics <- crown_metrics(trees, .stdtreemetrics, geom = "bbox")
#plot(metrics["Z"])

metrics <- crown_metrics(trees, .stdtreemetrics, geom = "concave")
#plot(metrics["Z"])

# ================
# ARGUMENT FILTER
# ================

# Compute using only some points: basic
first = filter_poi(las, ReturnNumber == 1)
metrics = pixel_metrics(first, mean(Z), 20)

# Compute using only some points: optimized
# faster and uses less memory. No intermediate object
metrics = pixel_metrics(las, mean(Z), 20, filter = ~ReturnNumber == 1)

# Compute using only some points: best
# ~50% faster and uses ~10x less memory
las = readLAS(LASfile, filter = "-keep_first")
metrics = pixel_metrics(las, mean(Z), 20)

# ================
# ARGUMENT BY_ECHO
# ================

func = ~list(avgI = mean(Intensity))
echo = c("all", "first","multiple")

# func defines one metric but 3 are computed respectively for: (1) all echo types,
# (2) for first returns only and (3) for multiple returns only
metrics <- pixel_metrics(las, func, 20, by_echo = echo)
#plot(metrics, col = heat.colors(25))



12 as

cloud_metrics(las, func, by_echo = echo)

## Not run:
# ================
# TEMPLATE METRICS
# ================

# a raster as template
template <- raster::raster(extent(las), nrow = 15, ncol = 15)
raster::crs(template) <- crs(las)
m <- template_metrics(las, fun1, template)
#plot(m, col = col)

# a sfc_POLYGON as template
sfc <- sf::st_as_sfc(st_bbox(las))
template <- sf::st_make_grid(sfc, cellsize = 20, square = FALSE)
m <- template_metrics(las, fun1, template)
#plot(m)

# a bbox as template
template <- st_bbox(las) + c(50,30,-50,-70)
plot(sf::st_as_sfc(st_bbox(las)), col = "gray")
plot(sf::st_as_sfc(template), col = "darkgreen", add = TRUE)
m <- template_metrics(las, fun2, template)
print(m)

# ================
# CUSTOM METRICS
# ================

# Define a function that computes custom metrics
# in an R&D perspective.
myMetrics = function(z, i) {

metrics = list(
zwimean = sum(z*i)/sum(i), # Mean elevation weighted by intensities
zimean = mean(z*i), # Mean products of z by intensity
zsqmean = sqrt(mean(z^2))) # Quadratic mean

return(metrics)
}

# example with a stars template
template <- stars::st_as_stars(st_bbox(las), dx = 10, dy = 10)
m <- template_metrics(las, myMetrics(Z, Intensity), template)
#plot(m, col = col)

## End(Not run)

as Transform to a list



asprs 13

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage

## S3 method for class 'LASheader'
as.list(x, ...)

Arguments

x A LASheader object

... unused

asprs ASPRS LAS Classification

Description

A set of global variables corresponding to the point classification defined by the ASPRS for the
LAS format. Instead of remembering the classification table of the specification it is possible to use
one of these global variables.

Usage

LASNONCLASSIFIED

LASUNCLASSIFIED

LASGROUND

LASLOWVEGETATION

LASMEDIUMVEGETATION

LASHIGHVEGETATION

LASBUILDING

LASLOWPOINT

LASKEYPOINT

LASWATER

LASRAIL



14 asprs

LASROADSURFACE

LASWIREGUARD

LASWIRECONDUCTOR

LASTRANSMISSIONTOWER

LASBRIGDE

LASNOISE

Format

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

An object of class integer of length 1.

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las = readLAS(LASfile)
las2 = filter_poi(las, Classification %in% c(LASGROUND, LASWATER))

print(LASGROUND)



catalog_apply 15

catalog_apply LAScatalog processing engine

Description

This function gives users access to the LAScatalog processing engine. It allows the application of
a user-defined routine over a collection of LAS/LAZ files. The LAScatalog processing engine is
explained in the LAScatalog class

catalog_apply() is the core of the lidR package. It drives every single function that can pro-
cess a LAScatalog. It is flexible and powerful but also complex. catalog_map() is a simplified
version of catalog_apply() that suits for 90% of use cases.

catalog_sapply() is a previous attempt to provide simplified version of catalog_apply(). Use
catalog_map() instead.

Usage

catalog_apply(ctg, FUN, ..., .options = NULL)

catalog_sapply(ctg, FUN, ..., .options = NULL)

catalog_map(ctg, FUN, ..., .options = NULL)

Arguments

ctg A LAScatalog object.

FUN A user-defined function that respects a given template (see section function tem-
plate)

... Optional arguments to FUN.

.options See dedicated section and examples.

Edge artifacts

It is important to take precautions to avoid ’edge artifacts’ when processing wall-to-wall tiles. If
the points from neighbouring tiles are not included during certain processes, this could create ’edge
artifacts’ at the tile boundaries. For example, empty or incomplete pixels in a rasterization process,
or dummy elevations in a ground interpolation. The LAScatalog processing engine provides inter-
nal tools to load buffered data ’on-the-fly’. catalog_map() takes care of removing automatically
the results computed in the buffered area to avoid unexpected output with duplicated entries or con-
flict between values computed twice. It does that in predefined way that may not suit all cases.
catalog_apply() does not remove the buffer and leave users free to handle this in a custom way.
This is why catalog_apply() is more complex but gives more freedom to build new applications.



16 catalog_apply

Buffered data

The LAS objects loaded in theses functions have a special attribute called ’buffer’ that indicates, for
each point, if it comes from a buffered area or not. Points from non-buffered areas have a ’buffer’
value of 0, while points from buffered areas have a ’buffer’ value of 1, 2, 3 or 4, where 1 is the
bottom buffer and 2, 3 and 4 are the left, top and right buffers, respectively. This allows for filtering
of buffer points if required.

Function template

The parameter FUN of catalog_apply expects a function with a first argument that will be supplied
automatically by the LAScatalog processing engine. This first argument is a LAScluster. A
LAScluster is an internal undocumented class but the user needs to know only three things about
this class:

• It represents a chunk of the file collection

• The function readLAS can be used with a LAScluster

• The function extent or st_bbox can be used with a LAScluster and they return the bounding
box of the chunk without the buffer. It must be used to clip the output and remove the buffered
region (see examples).

A user-defined function must be templated like this:

myfun <- function(chunk, ...) {
# Load the chunk + buffer
las <- readLAS(chunk)
if (is.empty(las)) return(NULL)

# do something
output <- do_something(las, ...)

# remove the buffer of the output
bbox <- bbox(chunk)
output <- remove_buffer(output, bbox)
return(output)

}

The line if (is.empty(las)) return(NULL) is important because some clusters (chunks) may
contain 0 points (we can’t know this before reading the file). In this case an empty point cloud
with 0 points is returned by readLAS() and this may fail in subsequent code. Thus, exiting early
from the user-defined function by returning NULL indicates to the internal engine that the chunk was
empty.

catalog_map is much simpler (but less versatile). It automatically takes care of reading the chunk
and checks if the point cloud is empty. It also automatically crop the buffer. The way it crops the
buffer suits for most cases but for some special cases it may be advised to handle this in a more
specific way i.e. using catalog_apply(). For catalog_map() the first argument is a LAS and the
template is:



catalog_apply 17

myfun <- function(las, ...) {
# do something
output <- do_something(las, ...)
return(output)

}

.options

Users may have noticed that some lidR functions throw an error when the processing options are
inappropriate. For example, some functions need a buffer and thus buffer = 0 is forbidden. Users
can add the same constraints to protect against inappropriate options. The .options argument is a
list that allows users to tune the behaviour of the processing engine.

• drop_null = FALSE: not intended to be used by regular users. The engine does not remove
NULL outputs

• need_buffer = TRUE: the function complains if the buffer is 0.

• need_output_file = TRUE the function complains if no output file template is provided.

• raster_alignment = ... the function checks the alignment of the chunks. This option is
important if the output is a raster. See below for more details.

• automerge = TRUE by default the engine returns a list with one item per chunk. If automerge
= TRUE, it tries to merge the outputs into a single object: a Raster*, a Spatial*, a LAS*, an sf,
a stars similarly to other functions of the package. This is a fail-safe option so in the worst
case, if the merging fails, the list is returned. This is activated by catalog_map making it
simpler.

• autoread = TRUE. Introduced in v3.0.0 this option enables to get rid of the first steps of the
function i.e readLAS() and if (is.empty()). In this case the function must take two objects
as input, first a LAS object and second a bbox from sf. This is activated by catalog_map
making it simpler.

• autocrop = TRUE. Introduced in v4.0.0 this option enables to get rid of the buffer crop steps of
the function i.e something <- remove_buffer(something, bbox). In this case the function
must take one LAS object as input. This is activated by catalog_map making it simpler.

When the function FUN returns a raster it is important to ensure that the chunks are aligned with
the raster to avoid edge artifacts. Indeed, if the edge of a chunk does not correspond to the edge of
the pixels, the output will not be strictly continuous and will have edge artifacts (that might not be
visible). Users can check this with the options raster_alignment, that can take the resolution of
the raster as input, as well as the starting point if needed. The following are accepted:

# check if chunks are aligned with a raster of resolution 20
raster_alignment = 20
raster_alignment = list(res = 20)

# check if chunks are aligned with a raster of resolution 20
# that starts at (0,10)
raster_alignment = list(res = 20, start = c(0,10))



18 catalog_apply

Examples

# More examples might be avaible in the official lidR vignettes or
# on the github book <https://jean-romain.github.io/lidRbook/>

## =========================================================================
## Example 1: detect all the tree tops over an entire catalog
## (this is basically a reproduction of the existing function 'locate_trees')
## =========================================================================

# 1. Build the user-defined function that analyzes each chunk of the catalog.
# The function's first argument is a LAScluster object. The other arguments can be freely
# chosen by the users.
my_tree_detection_method <- function(chunk, ws)
{
# The chunk argument is a LAScluster object. The users do not need to know how it works.
# readLAS will load the region of interest (chunk) with a buffer around it, taking advantage of
# point cloud indexation if possible. The filter and select options are propagated automatically
las <- readLAS(chunk)
if (is.empty(las)) return(NULL)

# Find the tree tops using a user-developed method
# (here simply a LMF for the example).
ttops <- locate_trees(las, lmf(ws))

# ttops is an sf object that contains the tree tops in our region of interest
# plus the trees tops in the buffered area. We need to remove the buffer otherwise we will get
# some trees more than once.
bbox <- st_bbox(chunk)
ttops <- sf::st_crop(ttops, bbox)
return(ttops)

}

# 2. Build a collection of file
# (here, a single file LAScatalog for the purposes of this simple example).
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
ctg <- readLAScatalog(LASfile)
plot(ctg)

# 3. Set some processing options.
# For this small single file example, the chunk size is 100 m + 10 m of buffer
opt_chunk_buffer(ctg) <- 10
opt_chunk_size(ctg) <- 100 # Small because this is a dummy example.
opt_chunk_alignment(ctg) <- c(-50, -35) # Align such as it creates 2 chunks only.
opt_select(ctg) <- "xyz" # Read only the coordinates.
opt_filter(ctg) <- "-keep_first" # Read only first returns.

# 4. Apply a user-defined function to take advantage of the internal engine
opt <- list(need_buffer = TRUE, # catalog_apply will throw an error if buffer = 0

automerge = TRUE) # catalog_apply will merge the outputs into a single object
output <- catalog_apply(ctg, my_tree_detection_method, ws = 5, .options = opt)

plot(output)



catalog_apply 19

## =========================================================================
## Example 1: simplified. There is nothing that requires special data
## manipulation in the previous example. Everything can be handled automatically
##=========================================================================

# 1. Build the user-defined function that analyzes a point cloud.
my_tree_detection_method <- function(las, ws)
{

# Find the tree tops using a user-developed method
# (here simply a LMF for the example).
ttops <- locate_trees(las, lmf(ws))
return(ttops)

}

# 2. Build a project
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
ctg <- readLAScatalog(LASfile)
plot(ctg)

# 3. Set some processing options.
# For this dummy example, the chunk size is 100 m and the buffer is 10 m
opt_chunk_buffer(ctg) <- 10
opt_chunk_size(ctg) <- 100 # small because this is a dummy example.
opt_chunk_alignment(ctg) <- c(-50, -35) # Align such as it creates 2 chunks only.
opt_select(ctg) <- "xyz" # Read only the coordinates.
opt_filter(ctg) <- "-keep_first" # Read only first returns.

# 4. Apply a user-defined function to take advantage of the internal engine
opt <- list(need_buffer = TRUE) # catalog_apply will throw an error if buffer = 0
output <- catalog_map(ctg, my_tree_detection_method, ws = 5, .options = opt)

## Not run:
## ===================================================
## Example 2: compute a rumple index on surface points
## ===================================================

rumple_index_surface = function(las, res)
{

las <- filter_surfacepoints(las, 1)
rumple <- pixel_metrics(las, ~rumple_index(X,Y,Z), res)
return(rumple)

}

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
ctg <- readLAScatalog(LASfile)

opt_chunk_buffer(ctg) <- 1
opt_chunk_size(ctg) <- 140 # small because this is a dummy example.
opt_select(ctg) <- "xyz" # read only the coordinates.



20 catalog_boundaries

opt <- list(raster_alignment = 20) # catalog_apply will adjust the chunks if required
output <- catalog_map(ctg, rumple_index_surface, res = 20, .options = opt)

plot(output, col = height.colors(25))

## End(Not run)

catalog_boundaries Computes the polygon that encloses the points

Description

Computes the polygon that encloses the points. It reads all the files one by one and computes a
concave hull using the st_concave_hull function. When all the hulls are computed it updates the
LAScatalog to set the true polygons instead of the bounding boxes.

Usage

catalog_boundaries(ctg, ...)

Arguments

ctg A LAScatalog

... propagated to st_concave_hull

Value

A LAScatalog with true boundaries

Non-supported LAScatalog options

The options ‘select‘, ‘output files‘, ‘chunk size‘, ‘chunk buffer‘, ‘chunk alignment‘ are not sup-
ported and not respected in ‘catalog_boundaries*‘ because the function must always process by
file, without buffer and knows which attributes to load.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
ctg <- readLAScatalog(LASfile, filter = "-drop_z_below 0.5")
ctg2 <- catalog_boundaries(ctg, concavity = 1, length_threshold = 15)
plot(ctg)
plot(ctg2, add = TRUE)



catalog_intersect 21

catalog_intersect Subset a LAScatalog

Description

Subset a LAScatalog interactively using the mouse. Subset a LAScatalog with a spatial object to
keep only the tiles of interest. It can be used to select tiles of interest that encompass spatial objects.

Usage

catalog_intersect(
ctg,
y,
...,
subset = c("subset", "flag_unprocessed", "flag_processed")

)

catalog_select(
ctg,
mapview = TRUE,
subset = c("subset", "flag_unprocessed", "flag_processed")

)

Arguments

ctg A LAScatalog

y ‘bbox‘, ‘sf‘, ‘sfc‘, ‘Extent‘, ‘Raster*‘, ‘Spatial*‘ objects

... ignored

subset character. By default it subsets the collection It is also possible to flag the files
to maintain the collection as a whole but process only a subset of its content.
flag_unprocessed flags the files that will not be processed. flag_processed
flags the files that will be processed.

mapview logical. If FALSE, use R base plot instead of mapview (no pan, no zoom, see also
plot)

Value

A LAScatalog object

Examples

## Not run:
ctg = readLAScatalog("<Path to a folder containing a set of .las files>")
new_ctg = catalog_select(ctg)

## End(Not run)



22 catalog_retile

catalog_retile Retile a LAScatalog

Description

Splits or merges files to reshape the original files collection (.las or .laz) into smaller or larger files.
It also enables the addition or removal of a buffer around the tiles. Internally, the function reads and
writes the chunks defined by the internal processing options of a LAScatalog. Thus, the function is
flexible and enables the user to retile the dataset, retile while adding or removing a buffer (negative
buffers are allowed), or optionally to compress the data by retiling without changing the pattern but
by changing the format (las/laz). This function is does not load the point cloud into R memory It
streams from input file(s) to output file(s) and can be applied to large point-cloud with low memory
computer.

Note that this function is not actually very useful because lidR manages everything (clipping, pro-
cessing, buffering, ...) internally using the proper options. Thus, retiling may be useful for working
in other software, for example, but not in lidR

Usage

catalog_retile(ctg)

Arguments

ctg A LAScatalog object

Value

A new LAScatalog object

Non-supported LAScatalog options

The option select is not supported and not respected because it always preserves the file format
and all the attributes. select = "*" is imposed internally.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
ctg = readLAScatalog(LASfile)
plot(ctg)

# Create a new set of 200 x 200 m.las files with first returns only
opt_chunk_buffer(ctg) <- 0
opt_chunk_size(ctg) <- 200
opt_filter(ctg) <- "-keep_first"
opt_chunk_alignment(ctg) <- c(275, 90)
opt_output_files(ctg) <- paste0(tempdir(), "/retile_{XLEFT}_{YBOTTOM}")



classify 23

# preview the chunk pattern
plot(ctg, chunk = TRUE)

newctg = catalog_retile(ctg)

plot(newctg)

# Create a new set of 200 x 200 m.las files
# but extended with a 50 m buffer in the folder

opt_chunk_buffer(ctg) <- 25
opt_chunk_size(ctg) <- 200
opt_filter(ctg) <- ""
opt_chunk_alignment(ctg) <- c(275, 90)
opt_output_files(ctg) <- paste0(tempdir(), "/{XLEFT}_{YBOTTOM}_buffered")
newctg = catalog_retile(ctg)

plot(newctg)

## Not run:
# Create a new set of compressed .laz file equivalent to the original, keeping only
# first returns above 2 m

opt_chunk_buffer(ctg) <- 0
opt_chunk_size(ctg) <- 0
opt_laz_compression(ctg) <- TRUE
opt_filter(ctg) <- "-keep_first -drop_z_below 2"
opt_output_files(ctg) <- paste0(tempdir(), "/{ORIGINALFILENAME}_first_2m")
newctg = catalog_retile(ctg)

## End(Not run)

classify Classify points

Description

Classify points that meet some criterion and/or that belong in a region of interest. The functions
updates the attribute Classification of the LAS object according to las specifications

Usage

classify_ground(las, algorithm, last_returns = TRUE)

classify_noise(las, algorithm)

classify_poi(
las,
class,

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


24 classify

poi = NULL,
roi = NULL,
inverse_roi = FALSE,
by_reference = FALSE

)

Arguments

las An object of class LAS or LAScatalog.

algorithm An algorithm for classification. lidR has has: sor, ivf for noise classification,
and pmf, csf, mcc for ground classification (see respective documentation).

last_returns logical. The algorithm will use only the last returns (including the first returns
in cases of a single return) to run the algorithm. If FALSE all the returns are
used. If the attributes 'ReturnNumber' or 'NumberOfReturns' are absent,
'last_returns' is turned to FALSE automatically.

class The ASPRS class to attribute to the points that meet the criterion.

poi a formula of logical predicates. The points that are TRUE will be classified class.

roi A SpatialPolygons*, from sp or a sf/sfc_POLYGON from sf. The points that
are in the region of interest delimited by the polygon(s) are classified class.

inverse_roi bool. Inverses the roi. The points that are outside the polygon(s) are classified
class.

by_reference bool. Updates the classification in place (LAS only).

Details

classify_noise Classify points as ’noise’ (outliers) with several possible algorithms. lidR has: sor,
ivf. The points classified as ’noise’ are assigned a value of 18.

classify_ground Classify points as ’ground’ with several possible algorithms. lidR has pmf, csf
and mcc. The points classified as ’ground’ are assigned a value of 2

classify_poi Classify points that meet some logical criterion and/or that belong in a region of in-
terest with class of choice.

Non-supported LAScatalog options

The option select is not supported and not respected because it always preserves the file format
and all the attributes. select = "*" is imposed internally.

Examples

# ===============
# Classify ground
# ===============

if (require(RCSF, quietly = TRUE))
{
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, select = "xyzrn", filter = "-inside 273450 5274350 273550 5274450")



clip 25

# (Parameters chosen mainly for speed)
mycsf <- csf(TRUE, 1, 1, time_step = 1)
las <- classify_ground(las, mycsf)
#plot(las, color = "Classification")
}

# ===============
# Classify noise
# ===============

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

# Add 20 artificial outliers
set.seed(314)
id = round(runif(20, 0, npoints(las)))
set.seed(42)
err = runif(20, -50, 50)
las$Z[id] = las$Z[id] + err

# Using IVF
las <- classify_noise(las, ivf(5,2))
#plot(las, color = "Classification")

# Remove outliers using filter_poi()
las_denoise <- filter_poi(las, Classification != LASNOISE)

# ===============
# Classify POI
# ===============

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
shp <- system.file("extdata", "lake_polygons_UTM17.shp", package = "lidR")

las <- readLAS(LASfile, filter = "-keep_random_fraction 0.1")
lake <- sf::st_read(shp, quiet = TRUE)

# Classifies the points that are NOT in the lake and that are NOT ground points as class 5
poi <- ~Classification != LASGROUND
las <- classify_poi(las, LASHIGHVEGETATION, poi = poi, roi = lake, inverse = TRUE)

# Classifies the points that are in the lake as class 9
las <- classify_poi(las, LASWATER, roi = lake, inverse = FALSE)

#plot(las, color = "Classification")

clip Clip points in regions of interest



26 clip

Description

Clip points within a given region of interest (ROI) from a point cloud (LAS object) or a collection
of files (LAScatalog object).

Usage

clip_roi(las, geometry, ...)

clip_rectangle(las, xleft, ybottom, xright, ytop, ...)

clip_polygon(las, xpoly, ypoly, ...)

clip_circle(las, xcenter, ycenter, radius, ...)

clip_transect(las, p1, p2, width, xz = FALSE, ...)

Arguments

las An object of class LAS or LAScatalog.

geometry a geometric object. spatial points, spatial polygons in sp or sf/sfc format, Extent,
bbox, 2x2 matrix

... in clip_roi: optional supplementary options (see supported geometries). Un-
used in other functions

xleft, ybottom, xright, ytop
numeric. coordinates of one or several rectangles.

xpoly, ypoly numeric. x coordinates of a polygon.
xcenter, ycenter

numeric. x coordinates of on or several disc centres.

radius numeric. disc radius or radii.

p1, p2 numeric vectors of length 2 that gives the coordinates of two points that define
a transect

width numeric. width of the transect.

xz bool. If TRUE the point cloud is reoriented to fit on XZ coordinates

Value

If the input is a LAS object: an object of class LAS, or a list of LAS objects if the query implies
several regions of interest.

If the input is a LAScatalog object: an object of class LAS, or a list of LAS objects if the query
implies several regions of interest, or a LAScatalog if the queries are immediately written into files
without loading anything in R.

Non-supported LAScatalog options

The option chunk size, buffer, chunk alignment and select are not supported by clip_*
because they are meaningless in this context.



decimate_points 27

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")

# Load the file and clip the region of interest
las = readLAS(LASfile, select = "xyz", filter = "-keep_first")
subset1 = clip_rectangle(las, 684850, 5017850, 684900, 5017900)

# Do not load the file(s), extract only the region of interest
# from a bigger dataset
ctg = readLAScatalog(LASfile, progress = FALSE, filter = "-keep_first")
subset2 = clip_rectangle(ctg, 684850, 5017850, 684900, 5017900)

# Extract all the polygons from a shapefile
f <- system.file("extdata", "lake_polygons_UTM17.shp", package = "lidR")
lakes <- sf::st_read(f, quiet = TRUE)
subset3 <- clip_roi(las, lakes)

# Extract the polygons for a catalog, write them in files named
# after the lake names, do not load anything in R
opt_output_files(ctg) <- paste0(tempfile(), "_{LAKENAME_1}")
new_ctg = clip_roi(ctg, lakes)
plot(new_ctg)

# Extract a transect
p1 <- c(684800, y = 5017800)
p2 <- c(684900, y = 5017900)
tr1 <- clip_transect(las, p1, p2, width = 4)

## Not run:
plot(subset1)
plot(subset2)
plot(subset3)

plot(tr1, axis = TRUE, clear_artifacts = FALSE)

## End(Not run)

decimate_points Decimate a LAS object

Description

Reduce the number of points using several possible algorithms.

Usage

decimate_points(las, algorithm)



28 deprecated

Arguments

las An object of class LAS or LAScatalog.

algorithm function. An algorithm of point decimation. lidR have: random, homogenize,
highest, lowest and random_per_voxel.

Value

If the input is a LAS object, returns a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Non-supported LAScatalog options

The option ‘select‘ is not supported and not respected because it always preserves the file format
and all the attributes. ‘select = "*"‘ is imposed internally.
The options ‘chunk buffer‘ is not supported and not respected because it is not needed.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, select = "xyz")

# Select points randomly to reach an overall density of 1
thinned1 <- decimate_points(las, random(1))
#plot(rasterize_density(las))
#plot(rasterize_density(thinned1))

# Select points randomly to reach an homogeneous density of 1
thinned2 <- decimate_points(las, homogenize(1,5))
#plot(rasterize_density(thinned2))

# Select the highest point within each pixel of an overlayed grid
thinned3 = decimate_points(las, highest(5))
#plot(thinned3)

deprecated Deprecated functions in lidR

Description

These functions are provided for compatibility with older versions of lidR but are deprecated. They
will progressively print a message, throw a warning and eventually be removed. The links below
point to the documentation of the new names. In version 4 they now throw an error. In version 4.1
they ill be removed definitively.

lasadd lascheck lasclip lasdetectshape lasfilter lasfiltersurfacepoints lasflightline lasground lasmerges-
patial lasnormalize laspulse lasrangecorrection lasflightline lasreoffset lasrescale lasscanlines lass-
mooth lassnags lastrees lasvoxelize sensor_tracking tree_detection tree_hull



deprecated 29

Usage

lascheck(las)

lasclip(las, geometry, ...)

lasclipRectangle(las, xleft, ybottom, xright, ytop, ...)

lasclipPolygon(las, xpoly, ypoly, ...)

lasclipCircle(las, xcenter, ycenter, radius, ...)

lasdetectshape(las, algorithm, attribute = "Shape", filter = NULL)

lasfilter(las, ...)

lasfilterfirst(las)

lasfilterfirstlast(las)

lasfilterfirstofmany(las)

lasfilterground(las)

lasfilterlast(las)

lasfilternth(las, n)

lasfiltersingle(las)

lasfilterdecimate(las, algorithm)

lasfilterduplicates(las)

lasfiltersurfacepoints(las, res)

lasground(las, algorithm, last_returns = TRUE)

laspulse(las)

lasflightline(las, dt = 30)

lasscanline(las)

lasmergespatial(las, source, attribute = NULL)

lasnormalize(
las,
algorithm,



30 deprecated

na.rm = FALSE,
use_class = c(2L, 9L),
...,
add_lasattribute = FALSE

)

lasunnormalize(las)

lasrangecorrection(
las,
sensor,
Rs,
f = 2.3,
gpstime = "gpstime",
elevation = "Z"

)

lasrescale(las, xscale, yscale, zscale)

lasreoffset(las, xoffset, yoffset, zoffset)

lassmooth(
las,
size,
method = c("average", "gaussian"),
shape = c("circle", "square"),
sigma = size/6

)

lasunsmooth(las)

lassnags(las, algorithm, attribute = "snagCls")

lastrees(las, algorithm, attribute = "treeID", uniqueness = "incremental")

lasadddata(las, x, name)

lasaddextrabytes(las, x, name, desc)

lasaddextrabytes_manual(
las,
x,
name,
desc,
type,
offset = NULL,
scale = NULL,
NA_value = NULL



deprecated 31

)

lasremoveextrabytes(las, name)

lasvoxelize(las, res)

sensor_tracking(
las,
interval = 0.5,
pmin = 50,
extra_check = TRUE,
thin_pulse_with_time = 0.001

)

tree_detection(las, algorithm)

tree_hulls(
las,
type = c("convex", "concave", "bbox"),
concavity = 3,
length_threshold = 0,
func = NULL,
attribute = "treeID"

)

hexbin_metrics(...)

filter_surfacepoints(las, res)

## S3 method for class 'LAS'
filter_surfacepoints(las, res)

## S3 method for class 'LAScatalog'
filter_surfacepoints(las, res)

Arguments

las See the new functions that replace the old ones

geometry See the new functions that replace the old ones

... See the new functions that replace the old ones
xleft, ybottom, xright, ytop

See the new functions that replace the old ones

xpoly, ypoly See the new functions that replace the old ones
xcenter, ycenter, radius

See the new functions that replace the old ones

algorithm See the new functions that replace the old ones

attribute See the new functions that replace the old ones



32 dsm_pitfree

filter See the new functions that replace the old ones

n, res, dt See the new functions that replace the old ones

last_returns See the new functions that replace the old ones

source See the new functions that replace the old ones

na.rm, use_class, add_lasattribute
See the new functions that replace the old ones

sensor, Rs, f, gpstime, elevation
See the new functions that replace the old ones

xscale, yscale, zscale, xoffset, yoffset, zoffset
See the new functions that replace the old ones

size, method, shape, sigma
See the new functions that replace the old ones

uniqueness See the new functions that replace the old ones

x, name, desc, type, offset, scale, NA_value
See the new functions that replace the old ones

interval, pmin, extra_check, thin_pulse_with_time
See the new functions that replace the old ones

concavity, length_threshold, func
See the new functions that replace the old ones

dsm_pitfree Digital Surface Model Algorithm

Description

This function is made to be used in rasterize_canopy. It implements the pit-free algorithm developed
by Khosravipour et al. (2014), which is based on the computation of a set of classical triangulations
at different heights (see references). The subcircle tweak replaces each point with 8 points around
the original one. This allows for virtual ’emulation’ of the fact that a lidar point is not a point as
such, but more realistically a disc. This tweak densifies the point cloud and the resulting canopy
model is smoother and contains fewer ’pits’ and empty pixels.

Usage

pitfree(
thresholds = c(0, 2, 5, 10, 15),
max_edge = c(0, 1),
subcircle = 0,
highest = TRUE

)



dsm_pitfree 33

Arguments

thresholds numeric. Set of height thresholds according to the Khosravipour et al. (2014)
algorithm description (see references)

max_edge numeric. Maximum edge length of a triangle in the Delaunay triangulation. If
a triangle has an edge length greater than this value it will be removed. The
first number is the value for the classical triangulation (threshold = 0, see also
dsmtin), the second number is the value for the pit-free algorithm (for thresholds
> 0). If max_edge = 0 no trimming is done (see examples).

subcircle numeric. radius of the circles. To obtain fewer empty pixels the algorithm can
replace each return with a circle composed of 8 points (see details).

highest bool. By default it keeps only the highest point per pixel before to triangulate to
decrease computation time. If highest = FALSE all first returns are used.

References

Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., & Hussin, Y. A. (2014). Generating pit-
free canopy height models from airborne lidar. Photogrammetric Engineering & Remote Sensing,
80(9), 863-872.

See Also

Other digital surface model algorithms: dsm_point2raster, dsm_tin

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
poi = "-drop_z_below 0 -inside 481280 3812940 481330 3812990"
las <- readLAS(LASfile, filter = poi)
col <- height.colors(50)

# Basic triangulation and rasterization of first returns
chm <- rasterize_canopy(las, res = 0.5, dsmtin())
plot(chm, col = col)

# Khosravipour et al. pitfree algorithm
chm <- rasterize_canopy(las, res = 0.5, pitfree(c(0,2,5,10,15), c(0, 1.5)))
plot(chm, col = col)

## Not run:
# Potentially complex concave subset of point cloud
x = c(481340, 481340, 481280, 481300, 481280, 481340)
y = c(3812940, 3813000, 3813000, 3812960, 3812940, 3812940)
las2 = clip_polygon(las,x,y)
plot(las2)

# Because the TIN interpolation is done within the convex hull of the point cloud
# dummy pixels are interpolated that are correct according to the interpolation
# method used, but meaningless in our CHM
chm <- rasterize_canopy(las2, res = 0.5, pitfree(max_edge = c(0, 1.5)))
plot(chm, col = col)



34 dsm_point2raster

chm = rasterize_canopy(las2, res = 0.5, pitfree(max_edge = c(3, 1.5)))
plot(chm, col = col)

## End(Not run)

dsm_point2raster Digital Surface Model Algorithm

Description

This function is made to be used in rasterize_canopy. It implements an algorithm for digital surface
model computation based on a points-to-raster method: for each pixel of the output raster the func-
tion attributes the height of the highest point found. The subcircle tweak replaces each point with
8 points around the original one. This allows for virtual ’emulation’ of the fact that a lidar point
is not a point as such, but more realistically a disc. This tweak densifies the point cloud and the
resulting canopy model is smoother and contains fewer ’pits’ and empty pixels.

Usage

p2r(subcircle = 0, na.fill = NULL)

Arguments

subcircle numeric. Radius of the circles. To obtain fewer empty pixels the algorithm can
replace each return with a circle composed of 8 points (see details).

na.fill function. A function that implements an algorithm to compute spatial interpo-
lation to fill the empty pixel often left by points-to-raster methods. lidR has
knnidw, tin, and kriging (see also rasterize_terrain for more details).

See Also

Other digital surface model algorithms: dsm_pitfree, dsm_tin

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile)
col <- height.colors(50)

# Points-to-raster algorithm with a resolution of 1 meter
chm <- rasterize_canopy(las, res = 1, p2r())
plot(chm, col = col)

# Points-to-raster algorithm with a resolution of 0.5 meters replacing each
# point by a 20 cm radius circle of 8 points
chm <- rasterize_canopy(las, res = 0.5, p2r(0.2))
plot(chm, col = col)



dsm_tin 35

## Not run:
chm <- rasterize_canopy(las, res = 0.5, p2r(0.2, na.fill = tin()))
plot(chm, col = col)

## End(Not run)

dsm_tin Digital Surface Model Algorithm

Description

This function is made to be used in rasterize_canopy. It implements an algorithm for digital surface
model computation using a Delaunay triangulation of first returns with a linear interpolation within
each triangle.

Usage

dsmtin(max_edge = 0, highest = TRUE)

Arguments

max_edge numeric. Maximum edge length of a triangle in the Delaunay triangulation. If
a triangle has an edge length greater than this value it will be removed to trim
dummy interpolation on non-convex areas. If max_edge = 0 no trimming is done
(see examples).

highest bool. By default it keeps only the highest point per pixel before to triangulate to
decrease computation time. If highest = FALSE all first returns are used.

See Also

Other digital surface model algorithms: dsm_pitfree, dsm_point2raster

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile)
col <- height.colors(50)

# Basic triangulation and rasterization of first returns
chm <- rasterize_canopy(las, res = 1, dsmtin())
plot(chm, col = col)

## Not run:
# Potentially complex concave subset of point cloud
x = c(481340, 481340, 481280, 481300, 481280, 481340)
y = c(3812940, 3813000, 3813000, 3812960, 3812940, 3812940)
las2 = clip_polygon(las,x,y)
plot(las2)



36 dtm_idw

# Because the TIN interpolation is done within the convex hull of the point cloud
# dummy pixels are interpolated that are correct according to the interpolation method
# used, but meaningless in our CHM
chm <- rasterize_canopy(las2, res = 0.5, dsmtin())
plot(chm, col = col)

# Use 'max_edge' to trim dummy triangles
chm = rasterize_canopy(las2, res = 0.5, dsmtin(max_edge = 3))
plot(chm, col = col)

## End(Not run)

dtm_idw Spatial Interpolation Algorithm

Description

This function is made to be used in rasterize_terrain or normalize_height. It implements an algo-
rithm for spatial interpolation. Interpolation is done using a k-nearest neighbour (KNN) approach
with an inverse-distance weighting (IDW).

Usage

knnidw(k = 10, p = 2, rmax = 50)

Arguments

k integer. Number of k-nearest neighbours. Default 10.

p numeric. Power for inverse-distance weighting. Default 2.

rmax numeric. Maximum radius where to search for knn. Default 50.

See Also

Other dtm algorithms: dtm_kriging, dtm_tin

Examples

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile)

#plot(las)

dtm = rasterize_terrain(las, algorithm = knnidw(k = 6L, p = 2))

#plot(dtm)
#plot_dtm3d(dtm)



dtm_kriging 37

dtm_kriging Spatial Interpolation Algorithm

Description

This function is made to be used in rasterize_terrain or normalize_height. It implements an algo-
rithm for spatial interpolation. Spatial interpolation is based on universal kriging using the krige()
function from gstat. This method combines the KNN approach with the kriging approach. For
each point of interest it kriges the terrain using the k-nearest neighbour ground points. This method
is more difficult to manipulate but it is also the most advanced method for interpolating spatial data.

Usage

kriging(model = gstat::vgm(0.59, "Sph", 874), k = 10L)

Arguments

model A variogram model computed with vgm() from package gstat. If NULL it
performs an ordinary or weighted least squares prediction.

k numeric. Number of k-nearest neighbours. Default 10.

See Also

Other dtm algorithms: dtm_idw, dtm_tin

Examples

## Not run:
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile)

plot(las)

dtm = rasterize_terrain(las, algorithm = kriging())

plot(dtm)
plot_dtm3d(dtm)

## End(Not run)



38 engine

dtm_tin Spatial Interpolation Algorithm

Description

This function is made to be used in rasterize_terrain or normalize_height. It implements an algo-
rithm for spatial interpolation. Spatial interpolation is based on a Delaunay triangulation, which
performs a linear interpolation within each triangle. There are usually a few points outside the con-
vex hull, determined by the ground points at the very edge of the dataset, that cannot be interpolated
with a triangulation. Extrapolation can be performed with another algorithm.

Usage

tin(..., extrapolate = knnidw(3, 1, 50))

Arguments

... unused

extrapolate There are usually a few points outside the convex hull, determined by the ground
points at the very edge of the dataset, that cannot be interpolated with a triangu-
lation. Extrapolation is done using knnidw by default.

See Also

Other dtm algorithms: dtm_idw, dtm_kriging

Examples

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

#plot(las)

dtm = rasterize_terrain(las, algorithm = tin())

#plot(dtm)
#plot_dtm3d(dtm)

engine Functions for the LAScatalog processing engine not meant to be called
directly by users

Description

Functions for the LAScatalog processing engine not meant to be called directly by users. They are
exported for debugging and to simplify export of internal functions when processing in parallel



engine 39

Usage

engine_apply(
.CHUNKS,
.FUN,
.PROCESSOPT,
.OUTPUTOPT,
.GLOBALS = NULL,
.AUTOREAD = FALSE,
.AUTOCROP = FALSE,
...

)

engine_chunks(ctg, realignment = FALSE, plot = opt_progress(ctg))

engine_crop(x, bbox)

engine_merge(ctg, any_list, ...)

engine_write(x, path, drivers)

Arguments

.CHUNKS list. list of LAScluster

.FUN function. function that respects a template (see catalog_apply)

.PROCESSOPT list. Processing option

.OUTPUTOPT list. Output option

.GLOBALS list. Force export of some object in workers

.AUTOREAD bool. Enable autoread

.AUTOCROP bool. Enable autocrop

... parameters of .FUN

ctg LAScatalog

realignment FALSE or list(res = x, start = c(y,z)). Sometimes the chunk must be aligned
with a raster, for example to ensure the continuity of the output. If the chunk
size is 800 and the expected product is a raster with a resolution of 35, 800 and
35 are not compatible and will create 2 different partial pixels on the edges. The
realignment option forces the chunk to fit the grid alignment.

plot logical. Displays the chunk pattern.

x LAS, Raster, stars, SpatRaster,sf, sfc, Spatial

bbox bbox

any_list list of LAS, Raster, stars, SpatRaster, sf, sfc, Spatial, data.frame

path strings

drivers list. Drivers of a LAScatalog



40 engine_options

See Also

Other LAScatalog processing engine: engine_options

Other LAScatalog processing engine: engine_options

engine_options Get or set LAScatalog processing engine options

Description

The names of the options and their roles are documented in LAScatalog. The options are used by
all the functions that support a LAScatalog as input. Most options are easy to understand and to
link to the documentation of LAScatalog but some need more details. See section ’Details’.

Usage

opt_chunk_buffer(ctg)

opt_chunk_buffer(ctg) <- value

opt_chunk_size(ctg)

opt_chunk_size(ctg) <- value

opt_chunk_alignment(ctg)

opt_chunk_alignment(ctg) <- value

opt_restart(ctg) <- value

opt_progress(ctg)

opt_progress(ctg) <- value

opt_stop_early(ctg)

opt_stop_early(ctg) <- value

opt_wall_to_wall(ctg)

opt_wall_to_wall(ctg) <- value

opt_independent_files(ctg)

opt_independent_files(ctg) <- value

opt_output_files(ctg)



engine_options 41

opt_output_files(ctg) <- value

opt_laz_compression(ctg)

opt_laz_compression(ctg) <- value

opt_merge(ctg)

opt_merge(ctg) <- value

opt_select(ctg)

opt_select(ctg) <- value

opt_filter(ctg)

opt_filter(ctg) <- value

Arguments

ctg An object of class LAScatalog

value An appropriate value depending on the expected input.

Details

• opt_restart() automatically sets the chunk option named "drop" in such a way that the engine
will restart at a given chunk and skip all previous chunks. Useful for restarting after a crash.

• opt_independent_file() automatically sets the chunk size, chunk buffer and wall-to-wall op-
tions to process files that are not spatially related to each other, such as plot inventories.

• opt_laz_compression() automatically modifies the drivers to write LAZ files instead of LAS
files.

See Also

Other LAScatalog processing engine: engine

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
ctg = readLAScatalog(LASfile)

plot(ctg, chunk_pattern = TRUE)

opt_chunk_size(ctg) <- 150
plot(ctg, chunk_pattern = TRUE)

opt_chunk_buffer(ctg) <- 10
plot(ctg, chunk_pattern = TRUE)



42 Extract

opt_chunk_alignment(ctg) <- c(270,250)
plot(ctg, chunk_pattern = TRUE)

summary(ctg)

opt_output_files(ctg) <- "/path/to/folder/templated_filename_{XBOTTOM}_{ID}"
summary(ctg)

Extract Extract or Replace Parts of a LAS* Object

Description

Operators acting on LAS* objects. However, some have modified behaviors to prevent some irrele-
vant modifications. Indeed, a LAS* object cannot contain anything, as the content is restricted by the
LAS specifications. If a user attempts to use one of these functions inappropriately an informative
error will be thrown.

Usage

## S4 method for signature 'LAS'
x$name

## S4 method for signature 'LAS,ANY,missing'
x[[i, j, ...]]

## S4 replacement method for signature 'LAS'
x$name <- value

## S4 replacement method for signature 'LAS,ANY,missing'
x[[i, j]] <- value

## S4 method for signature 'LAS,numeric,ANY'
x[i]

## S4 method for signature 'LAS,logical,ANY'
x[i]

## S4 method for signature 'LAS,sf,ANY'
x[i]

## S4 method for signature 'LAS,sfc,ANY'
x[i]

## S4 method for signature 'LAScatalog'
x$name



Extract 43

## S4 method for signature 'LAScatalog,ANY,missing'
x[[i, j, ...]]

## S4 method for signature 'LAScatalog,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'LAScatalog,logical,ANY'
x[i]

## S4 method for signature 'LAScatalog,sf,ANY'
x[i]

## S4 method for signature 'LAScatalog,sfc,ANY'
x[i]

## S4 replacement method for signature 'LAScatalog,ANY,ANY'
x[[i, j]] <- value

## S4 replacement method for signature 'LAScatalog'
x$name <- value

## S4 method for signature 'LASheader'
x$name

## S4 replacement method for signature 'LASheader'
x$name <- value

## S4 method for signature 'LASheader,ANY,missing'
x[[i, j, ...]]

## S4 replacement method for signature 'LASheader,character,missing'
x[[i]] <- value

Arguments

x A LAS* object

name A literal character string or a name (possibly backtick quoted).

i string, name of elements to extract or replace.

j Unused.

... Unused

value typically an array-like R object of a similar class as x.

drop Unused

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las = readLAS(LASfile)



44 filters

las$Intensity
las[["Z"]]
las[["Number of points by return"]]

## Not run:
las$Z = 2L
las[["Z"]] = 1:10
las$NewCol = 0
las[["NewCol"]] = 0

## End(Not run)

filters Filter points of interest

Description

Filter points of interest (POI) from a LAS object where conditions are true.

Usage

filter_poi(las, ...)

filter_first(las)

filter_firstlast(las)

filter_firstofmany(las)

filter_ground(las)

filter_last(las)

filter_nth(las, n)

filter_single(las)

filter_duplicates(las)

## S3 method for class 'LAS'
filter_duplicates(las)

## S3 method for class 'LAScatalog'
filter_duplicates(las)



filters 45

Arguments

las An object of class LAS

... Logical predicates. Multiple conditions are combined with ’&’ or ’,’

n integer ReturnNumber == n

Details

• filter_poi Select points of interest based on custom logical criteria.

• filter_first Select only the first returns.

• filter_firstlast Select only the first and last returns.

• filter_ground Select only the returns classified as ground according to LAS specification.

• filter_last Select only the last returns i.e. the last returns and the single returns.

• filter_nth Select the returns from their position in the return sequence.

• filter_firstofmany Select only the first returns from pulses which returned multiple points.

• filter_single Select only the returns that return only one point.

• filter_duplicates Removes the duplicated points (duplicated by XYZ)

Value

An object of class LAS

Non-supported LAScatalog options

The option select is not supported and not respected because it always preserves the file format
and all the attributes. select = "*" is imposed internally.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
lidar = readLAS(LASfile)

# Select the first returns classified as ground
firstground = filter_poi(lidar, Classification == 2L & ReturnNumber == 1L)

# Multiple arguments are equivalent to &
firstground = filter_poi(lidar, Classification == 2L, ReturnNumber == 1L)

# Multiple criteria
first_or_ground = filter_poi(lidar, Classification == 2L | ReturnNumber == 1L)



46 gnd_csf

gnd_csf Ground Segmentation Algorithm

Description

This function is made to be used in classify_ground. It implements an algorithm for segmentation
of ground points base on a Cloth Simulation Filter. This method is a strict implementation of the
CSF algorithm made by Zhang et al. (2016) (see references) that relies on the authors’ original
source code written and exposed to R via the the RCSF package.

Usage

csf(
sloop_smooth = FALSE,
class_threshold = 0.5,
cloth_resolution = 0.5,
rigidness = 1L,
iterations = 500L,
time_step = 0.65

)

Arguments

sloop_smooth logical. When steep slopes exist, set this parameter to TRUE to reduce errors
during post-processing.

class_threshold

scalar. The distance to the simulated cloth to classify a point cloud into ground
and non-ground. The default is 0.5.

cloth_resolution

scalar. The distance between particles in the cloth. This is usually set to the
average distance of the points in the point cloud. The default value is 0.5.

rigidness integer. The rigidness of the cloth. 1 stands for very soft (to fit rugged terrain),
2 stands for medium, and 3 stands for hard cloth (for flat terrain). The default is
1.

iterations integer. Maximum iterations for simulating cloth. The default value is 500.
Usually, there is no need to change this value.

time_step scalar. Time step when simulating the cloth under gravity. The default value is
0.65. Usually, there is no need to change this value. It is suitable for most cases.

References

W. Zhang, J. Qi*, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use Airborne
LiDAR Data Filtering Method Based on Cloth Simulation,” Remote Sens., vol. 8, no. 6, p. 501,
2016. (http://www.mdpi.com/2072-4292/8/6/501/htm)



gnd_mcc 47

See Also

Other ground segmentation algorithms: gnd_mcc, gnd_pmf

Examples

if (require(RCSF, quietly = TRUE))
{
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, select = "xyzrn")

mycsf <- csf(TRUE, 1, 1, time_step = 1)
las <- classify_ground(las, mycsf)
#plot(las, color = "Classification")
}

gnd_mcc Ground Segmentation Algorithm

Description

This function is made to be used in classify_ground. It implements an algorithm for segmentation of
ground points base on a Multiscale Curvature Classification. This method is a strict implementation
of the MCC algorithm made by Evans and Hudak. (2007) (see references) that relies on the authors’
original source code written and exposed to R via the the RMCC package.

Usage

mcc(s = 1.5, t = 0.3)

Arguments

s numeric. Scale parameter. The optimal scale parameter is a function of 1) the
scale of the objects (e.g., trees) on the ground, and 2) the sampling interval (post
spacing) of the lidar data.

t numeric. Curvature threshold

Details

There are two parameters that the user must define, the scale (s) parameter and the curvature thresh-
old (t). The optimal scale parameter is a function of 1) the scale of the objects (e.g., trees) on the
ground, and 2) the sampling interval (post spacing) of the lidar data. Current lidar sensors are capa-
ble of collecting high density data (e.g., 8 pulses/m2) that translate to a spatial sampling frequency
(post spacing) of 0.35 m/pulse (1/sqrt(8 pulses/m2) = 0.35 m/pulse), which is small relative to the
size of mature trees and will oversample larger trees (i.e., nominally multiple returns/tree). Sparser
lidar data (e.g., 0.25 pulses/m2) translate to a post spacing of 2.0 m/pulse (1/sqrt(0.25 pulses/m2) =
2.0 m/pulse), which would undersample trees and fail to sample some smaller trees (i.e., nominally
<1 return/tree).



48 gnd_pmf

Therefore, a bit of trial and error is warranted to determine the best scale and curvature parame-
ters to use. Select a las tile containing a good variety of canopy and terrain conditions, as it’s likely
the parameters that work best there will be applicable to the rest of your project area tiles. As a
starting point: if the scale (post spacing) of the lidar survey is 1.5 m, then try 1.5. Try varying it
up or down by 0.5 m increments to see if it produces a more desirable digital terrain model (DTM)
interpolated from the classified ground returns in the output file. Use units that match the units of
the lidar data. For example, if your lidar data were delivered in units of feet with a post spacing of
3 ft, set the scale parameter to 3, then try varying it up or down by 1 ft increments and compare the
resulting interpolated DTMs. If the trees are large, then it’s likely that a scale parameter of 1 m (3
ft) will produce a cleaner DTM than a scale parameter of 0.3 m (1 ft), even if the pulse density is
0.3 m (1 ft). As for the curvature threshold, a good starting value to try might be 0.3 (if data are in
meters; 1 if data are in feet), and then try varying this up or down by 0.1 m increments (if data are
in meters; 0.3 if data are in feet).

References

Evans, Jeffrey S.; Hudak, Andrew T. 2007. A multiscale curvature algorithm for classifying discrete
return LiDAR in forested environments. IEEE Transactions on Geoscience and Remote Sensing.
45(4): 1029-1038.

See Also

Other ground segmentation algorithms: gnd_csf, gnd_pmf

Examples

if (require(RMCC, quietly = TRUE))
{
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, select = "xyzrn", filter = "-inside 273450 5274350 273550 5274450")

las <- classify_ground(las, mcc(1.5,0.3))
#plot(las, color = "Classification")
}

gnd_pmf Ground Segmentation Algorithm

Description

This function is made to be used in classify_ground. It implements an algorithm for segmentation
of ground points based on a progressive morphological filter. This method is an implementation of
the Zhang et al. (2003) algorithm (see reference). Note that this is not a strict implementation of
Zhang et al. This algorithm works at the point cloud level without any rasterization process. The
morphological operator is applied on the point cloud, not on a raster. Also, Zhang et al. proposed
some formulas (eq. 4, 5 and 7) to compute the sequence of windows sizes and thresholds. Here,
these parameters are free and specified by the user. The function util_makeZhangParam enables
computation of the parameters according to the original paper.



gnd_pmf 49

Usage

pmf(ws, th)

util_makeZhangParam(
b = 2,
dh0 = 0.5,
dhmax = 3,
s = 1,
max_ws = 20,
exp = FALSE

)

Arguments

ws numeric. Sequence of windows sizes to be used in filtering ground returns. The
values must be positive and in the same units as the point cloud (usually meters,
occasionally feet).

th numeric. Sequence of threshold heights above the parameterized ground surface
to be considered a ground return. The values must be positive and in the same
units as the point cloud.

b numeric. This is the parameter b in Zhang et al. (2003) (eq. 4 and 5).
dh0 numeric. This is dh0 in Zhang et al. (2003) (eq. 7).
dhmax numeric. This is dhmax in Zhang et al. (2003) (eq. 7).
s numeric. This is s in Zhang et al. (2003) (eq. 7).
max_ws numeric. Maximum window size to be used in filtering ground returns. This

limits the number of windows created.
exp logical. The window size can be increased linearly or exponentially (eq. 4 or 5).

Details

The progressive morphological filter allows for any sequence of parameters. The ‘util_makeZhangParam‘
function enables computation of the sequences using equations (4), (5) and (7) from Zhang et al.
(see reference and details).

In the original paper the windows size sequence is given by eq. 4 or 5:

wk = 2kb+ 1

or

wk = 2bk + 1

In the original paper the threshold sequence is given by eq. 7:

thk = s ∗ (wk − wk−1) ∗ c+ th0

Because the function classify_ground applies the morphological operation at the point cloud level
the parameter c is set to 1 and cannot be modified.



50 interpret_waveform

References

Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive mor-
phological filter for removing nonground measurements from airborne LIDAR data. IEEE Transac-
tions on Geoscience and Remote Sensing, 41(4 PART I), 872–882. http:#doi.org/10.1109/TGRS.2003.810682.

See Also

Other ground segmentation algorithms: gnd_csf, gnd_mcc

Examples

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, select = "xyzrn", filter = "-inside 273450 5274350 273550 5274450")

ws <- seq(3,12, 3)
th <- seq(0.1, 1.5, length.out = length(ws))

las <- classify_ground(las, pmf(ws, th))
#plot(las, color = "Classification")

interpret_waveform Convert full waveform data into a regular point cloud

Description

Full waveform can be difficult to manipulate and visualize in R. This function converts a LAS
object with full waveform data into a regular point cloud. Each waveform record becomes a point
with XYZ coordinates and an amplitude (units: volts) and an ID that records each original pulse.
Notice that this has the effect of drastically inflating the size of the object in memory, which is likely
already very large

Usage

interpret_waveform(las)

Arguments

las An object of class LAS with full waveform data

Value

An object of class LAS 1.2 format 0 with one point per records



is 51

Full waveform

With most recent versions of the rlas package, full waveform (FWF) can be read and lidR pro-
vides some compatible functions. However, the support of FWF is still a work-in-progress in the
rlas package. How it is read, interpreted and represented in R may change. Consequently, tools
provided by lidR may also change until the support of FWF becomes mature and stable in rlas.
See also rlas::read.las.

Remember that FWF represents an insanely huge amount of data. It terms of memory it is like
having between 10 to 100 times more points. Consequently, loading FWF data in R should be
restricted to relatively small point clouds.

Examples

## Not run:
LASfile <- system.file("extdata", "fwf.laz", package="rlas")
fwf <- readLAS(LASfile)
las <- interpret_waveform(fwf)
x <- plot(fwf, size = 3, pal = "red")
plot(las, color = "Amplitude", bg = "white", add = x, size = 2)

## End(Not run)

is A set of boolean tests on objects

Description

is.empty tests if a LAS object is a point cloud with 0 points.
is.overlapping tests if a LAScatalog has overlapping tiles.
is.indexed tests if the points of a LAScatalog are indexed with .lax files.
is.algorithm tests if an object is an algorithm of the lidR package.
is.parallelised tests if an algorithm of the lidR package is natively parallelised with OpenMP.
Returns TRUE if the algorithm is at least partially parallelised i.e. if some portion of the code is
computed in parallel.

Usage

is.empty(las)

is.overlapping(catalog)

is.indexed(catalog)

is.algorithm(x)

is.parallelised(algorithm)



52 itd_lmf

Arguments

las A LAS object.

catalog A LAScatalog object.

x Any R object.

algorithm An algorithm object.

Value

TRUE or FALSE

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las = readLAS(LASfile)
is.empty(las)

las = new("LAS")
is.empty(las)

f <- lmf(2)
is.parallelised(f)

g <- pitfree()
is.parallelised(g)

ctg <- readLAScatalog(LASfile)
is.indexed(ctg)

itd_lmf Individual Tree Detection Algorithm

Description

This function is made to be used in locate_trees. It implements an algorithm for tree detection based
on a local maximum filter. The windows size can be fixed or variable and its shape can be square or
circular. The internal algorithm works either with a raster or a point cloud. It is deeply inspired by
Popescu & Wynne (2004) (see references).

Usage

lmf(ws, hmin = 2, shape = c("circular", "square"), ws_args = "Z")



itd_lmf 53

Arguments

ws numeric or function. Length or diameter of the moving window used to detect
the local maxima in the units of the input data (usually meters). If it is numeric
a fixed window size is used. If it is a function, the function determines the size
of the window at any given location on the canopy. By default function takes the
height of a given pixel or point as its only argument and return the desired size
of the search window when centered on that pixel/point. This can be controled
with the ‘ws_args‘ parameter

hmin numeric. Minimum height of a tree. Threshold below which a pixel or a point
cannot be a local maxima. Default is 2.

shape character. Shape of the moving window used to find the local maxima. Can be
"square" or "circular".

ws_args list. Named list of argument for the function ‘ws‘ if ‘ws‘ is a function.

References

Popescu, Sorin & Wynne, Randolph. (2004). Seeing the Trees in the Forest: Using Lidar and Mul-
tispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height.
Photogrammetric Engineering and Remote Sensing. 70. 589-604. 10.14358/PERS.70.5.589.

See Also

Other individual tree detection algorithms: itd_manual

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile, select = "xyzi", filter = "-inside 481250 3812980 481300 3813050")

# =================
# point-cloud-based
# =================

# 5x5 m fixed window size
ttops <- locate_trees(las, lmf(5))

#plot(las) |> add_treetops3d(ttops)

# variable windows size
f <- function(x) { x * 0.07 + 3}
ttops <- locate_trees(las, lmf(f))

#plot(las) |> add_treetops3d(ttops)

# Very custom variable windows size
f <- function(x, y, z) { x * 0.07 + y * 0.01 + z}
ws_args <- list(x = "Z", y = "Intensity", z = 3)
ttops <- locate_trees(las, lmf(f, ws_args = ws_args))

# ============



54 itd_manual

# raster-based
# ============

chm <- rasterize_canopy(las, res = 1, p2r(0.15), pkg = "terra")
ttops <- locate_trees(chm, lmf(5))

plot(chm, col = height.colors(30))
plot(sf::st_geometry(ttops), add = TRUE, col = "black", cex = 0.5, pch = 3)

# variable window size
f <- function(x) { x * 0.07 + 3 }
ttops <- locate_trees(chm, lmf(f))

plot(chm, col = height.colors(30))
plot(sf::st_geometry(ttops), add = TRUE, col = "black", cex = 0.5, pch = 3)

itd_manual Individual Tree Detection Algorithm

Description

This function is made to be used in locate_trees. It implements an algorithm for manual tree de-
tection. Users can pinpoint the tree top positions manually and interactively using the mouse. This
is only suitable for small-sized plots. First the point cloud is displayed, then the user is invited
to select a rectangular region of interest in the scene using the mouse button. Within the selected
region the highest point will be flagged as ’tree top’ in the scene. Once all the trees are labelled the
user can exit the tool by selecting an empty region. Points can also be unflagged. The goal of this
tool is mainly for minor correction of automatically-detected tree outputs.
This algorithm does not preserve tree IDs from detected and renumber all trees. It also looses
all attributes

Usage

manual(detected = NULL, radius = 0.5, color = "red", button = "middle", ...)

Arguments

detected SpatialPoints* or sf/sfc_POINT‘ with 2 or 3D points of already found tree
tops that need manual correction. Can be NULL

radius numeric. Radius of the spheres displayed on the point cloud (aesthetic purposes
only).

color character. Colour of the spheres displayed on the point cloud (aesthetic purposes
only).

button Which button to use for selection. One of "left", "middle", "right". lidR using
left for rotation and right for dragging using one of left or right will disable
either rotation or dragging

... supplementary parameters to be passed to plot.



its_dalponte2016 55

See Also

Other individual tree detection algorithms: itd_lmf

Examples

## Not run:
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las = readLAS(LASfile)

# Full manual tree detection
ttops = locate_trees(las, manual())

# Automatic detection with manual correction
ttops = locate_trees(las, lmf(5))
ttops = locate_trees(las, manual(ttops))

## End(Not run)

its_dalponte2016 Individual Tree Segmentation Algorithm

Description

This function is made to be used in segment_trees. It implements an algorithm for tree segmentation
based on Dalponte and Coomes (2016) algorithm (see reference). This is a seeds + growing region
algorithm. This algorithm exists in the package itcSegment. This version has been written from the
paper in C++. Consequently it is hundreds to millions times faster than the original version. Note
that this algorithm strictly performs a segmentation, while the original method as implemented in
itcSegment and described in the manuscript also performs pre- and post-processing tasks. Here
these tasks are expected to be done by the user in separate functions.

Usage

dalponte2016(
chm,
treetops,
th_tree = 2,
th_seed = 0.45,
th_cr = 0.55,
max_cr = 10,
ID = "treeID"

)

Arguments

chm ‘RasterLayer‘, ‘SpatRaster‘ or ‘stars‘. Canopy height model. Can be computed
with rasterize_canopy or read from an external file.



56 its_dalponte2016

treetops ‘SpatialPoints*‘ or ‘sf/sfc_POINT‘ with 2D or 3D coordinates. Can be com-
puted with locate_trees or read from an external file

th_tree numeric. Threshold below which a pixel cannot be a tree. Default is 2.
th_seed numeric. Growing threshold 1. See reference in Dalponte et al. 2016. A pixel

is added to a region if its height is greater than the tree height multiplied by this
value. It should be between 0 and 1. Default is 0.45.

th_cr numeric. Growing threshold 2. See reference in Dalponte et al. 2016. A pixel
is added to a region if its height is greater than the current mean height of the
region multiplied by this value. It should be between 0 and 1. Default is 0.55.

max_cr numeric. Maximum value of the crown diameter of a detected tree (in pixels).
Default is 10.

ID character. If treetops contains an attribute with the ID for each tree, the name
of this attribute. This way, original IDs will be preserved.

Details

Because this algorithm works on a CHM only there is no actual need for a point cloud. Sometimes
the user does not even have the point cloud that generated the CHM. lidR is a point cloud-oriented
library, which is why this algorithm must be used in segment_trees to merge the result with the
point cloud. However the user can use this as a stand-alone function like this:

chm <- raster("chm.tif")
ttops <- locate_trees(chm, lmf(3))
crowns <- dalponte2016(chm, ttops)()

References

Dalponte, M. and Coomes, D. A. (2016), Tree-centric mapping of forest carbon density from air-
borne laser scanning and hyperspectral data. Methods Ecol Evol, 7: 1236–1245. doi:10.1111/2041-
210X.12575.

See Also

Other individual tree segmentation algorithms: its_li2012, its_silva2016, its_watershed

Other raster based tree segmentation algorithms: its_silva2016, its_watershed

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
poi <- "-drop_z_below 0 -inside 481280 3812940 481320 3812980"
las <- readLAS(LASfile, select = "xyz", filter = poi)
col <- pastel.colors(200)

chm <- rasterize_canopy(las, 0.5, p2r(0.3))
ker <- matrix(1,3,3)
chm <- terra::focal(chm, w = ker, fun = mean, na.rm = TRUE)

ttops <- locate_trees(chm, lmf(4, 2))
las <- segment_trees(las, dalponte2016(chm, ttops))
#plot(las, color = "treeID", colorPalette = col)



its_li2012 57

its_li2012 Individual Tree Segmentation Algorithm

Description

This functions is made to be used in segment_trees. It implements an algorithm for tree segmen-
tation based on Li et al. (2012) (see reference). This method is a growing region method working
at the point cloud level. It is an implementation by lidR authors, from the original paper, as close
as possible from the original description. However we added a parameter hmin to prevent over-
segmentation for objects that are too low. This algorithm is known to be slow because it has an
algorithmic complexity worst that O(n^2).

Usage

li2012(dt1 = 1.5, dt2 = 2, R = 2, Zu = 15, hmin = 2, speed_up = 10)

Arguments

dt1 numeric. Threshold number 1. See reference page 79 in Li et al. (2012). Default
is 1.5.

dt2 numeric. Threshold number 2. See reference page 79 in Li et al. (2012). Default
is 2.

R numeric. Search radius. See page 79 in Li et al. (2012). Default is 2. If R = 0
all the points are automatically considered as local maxima and the search step
is skipped (much faster).

Zu numeric. If point elevation is greater than Zu, dt2 is used, otherwise dt1 is used.
See page 79 in Li et al. (2012). Default is 15.

hmin numeric. Minimum height of a detected tree. Default is 2.

speed_up numeric. Maximum radius of a crown. Any value greater than a crown is good
because this parameter does not affect the result. However, it greatly affects the
computation speed by restricting the number of comparisons to perform. The
lower the value, the faster the method. Default is 10.

References

Li, W., Guo, Q., Jakubowski, M. K., & Kelly, M. (2012). A new method for segmenting individual
trees from the lidar point cloud. Photogrammetric Engineering & Remote Sensing, 78(1), 75-84.

See Also

Other individual tree segmentation algorithms: its_dalponte2016, its_silva2016, its_watershed



58 its_silva2016

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
poi <- "-drop_z_below 0 -inside 481280 3812940 481320 3812980"
las <- readLAS(LASfile, select = "xyz", filter = poi)
col <- pastel.colors(200)

las <- segment_trees(las, li2012(dt1 = 1.4))
#plot(las, color = "treeID", colorPalette = col)

its_silva2016 Individual Tree Segmentation Algorithm

Description

This functions is made to be used in segment_trees. It implements an algorithm for tree segmenta-
tion based on Silva et al. (2016) (see reference). This is a simple method based on seed + voronoi
tesselation (equivalent to nearest neighbour). This algorithm is implemented in the package rLiDAR.
This version is not the version from rLiDAR. It is code written from the original article by the lidR
authors and is considerably (between 250 and 1000 times) faster.

Usage

silva2016(chm, treetops, max_cr_factor = 0.6, exclusion = 0.3, ID = "treeID")

Arguments

chm ‘RasterLayer‘, ‘SpatRaster‘ or ‘stars‘. Canopy height model. Can be computed
with rasterize_canopy or read from an external file.

treetops ‘SpatialPoints*‘ or ‘sf/sfc_POINT‘ with 2D or 3D coordinates. Can be com-
puted with locate_trees or read from an external file

max_cr_factor numeric. Maximum value of a crown diameter given as a proportion of the tree
height. Default is 0.6, meaning 60% of the tree height.

exclusion numeric. For each tree, pixels with an elevation lower than exclusion multi-
plied by the tree height will be removed. Thus, this number belongs between 0
and 1.

ID character. If treetops contains an attribute with the ID for each tree, the name
of this attribute. This way, original IDs will be preserved.

Details

Because this algorithm works on a CHM only there is no actual need for a point cloud. Sometimes
the user does not even have the point cloud that generated the CHM. lidR is a point cloud-oriented
library, which is why this algorithm must be used in segment_trees to merge the result into the point
cloud. However, the user can use this as a stand-alone function like this:

chm <- raster("chm.tif")
ttops <- locate_trees(chm, lmf(3))
crowns <- silva2016(chm, ttops)()



its_watershed 59

References

Silva, C. A., Hudak, A. T., Vierling, L. A., Loudermilk, E. L., O’Brien, J. J., Hiers, J. K., Khos-
ravipour, A. (2016). Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree At-
tributes from Field and LiDAR Data. Canadian Journal of Remote Sensing, 42(5), 554–573.
https://doi.org/10.1080/07038992.2016.1196582.

See Also

Other individual tree segmentation algorithms: its_dalponte2016, its_li2012, its_watershed

Other raster based tree segmentation algorithms: its_dalponte2016, its_watershed

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
poi <- "-drop_z_below 0 -inside 481280 3812940 481320 3812980"
las <- readLAS(LASfile, select = "xyz", filter = poi)
col <- pastel.colors(200)

chm <- rasterize_canopy(las, res = 0.5, p2r(0.3))
ker <- matrix(1,3,3)
chm <- terra::focal(chm, w = ker, fun = mean, na.rm = TRUE)

ttops <- locate_trees(chm, lmf(4, 2))
las <- segment_trees(las, silva2016(chm, ttops))
#plot(las, color = "treeID", colorPalette = col)

its_watershed Individual Tree Segmentation Algorithm

Description

This function is made to be used in segment_trees. It implements an algorithm for tree segmentation
based on a watershed. It is based on the bioconductor package EBIimage. You need to install this
package to run this method (see its github page). Internally, the function EBImage::watershed is
called.

Usage

watershed(chm, th_tree = 2, tol = 1, ext = 1)

Arguments

chm ‘RasterLayer‘, ‘SpatRaster‘ or ‘stars‘. Canopy height model. Can be computed
with rasterize_canopy or read from an external file.

th_tree numeric. Threshold below which a pixel cannot be a tree. Default is 2.

tol numeric. Tolerance see ?EBImage::watershed.

ext numeric. see ?EBImage::watershed.

https://github.com/aoles/EBImage


60 LAS-class

Details

Because this algorithm works on a CHM only there is no actual need for a point cloud. Sometimes
the user does not even have the point cloud that generated the CHM. lidR is a point cloud-oriented
library, which is why this algorithm must be used in segment_trees to merge the result into the point
cloud. However, the user can use this as a stand-alone function like this:

chm <- raster("chm.tif")
crowns <- watershed(chm)()

See Also

Other individual tree segmentation algorithms: its_dalponte2016, its_li2012, its_silva2016

Other raster based tree segmentation algorithms: its_dalponte2016, its_silva2016

Examples

## Not run:
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
poi <- "-drop_z_below 0 -inside 481280 3812940 481320 3812980"
las <- readLAS(LASfile, select = "xyz", filter = poi)
col <- pastel.colors(250)

# Using raster because focal does not exist in stars
chm <- rasterize_canopy(las, res = 0.5, p2r(0.3), pkg = "raster")
ker <- matrix(1,3,3)
chm <- raster::focal(chm, w = ker, fun = mean, na.rm = TRUE)
las <- segment_trees(las, watershed(chm))

plot(las, color = "treeID", colorPalette = col)

## End(Not run)

LAS-class An S4 class to represent a .las or .laz file

Description

Class LAS is the representation of a las/laz file according to the LAS file format specifications.

Usage

LAS(data, header = list(), crs = sf::NA_crs_, check = TRUE, index = NULL, ...)

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


LAS-class 61

Arguments

data a data.table containing the data of a las or laz file.

header a list or a LASheader containing the header of a las or laz file.

crs crs object of class crs from sf

check logical. Conformity tests while building the object.

index list with two elements list(sensor = 0L, index = 0L). See spatial indexing

... internal use

Details

A LAS object contains a data.table with the data read from a las/laz file and a LASheader
(see the ASPRS documentation for the LAS file format for more information). Because las files
are standardized the table of attributes read from the las/laz file is also standardized. Columns are
named:

• X, Y, Z (numeric)

• gpstime (numeric)

• Intensity (integer)

• ReturnNumber, NumberOfReturns (integer)

• ScanDirectionFlag (integer)

• EdgeOfFlightline (integer)

• Classification (integer)

• Synthetic_flag,Keypoint_flag, Withheld_flag (logical)

• ScanAngleRank/ScanAngle (integer/numeric)

• UserData (integer)

• PointSourceID (integer)

• R,G,B, NIR (integer)

Value

An object of class LAS

Functions

• LAS(): creates objects of class LAS. The original data is updated by reference to quantize the
coordinates according to the scale factor of the header if no header is provided. In this case
the scale factor is set to 0.001

Slots

crs Object of class crs from sf.

data Object of class data.table. Point cloud data according to the LAS file format

header Object of class LASheader. LAS file header according to the LAS file format

index list. See spatial indexing.

https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


62 LAScatalog-class

See Also

readLAS

Examples

# Read a las/laz file
LASfile <- system.file("extdata", "example.laz", package="rlas")
las <- readLAS(LASfile)
las

# Creation of a LAS object out of external data
data <- data.frame(X = runif(100, 0, 100),

Y = runif(100, 0, 100),
Z = runif(100, 0, 20))

# 'data' has many decimal digits
data

# Create a default header and quantize *by reference*
# the coordinates to fit with offset and scale factors
cloud <- LAS(data)

# 'data' has been updated and coordinates were quantized
data
cloud

# Be careful when providing a header the function assumes that
# it corresponds to the data and won't quantize the coordinates
data <- data.frame(X = runif(100, 0, 100),

Y = runif(100, 0, 100),
Z = runif(100, 0, 20))

header <- header(las)

# This works but triggers warnings and creates an invalid LAS object
cloud <- LAS(data, header)

las_check(cloud)

LAScatalog-class An S4 class to represent a collection of .las or .laz files

Description

A LAScatalog object is a representation of a collection of las/laz files. A LAScatalog is a way to
manage and batch process a lidar coverage. It allows the user to process a large area, or to selectively
clip data from a large area without loading all the data into computer memory. A LAScatalog can
be built with the function readLAScatalog.



LAScatalog-class 63

Details

A LAScatalog contains an sf object to store the geometry and metadata. It is extended with slots
that contain processing options. In lidR, each function that supports a LAScatalog as input will
respect these processing options. Internally, processing a catalog is almost always the same and
relies on a few steps:

1. Define chunks. A chunk is an arbitrarily-defined region of interest (ROI) of the collection.
Altogether, the chunks are a wall-to-wall set of ROIs that encompass the whole dataset.

2. Loop over each chunk (in parallel or not).

3. For each chunk, load the points inside the ROI into R, run some R functions, return the ex-
pected output.

4. Merge the outputs of the different chunks once they are all processed to build a continuous
(wall-to-wall) output.

So basically, a LAScatalog is an object that allows for batch processing but with the specificity that
lidR does not loop through LAS or LAZ files, but loops seamlessly through chunks that do not
necessarily match with the file pattern. This way lidR can sequentially process tiny ROIs even if
each file may be individually too big to fit in memory. This is also why point cloud indexation with
lax files may significantly speed-up the processing.

It is important to note that catalogs with files that overlap each other are not natively supported
by lidR. When encountering such datasets the user should always filter any overlaps if possible.
This is possible if the overlapping points are flagged, for example in the ’withheld’ attribute. Oth-
erwise lidR will not be able to process the dataset correctly.

Slots

data sf. An sf data.frame with the bounding box of each file as well as all the information read
from the header of each LAS/LAZ file.

processing_options list. A list that contains some settings describing how the collection will be
processed (see dedicated section).

chunk_options list. A list that contains some settings describing how the collection will be sub-
divided into chunks to be processed (see dedicated section).

output_options list. A list that contains some settings describing how the collection will return
the outputs (see dedicated section).

input_options list. A list of parameters to pass to readLAS (see dedicated section).

index list. See spatial indexing.

Processing options

The slot @processing_options contains a list of options that determine how chunks (the sub-
areas that are sequentially processed) are processed.

• progress: boolean. Display a progress bar and a chart of progress. Default is TRUE. Progress
estimation can be enhanced by installing the package progress. See opt_progress.



64 LAScatalog-class

• stop_early: boolean. Stop the processing if an error occurs in a chunk. If FALSE the process
can run until the end, removing chunks that failed. Default is TRUE and the user should have
no reason to change this. See opt_stop_early.

• wall.to.wall logical. The catalog processing engine always guarantees to return a continuous
output without edge effects, assuming that the catalog is a wall-to-wall catalog. To do so,
some options are checked internally to guard against bad settings, such as buffer = 0 for an
algorithm that requires a buffer. In rare cases it might be useful to disable these controls. If
wall.to.wall = FALSE controls are disabled and wall-to-wall outputs cannot be guaranteed.
See opt_wall_to_wall

Chunk options

The slot @chunk_options contains a list of options that determine how chunks (the sub-areas that
are sequentially processed) are made.

• chunk_size: numeric. The size of the chunks that will be sequentially processed. A small size
allows small amounts of data to be loaded at once, saving computer memory. With big chunks
the computation is usually faster but uses much more memory. If chunk_size = 0 the chunk
pattern is build using the file pattern. The chunks are expecting to be wall-to-wall coverage,
which means that chunk_size = 0 has meaning only if the files are not overlapping. Default is
0 i.e. by default the processing engine respects the existing tiling pattern. See opt_chunk_size.

• buffer: numeric. Each chunk can be read with an extra buffer around it to ensure there are
no edge effects between two independent chunks and that the output is continuous. This is
mandatory for some algorithms. Default is 30. See opt_chunk_buffer.

• alignment: numeric. A vector of size 2 (x and y coordinates, respectively) to align the chunk
pattern. By default the alignment is made along (0,0), meaning that the edge of the first chunk
will belong on x = 0 and y = 0 and all the the other chunks will be multiples of the chunk size.
Not relevant if chunk_size = 0. See opt_chunk_alignment.

• drop: integers. A vector of integers that specify the IDs of the chunks that should not be cre-
ated. This is designed to enable users to restart a computation that failed without reprocessing
everything. See opt_restart<-. Technically, this option may be used for partial processing of a
collection, but it generally should not be. Partial processing is already a feature of the engine.
See this vignette

Output options

The slot @output_options contains a list of options that determine how chunks (the sub-areas
that are sequentially processed) are written. By "written" we mean written to files or written in R
memory.

• output_files: string. If output_files = "" outputs are returned in R. Otherwise, if output_files
is a string the outputs will be written to files. This is useful if the output is too big to be re-
turned in R. A path to a filename template without a file extension (the engine guesses it for
you) is expected. When several files are going to be written a single string is provided with a
template that is automatically filled. For example, the following file names are possible:

"/home/user/als/normalized/file_{ID}_segmented"
"C:/user/document/als/zone52_{XLEFT}_{YBOTTOM}_confidential"
"C:/user/document/als/{ORIGINALFILNAME}_normalized"

https://cran.r-project.org/package=lidR/vignettes/lidR-LAScatalog-engine.html#partial-processing


LAScatalog-class 65

This option will generate as many filenames as needed with custom names for each file. The al-
lowed templates are {XLEFT}, {XRIGHT}, {YBOTTOM}, {YTOP}, {ID}, {XCENTER},{YCENTER},
{ORIGINALFILENAME}. See opt_output_files.

• drivers: list. This contains all the drivers required to seamlessly write Raster*, SpatRaster,
stars, Spatial*, sf, and LAS objects. It is recommended that only advanced users change
this option. A dedicated page describes the drivers in lidR-LAScatalog-drivers.

• merge: boolean. Multiple objects are merged into a single object at the end of the processing.
See opt_merge.

Input options

The slot @input_options contains a list of options that are passed to the function readLAS.
Indeed, the readLAS function is not called directly by the user but by the internal processing engine.
Users can propagate these options through the LAScatalog settings.

• select: string. The option select. Usually this option is not respected because each function
knows which data must be loaded or not. This is documented in each function. See opt_select.

• filter: string. The option filter. See opt_filter.

Examples

## Not run:
# Build a catalog
ctg <- readLAScatalog("filder/to/las/files/", filter = "-keep_first")

# Summary gives a summary of how the catalog will be processed
summary(ctg)

# We can seamlessly use lidR functions
hmean <- pixel_metrics(ctg, ~~mean(Z), 20)
ttops <- tree_detection(ctg, lmf(5))

# For low memory config it is probably advisable not to load entire files
# and process chunks instead
opt_chunk_size(ctg) <- 500

# Sometimes the output is likely to be very large
# e.g. large coverage and small resolution
dtm <- rasterize_terrain(ctg, 1, tin())

# In that case it is advisable to write the output(s) to files
opt_output_files(ctg) <- "path/to/folder/DTM_chunk_{XLEFT}_{YBOTTOM}"

# Raster will be written to disk. The list of written files is returned
# or, in this specific case, a virtual raster mosaic.
dtm <- rasterize_terrain(ctg, 1, tin())

# When chunks are files the original names of the las files can be preserved
opt_chunk_size(ctg) <- 0
opt_output_files(ctg) <- "path/to/folder/DTM_{ORIGINALFILENAME}"



66 LASheader

dtm <- rasterize_terrain(ctg, 1, tin())

# For some functions, files MUST be written to disk. Indeed, it is certain that R cannot
# handle the entire output.
opt_chunk_size(ctg) <- 0
opt_output_files(ctg) <- "path/to/folder/{ORIGINALFILENAME}_norm"
opt_laz_compression(ctg) <- TRUE
new_ctg <- normalize_height(ctg, tin())

# The user has access to the catalog engine through the functions catalog_apply
# and catalog_map
output <- catalog_apply(ctg, FUN, ...)

## End(Not run)

LASheader Create a LASheader object

Description

Creates a LASheader object either from a raw list containing all the elements named according to
the rlas package or creates a header from a data.frame or data.table containing a point cloud.
In the latter case it will generate a header according to the data using rlas::header_create(). It will
guess the LAS file format, the point data format, and initialize the scale factors and offsets, but these
may not suit a user’s needs. Users are advised to manually modify the results to fit their specific
needs.

Usage

LASheader(data = list())

Arguments

data a list containing the data from the header of a LAS file. Can also be a data.frame
or data.table

Value

An object of class LASheader

Examples

data = data.frame(X = c(339002.889, 339002.983, 339002.918),
Y = c(5248000.515, 5248000.478, 5248000.318),
Z = c(975.589, 974.778, 974.471),
gpstime = c(269347.28141, 269347.28142, 269347.28143),
Intensity = c(82L, 54L, 27L),
ReturnNumber = c(1L, 1L, 2L),
NumberOfReturns = c(1L, 1L, 2L),



LASheader-class 67

ScanDirectionFlag = c(1L, 1L, 1L),
EdgeOfFlightline = c(1L, 0L, 0L),
Classification = c(1L, 1L, 1L),
ScanAngleRank = c(-21L, -21L, -21L),
UserData = c(32L, 32L, 32L),
PointSourceID = c(17L, 17L, 17L))

header = LASheader(data)
header

# Record an EPSG code
epsg(header) <- 32618
header

las <- LAS(data, header)
las

# The function inferred a LAS 1.2 format 1 which is correct
# Upgrade to LAS 1.4 for the example
header@VLR <- list() # Erase VLR previously written
header@PHB[["Global Encoding"]][["WKT"]] <- TRUE
header@PHB[["Version Minor"]] <- 4L
header@PHB[["Header Size"]] <- 375L
header@PHB[["Offset to point data"]] <- 375L
wkt(header) <- sf::st_crs("EPSG:32618")$wkt
header
las1.4 <- LAS(data, header)
las1.4

LASheader-class An S4 class to represent the header of .las or .laz files

Description

An S4 class to represent the header of .las or .laz files according to the LAS file format specifi-
cations. A LASheader object contains a list in the slot @PHB with the data read from the Public
Header Block, a list in the slot @VLR with the data read from the Variable Length Records and a
list in the slot EVLR with the data read from the Extended Variable Lenght Records.

Slots

PHB list. Represents the Public Header Block

VLR list. Represents the Variable Length Records

EVLR list. Represents the Extended Variable Length Records

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


68 las_check

las_check Inspect a LAS object

Description

Performs a deep inspection of a LAS or LAScatalog object and prints a report.

For a LAS object it checks:

• if the point cloud is valid according to las specification

• if the header is valid according to las specification

• if the point cloud is in accordance with the header

• if the point cloud has duplicated points and degenerated ground points

• if gpstime and pulses are consistent

• it the coordinate reference sytem is correctly recorded

• if some pre-processing, such as normalization or ground filtering, is already done.

• and much more

For a LAScatalog object it checks:

• if the headers are consistent across files

• if the files are overlapping

• if some pre-processing, such as normalization, is already done.

For the pre-processing tests the function only makes an estimation and may not be correct.

Usage

las_check(las, print = TRUE, ...)

Arguments

las An object of class LAS or LAScatalog.

print logical. By default, prints a report and returns a list invisibly. If print =
FALSE the functions returns a list visibly and do not print the report.

... Use deep = TRUE on a LAScatalog only. Instead of a shallow inspection it reads
all the files and performs a deep inspection.

Value

A list with three elements named message, warnings and errors. This list is returned invisibly if
print = TRUE. If deep = TRUE a nested list is returned with one element per file.

See Also

Other las utilities: las_utilities



las_compression 69

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile)
las_check(las)

las_compression Compression of the point cloud

Description

Package rlas 1.6.0 supports compact representation of non populated attributes. For example UserData
is usually populated with zeros (not populated). Yet it takes 32 bits per point to store each 0. With
rlas 1.6.0 it can now use 644 bits no matter the number of points loaded if it is not populated or
populated with a unique value.

Usage

las_is_compressed(las)

las_size(las)

Arguments

las A LAS object.

Details

las_is_compressed test each attributes and returns a named vector with TRUE if the attribute is
compressed FALSE otherwise.

las_size returns the true size of a LAS object by considering the compression. object.size
from base R does not account for ALTREP and consequently cannot measure properly the size of a
LAS object

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile)
las_is_compressed(las)

format(object.size(las), units = "MB")
format(las_size(las), units = "MB")



70 las_utilities

las_utilities LAS utilities

Description

Tools to manipulate LAS objects maintaining compliance with ASPRS specification

Usage

las_rescale(las, xscale, yscale, zscale)

las_reoffset(las, xoffset, yoffset, zoffset)

las_quantize(las, by_reference = TRUE)

las_update(las)

quantize(x, scale, offset, by_reference = TRUE, ...)

is.quantized(x, scale, offset, ...)

count_not_quantized(x, scale, offset)

storable_coordinate_range(scale, offset)

header(las)

payload(las)

phb(las)

vlr(las)

evlr(las)

Arguments

las An object of class LAS
xscale, yscale, zscale

scalar. Can be missing if not relevant.
xoffset, yoffset, zoffset

scalar. Can be missing if not relevant.

by_reference bool. Update the data in place without allocating new memory.

x numeric. Coordinates vector

scale, offset scalar. scale and offset

... Unused.

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


las_utilities 71

Details

In the specification of the LAS format the coordinates are expected to be given with a certain
precision e.g. 0.01 for a millimeter precision (or millifeet), meaning that a file records e.g. 123.46
not 123.45678. Also, coordinates are stored as integers. This is made possible with a scale and
offset factor. For example, 123.46 with an offset of 100 and a scale factor of 0.01 is actually stored
as (123.46 - 100)/0.01 = 2346. Storing 123.45678 with a scale factor of 0.01 and an offset of 100
is invalid because it does not convert to an integer: (123.45678-100)/0.01 = 2345.678. Having
an invalid LAS object may be critical in some lidR applications. When writing into a LAS file,
users will loose the extra precision without warning and some algorithms in lidR use the integer
conversion to make integer-based computation and thus speed-up some algorithms and use less
memory. Creation of an invalid LAS object may cause problems and incorrect outputs.

See Also

Other las utilities: las_check()

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las = readLAS(LASfile)

# Manual modification of the coordinates (e.g. rotation, re-alignment, ...)
las@data$X <- las@data$X + 2/3
las@data$Y <- las@data$Y - 5/3

# The point cloud is no longer valid
las_check(las)

# It is important to fix that
las_quantize(las)

# Now the file is almost valid
las_check(las)

# Update the object to set up-to-date header data
las <- las_update(las)
las_check(las)

# In practice the above code is not useful for regular users because the operators
# $<- already perform such operations on-the-fly. Thus the following
# syntax must be preferred and returns valid objects. Previous tools
# were only intended to be used in very specific cases.
las$X <- las$X + 2/3
las$Y <- las$Y - 5/3

# Rescale and reoffset recompute the coordinates with
# new scales and offsets according to LAS specification
las <- las_rescale(las, xscale = 0.01, yscale = 0.01)
las <- las_reoffset(las, xoffset = 300000, yoffset = 5248000)



72 lidR-LAScatalog-drivers

lidR-LAScatalog-drivers

LAScatalog drivers

Description

This document explains how objects are written on disk when processing a LAScatalog. As men-
tioned in LAScatalog-class, users can set a templated filename to store the outputs on disk instead
of in R memory. By defaut LAS objects are stored in .las files with writeLAS, raster objects are
stored in .tif files using native write function for raster, stars or terra, Spatial* objects are
stored in .shp files with after coercion to sf with st_write, sf object are stored to .gpkg files with
st_write.data.frame objects are stored in .csv files with fwrite, and other objects are not supported.
However, users can modify all these default settings and even add new drivers. This manual page
explain how. One may also refer to some unofficial documentation here or here.

Generic form of a driver

A driver is stored in the slot @output_options of a LAScatalog. It is a list that contains:

write A function that receives an object and a path, and writes the object into a file using the path.
The function can also have extra options.

extension A string that gives the file extension.

object A string that gives the name of the argument used to pass the object to write in the function
used to write the object.

path A string that gives the name of the argument used to pass the path of the file to write in the
function used to write the object.

param A labelled list of extra parameters for the function used to write the object

For example, the driver to write a Raster* is

list(
write = raster::writeRaster,
extension = ".tif",
object = "x",
path = "filename",
param = list(format = "GTiff"))

And the driver to write a LAS is

list(
write = lidR::writeLAS,
extension = ".las",
object = "las",
path = "file",
param = list())

https://github.com/r-lidar/lidR/wiki/Modify-the-LAScatalog-drivers
https://gis.stackexchange.com/questions/325367/how-to-configure-lidr-catalog-to-save-raster-files


lidR-LAScatalog-drivers 73

Modify a driver (1/2)

Users can modify the drivers to write different file types than the default. For example, to write in
shapefile instead of a GeoPackage, one must change the sf driver:

ctg@output_options$drivers$sf$extension <- ".shp"

To write a Raster* in .grd files instead of .tif files one must change the Raster driver:

ctg@output_options$drivers$Raster$extension <- ".grd"
ctg@output_options$drivers$Raster$param$format <- "raster"

To write in .laz files instead of .las files one must change the LAS driver:

ctg@output_options$drivers$LAS$extension <- ".laz"

Add a new driver

The drivers allow LAS, Spatial,sf, Raster, stars, SpatRaster and data.frame objects to be
written. When using the engine (catalog_apply) to build new tools, users may need to be able to
write other objects such as a list. To do that users need to add a list element into @output_options:

ctg@output_options$drivers$list = list(
write = base::saveRDS,
object = "object",
path = "file",
extension = ".rds",
param = list(compress = TRUE))

The LAScatalog now has a new driver capable of writing a list.

Modify a driver (2/2)

It is also possible to completely overwrite an existing driver. By default sf objects are written into
GeoPackage with st_write. st_write can also wite in GeoJSON and even in SQLlite database
objects. But it cannot add data into an existing SQLlite database. Let’s create our own driver for a
sf. First we need a function able to write and append a sf into a SQLlite database from the object
and the path.

dbWrite_sf = function(x, path, name)
{
x <- sf::st_drop_geometry(x)
con <- RSQLite::dbConnect(RSQLite::SQLite(), path)
RSQLite::dbWriteTable(con, name, x, append = TRUE)
RSQLite::dbDisconnect(con)

}

Then we create the driver. User-defined drivers supersede default drivers:



74 lidR-parallelism

ctg@output_options$drivers$sf = list(
write = dbWrite_sf,
extension = ".sqlite",
object = "x",
path = "path",
param = list(name = "layername"))

Then to be sure that we do not write several .sqlite files, we don’t use templated filename.

opt_output_files(ctg) <- paste0(tempdir(), "/mysqlitefile")

And all the sf will be appended in a single database. To preserve the geometry one can

lidR-parallelism Parallel computation in lidR

Description

This document explains how to process point clouds taking advantage of parallel processing in
the lidR package. The lidR package has two levels of parallelism, which is why it is difficult to
understand how it works. This page aims to provide users with a clear overview of how to take
advantage of multicore processing even if they are not comfortable with the parallelism concept.

Algorithm-based parallelism

When processing a point cloud we are applying an algorithm on data. This algorithm may or may
not be natively parallel. In lidR some algorithms are fully computed in parallel, but some are not
because they are not parallelizable, while some are only partially parallelized. It means that some
portions of the code are computed in parallel and some are not. When an algorithm is natively
parallel in lidR it is always a C++ based parallelization with OpenMP. The advantage is that the
computation is faster without any consequence for memory usage because the memory is shared
between the processors. In short, algorithm-based parallelism provides a significant gain without
any cost for your R session and your system (but obviously there is a greater workload for the
processors). By default lidR uses half of your cores but you can control this with set_lidr_threads.
For example, the lmf algorithm is natively parallel. The following code is computed in parallel:

las <- readLAS("file.las")
tops <- locate_trees(las, lmf(2))

However, as stated above, not all algorithms are parallelized or even parallelizable. For example,
li2012 is not parallelized. The following code is computed in serial:

las <- readLAS("file.las")
dtm <- segment_trees(las, li2012())

To know which algorithms are parallelized users can refer to the documentation or use the function
is.parallelised.

is.parallelised(lmf(2)) #> TRUE
is.parallelised(li2012()) #> FALSE



lidR-parallelism 75

Chunk-based parallelism

When processing a LAScatalog, the internal engine splits the dataset into chunks and each chunk is
read and processed sequentially in a loop. This loop can be parallelized with the future package.
By default the chunks are processed sequentially, but they can be processed in parallel by registering
an evaluation strategy. For example, the following code is evaluated sequentially:

ctg <- readLAScatalog("folder/")
out <- pixel_metrics(ctg, ~mean(Z))

But this one is evaluated in parallel with two cores:

library(future)
plan(multisession, workers = 2L)
ctg <- readLAScatalog("folder/")
out <- pixel_metrics(ctg, ~mean(Z))

With chunk-based parallelism any algorithm can be parallelized by processing several subsets of a
dataset. However, there is a strong cost associated with this type of parallelism. When processing
several chunks at a time, the computer needs to load the corresponding point clouds. Assuming the
user processes one square kilometer chunks in parallel with 4 cores, then 4 chunks are loaded in the
computer memory. This may be too much and the speed-up is not guaranteed since there is some
overhead involved in reading several files at a time. Once this point is understood, chunk-based
parallelism is very powerful since all the algorithms can be parallelized whether or not they are
natively parallel. It also allows to parallelize the computation on several machines on the network
or to work on a HPC.

Nested parallelism - part 1

Previous sections stated that some algorithms are natively parallel, such as lmf, and some are not,
such as li2012. Anyway, users can split the dataset into chunks to process them simultaneously
with the LAScatalog processing engine. Let’s assume that the user’s computer has four cores, what
happens in this case:

library(future)
plan(multisession, workers = 4L)
set_lidr_threads(4L)
ctg <- readLAScatalog("folder/")
out <- locate_trees(ctg, lmf(2))

Here the catalog will be split into chunks that will be processed in parallel. And each computation
itself implies a parallelized task. This is a nested parallelism task and it is dangerous! Hopefully
the lidR package handles such cases and chooses by default to give precedence to chunk-based
parallelism. In this case chunks will be processed in parallel and the points will be processed
serially by disabling OpenMP.

Nested parallelism - part 2

We explained rules of precedence. But actually the user can tune the engine more accurately. Let’s
define the following function:



76 lidR-parallelism

myfun = function(las, ws, ...)
{
las <- normalize_height(las, tin())
tops <- locate_tree(las, lmf(ws))
return(tops)

}

out <- catalog_map(ctg, myfun, ws = 5)

This function used two algorithms, one is partially parallelized (tin) and one is fully parallelized
lmf. The user can manually use both OpenMP and future. By default the engine will give prece-
dence to chunk-based parallelism because it works in all cases but the user can impose something
else. In the following 2 workers are attributed to future and 2 workers are attributed to OpenMP.

plan(multisession, workers = 2L)
set_lidr_threads(2L)
catalog_map(ctg, myfun, ws = 5)

The rule is simple. If the number of workers needed is greater than the number of available workers
then OpenMP is disabled. Let suppose we have a 4 cores:

# 2 chunks 2 threads: OK
plan(multisession, workers = 2L)
set_lidr_threads(2L)

# 4 chunks 1 threads: OK
plan(multisession, workers = 4L)
set_lidr_threads(1L)

# 1 chunks 4 threads: OK
plan(sequential)
set_lidr_threads(4L)

# 3 chunks 2 threads: NOT OK
# Needs 6 workers, OpenMP threads are set to 1 i.e. sequential processing
plan(multisession, workers = 3L)
set_lidr_threads(2L)

Complex computing architectures

For more complex processing architectures such as multiple computers controlled remotely or HPC
a finer tuning might be necessary. Using

options(lidR.check.nested.parallelism = FALSE)

lidR will no longer check for nested parallelism and will never automatically disable OpenMP.



lidR-spatial-index 77

lidR-spatial-index Spatial index

Description

This document explains how to process point-clouds taking advantage of different spatial indexes
available in the lidR package. lidR can use several types of spatial indexes to apply algorithms (that
need a spatial indexing) as fast as possible. The choice of the spatial index depends on the type of
point-cloud that is processed and the algorithm that is performed. lidR can use a grid partition, a
voxel partition, a quadtree or an octree. See details.

Usage

sensor(las, h = FALSE)

sensor(las) <- value

index(las, h = FALSE)

index(las) <- value

Arguments

las An object of class LAS or LAScatalog.

h boolean. Human readable. Everything is stored as integers that are understood
internally. Use h = TRUE for user readable output.

value integer or character. A code for referring to a sensor type or a spatial index
type. Use one of "unknown", "als", "tls", "uav", "dap", "multispectral"
for sensor type and one of "auto", "gridpartition", "voxelpartition",
"quadtree", "octree" for spatial index type.

Details

From lidR (>= 3.1.0), a LAS object records the sensor used to sample the point-cloud (ALS, TLS,
UAV, DAP) as well as the spatial index that must be used for processing the point cloud. This can
be set manually by the user but the simplest is to use one of the read*LAS() functions. By default
a point-cloud is associated to a sensor and the best spatial index is chosen on-the-fly depending on
the algorithm applied. It is possible to force the use of a specific spatial index.

Information relative to the spatial indexing is stored in slot @index that contains a list with two
elements:

• sensor: an integer that records the sensor type

• index: an integer that records the spatial index to be used

By default the spatial index code is 0 ("automatic") meaning that each function is free to choose a
different spatial index depending on the recorded sensor. If the code is not 0 then each function will



78 lidR-spatial-index

be forced to used the spatial index that is imposed. This, obviously, applies only to functions that
use spatial indexing.

LAScatalog objects also record such information that is automatically propagated to the LAS ob-
jects when processing.

Note: before version 3.1.0, point-clouds were all considered as ALS because lidR was originally
designed for ALS. Consequently, for legacy and backwards-compatibility reasons, readLAS() and
readALSLAS() are actually equivalent. readLAS() tags the point cloud with "unknown" sensor
while readALSLAS() tags it with ’ALS’. Both behave the same and this is especially true compared
with versions < 3.1. As a consequence, using readLAS() provides the same performance (no degra-
dation) than in previous versions, while using one of the read*LAS() functions may improve the
performance.

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las <- readLAS(LASfile)

# By default the sensor and spatial index codes are 0
sensor(las)
index(las)

# Codes are used internally and not intended to be known by users
# Use h option for human readable output
sensor(las, h = TRUE)
index(las, h = TRUE)

# Modification of the sensor enables users to select a better spatial index
# when processing the point-cloud.
sensor(las) <- "tls"
sensor(las, h = TRUE)
index(las, h = TRUE)

# Modification of the spatial index forces users to choose one of the available
# spatial indexes.
index(las) <- "quadtree"
sensor(las, h = TRUE)
index(las, h = TRUE)

# The simplest way to take advantage of appropriate spatial indexing is
# to use one of the read*LAS() functions.
las <- readTLSLAS(LASfile)
sensor(las, h = TRUE)
index(las, h = TRUE)

# But for some specific point-clouds / algorithms it might be advisable to force
# the use of a specific spatial index to perform the computation faster
index(las) <- "voxelpartition"
index(las, h = TRUE)

# With a LAScatalog, spatial indexing information is propagated to the
# different chunks



lidR-spatial-index 79

ctg = readTLSLAScatalog(LASfile)
index(ctg) <- "voxelpartition"
sensor(ctg, h = TRUE)
index(ctg, h = TRUE)

# ==================
# PERFORMANCE TESTS
# ==================

## Not run:
# Performance tests on TLS
# ------------------------

# The package does not include TLS data
# so we can generate something that looks TLS-ish
# >>>>>>>>>>>
X <- runif(50, -25, 25)
Y <- runif(50, -25, 25)
X <- as.numeric(sapply(X, function(x) rnorm(2000, x, 2)))
Y <- as.numeric(sapply(Y, function(x) rnorm(2000, x, 2)))
Z <- abs(rnorm(length(Y), 10, 5))
veg <- data.frame(X,Y,Z)
X <- runif(5000, -30, 30)
Y <- runif(5000, -30, 30)
Z <- runif(5000, 0, 1)
ground <- data.frame(X,Y,Z)
X <- runif(30, -30, 30)
Y <- runif(30, -30, 30)
Z <- runif(30, 0, 30)
noise <- data.frame(X,Y,Z)
las <- LAS(rbind(ground, veg, noise))
# <<<<<<<<<<<<<

plot(las)

# If read with readALSLAS()
sensor(las) <- "als"
system.time(classify_noise(las, sor(20, 8)))
#> 1.5 sec

# If read with readTLSLAS()
sensor(las) <- "tls"
system.time(classify_noise(las, sor(20, 8)))
#> 0.6 sec

# Performance tests on ALS
# ------------------------

# The package does not include large ALS data
# so we can generate something that looks ALS-ish
# >>>>>>>>>>>
X <- runif(4e5, 0, 1000)
Y <- runif(4e5, 0, 1000)



80 locate_trees

Z <- 40*sin(0.01*X) + 50*cos(0.005*Y) + abs(rnorm(length(Y), 10, 5))
veg <- data.frame(X,Y,Z)
X <- runif(100, 0, 1000)
Y <- runif(100, 0, 1000)
Z <- 40*sin(0.01*X) + 50*cos(0.005*Y) + abs(rnorm(length(Y), 10, 5)) + runif(100, 30, 70)
noise <- data.frame(X,Y,Z)
las <- LAS(rbind(veg, noise))
# <<<<<<<<<<<<<

plot(las)

# If read with readALSLAS()
sensor(las) <- "als"
system.time(classify_noise(las, sor(15, 8)))
#> 3 sec

# If read with readTLSLAS()
sensor(las) <- "tls"
system.time(classify_noise(las, sor(15, 8)))
#> 4.3 sec

## End(Not run)

locate_trees Individual tree detection

Description

Individual tree detection function that find the position of the trees using several possible algorithms.

Usage

locate_trees(las, algorithm, uniqueness = "incremental")

Arguments

las An object of class LAS or LAScatalog. Can also be a raster from raster, stars
or terra representing a canopy height model, in which case it is processed like
a regularly-spaced point cloud.

algorithm An algorithm for individual tree detection. lidR has: lmf and manual. More
experimental algorithms may be found in the package lidRplugins.

uniqueness character. A method to compute a unique ID. Can be ’incremental’, ’gpstime’
or ’bitmerge’. See section ’Uniqueness’. This feature must be considered as
’experimental’.

Value

locate_trees returns an sf object with POINT Z geometries. The table of attributes contains a
column treeID with an individual ID for each tree. The height of the trees (Z) are also repeated in
the table of attribute to be analysed as an attribute and not as a coordinate.

https://github.com/Jean-Romain/lidRplugins


locate_trees 81

Uniqueness

By default the tree IDs are numbered from 1 to n, n being the number of trees found. The prob-
lem with such incremental numbering is that, while it ensures a unique ID is assigned for each
tree in a given point-cloud, it also guarantees duplication of tree IDs in different tiles or chunks
when processing a LAScatalog. This is because each chunk/file is processed independently of the
others and potentially in parallel on different computers. Thus, the index always restarts at 1 on
each chunk/file. Worse, in a tree segmentation process, a tree that is located exactly between 2
chunks/files will have two different IDs for its two halves.

This is why we introduced some uniqueness strategies that are all imperfect and that should be seen
as experimental. Please report any troubleshooting. Using a uniqueness-safe strategy ensures that
trees from different files will not share the same IDs. It also ensures that two halves of a tree on the
edge of a processing chunk will be assigned the same ID.

incremental Number from 0 to n. This method does not ensure uniqueness of the IDs. This is the
legacy method.

gpstime This method uses the gpstime of the highest point of a tree (apex) to create a unique ID.
This ID is not an integer but a 64-bit decimal number, which is suboptimal but at least it is
expected to be unique if the gpstime attribute is consistent across files. If inconsistencies
with gpstime are reported (for example gpstime records the week time and was reset to 0 in a
coverage that takes more than a week to complete), there is a (low) probability of getting ID
attribution errors.

bitmerge This method uses the XY coordinates of the highest point (apex) of a tree to create a
single 64-bit number with a bitwise operation. First, XY coordinates are converted to 32-
bit integers using the scales and offsets of the point cloud. For example, if the apex is at
(10.32, 25.64) with a scale factor of 0.01 and an offset of 0, the 32-bit integer coordinates
are X = 1032 and Y = 2564. Their binary representations are, respectively, (here displayed
as 16 bits) 0000010000001000 and 0000101000000100. X is shifted by 32 bits and becomes
a 64-bit integer. Y is kept as-is and the binary representations are unionized into a 64-bit
integer like (here displayed as 32 bit) 00000100000010000000101000000100 that is guaran-
teed to be unique. However R does not support 64-bit integers. The previous steps are done
at C++ level and the 64-bit binary representation is reinterpreted into a 64-bit decimal num-
ber to be returned in R. The IDs thus generated are somewhat weird. For example, the tree
ID 00000100000010000000101000000100 which is 67635716 if interpreted as an integer be-
comes 3.34164837074751323479078607289E-316 if interpreted as a decimal number. This
is far from optimal but at least it is guaranteed to be unique if all files have the same offsets
and scale factors.

All the proposed options are suboptimal because they either do not guarantee uniqueness in all
cases (inconsistencies in the collection of files), or they imply that IDs are based on non-integers or
meaningless numbers. But at least it works and deals with some of the limitations of R.

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile, select = "xyz", filter = "-inside 481250 3812980 481300 3813030")

ttops <- locate_trees(las, lmf(ws = 5))

#plot(las) |> add_treetops3d(ttops)



82 merge_spatial

merge_spatial Merge a point cloud with a source of spatial data

Description

Merge a point cloud with a source of spatial data. It adds an attribute along each point based on a
value found in the spatial data. Sources of spatial data can be a SpatialPolygons*, an sf/sfc, a
Raster*, a stars, or a SpatRaster.

• SpatialPolygons*, sf and sfc: it checks if the points belongs within each polygon. If the
parameter attribute is the name of an attribute in the table of attributes it assigns to the
points the values of that attribute. Otherwise it classifies the points as boolean. TRUE if the
points are in a polygon, FALSE otherwise.

• RasterLayer, single band stars or single layer SpatRaster: it attributes to each point the
value found in each pixel of the raster.

• RasterStack, RasterBrick, multibands stars or multilayer SpatRaster must have 3 layers
for RGB colors. It colorizes the point cloud with RGB values.

Usage

merge_spatial(las, source, attribute = NULL)

Arguments

las An object of class LAS

source An object of class SpatialPolygons* or sf or sfc or RasterLayer or RasterStack
or RasterBrick or stars.

attribute character. The name of an attribute in the table of attributes or the name of a
new column in the LAS object. Not relevant for RGB colorization.

Value

a LAS object

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
shp <- system.file("extdata", "lake_polygons_UTM17.shp", package = "lidR")

las <- readLAS(LASfile, filter = "-keep_random_fraction 0.1")
lakes <- sf::st_read(shp, quiet = TRUE)

# The attribute "inlake" does not exist in the shapefile.
# Points are classified as TRUE if in a polygon
las <- merge_spatial(las, lakes, "inlakes") # New attribute 'inlakes' is added.
names(las)



noise_ivf 83

forest <- filter_poi(las, inlakes == FALSE)
#plot(forest)

# The attribute "LAKENAME_1" exists in the shapefile.
# Points are classified with the values of the polygons
las <- merge_spatial(las, lakes, "LAKENAME_1") # New column 'LAKENAME_1' is added.
names(las)

noise_ivf Noise Segmentation Algorithm

Description

This function is made to be used in classify_noise. It implements an algorithm for outliers (noise)
segmentation based on isolated voxels filter (IVF). It is similar to lasnoise from lastools. The
algorithm finds points that have only a few other points in their surrounding 3 x 3 x 3 = 27 voxels.

Usage

ivf(res = 5, n = 6)

Arguments

res numeric. Resolution of the voxels

n integer. The maximal number of ’other points’ in the 27 voxels

See Also

Other noise segmentation algorithms: noise_sor

Examples

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

# Add some artificial outliers
set.seed(314)
id = round(runif(20, 0, npoints(las)))
set.seed(42)
err = runif(20, -50, 50)
las$Z[id] = las$Z[id] + err

las <- classify_noise(las, ivf(5,2))

https://rapidlasso.de/lasnoise/


84 noise_sor

noise_sor Noise Segmentation Algorithm

Description

This function is made to be used in classify_noise. It implements an algorithm for outliers (noise)
segmentation based on Statistical Outliers Removal (SOR) methods first described in the PCL li-
brary and also implemented in CloudCompare (see references). For each point, it computes the
mean distance to all its k-nearest neighbours. The points that are farther than the average distance
plus a number of times (multiplier) the standard deviation are considered noise.

Usage

sor(k = 10, m = 3, quantile = FALSE)

Arguments

k numeric. The number of neighbours

m numeric. Multiplier. The maximum distance will be: avg distance + m * std deviation.
If quantile = TRUE, m becomes the quantile threshold.

quantile boolean. Modification of the original SOR to use a quantile threshold instead
of a standard deviation multiplier. In this case the maximum distance will be:
quantile(distances, probs = m)

References

https://pointclouds.org/documentation/tutorials/statistical_outlier.html
https://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter

See Also

Other noise segmentation algorithms: noise_ivf

Examples

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")

# Add some artificial outliers because the original
# dataset is 'clean'
set.seed(314)
id = round(runif(20, 0, npoints(las)))
set.seed(42)
err = runif(20, -50, 50)
las$Z[id] = las$Z[id] + err

las <- classify_noise(las, sor(15,7))



normalize 85

normalize Normalize point cloud

Description

Normalize elevation or intensity values using multiple methods.

Usage

normalize_height(las, algorithm, use_class = c(2L, 9L), dtm = NULL, ...)

unnormalize_height(las)

## S4 method for signature 'LAS,ANY'
e1 - e2

normalize_intensity(las, algorithm)

Arguments

las An object of class LAS or LAScatalog.

algorithm (1) An algorithm for spatial interpolation. lidR has tin, kriging, knnidw or a
raster representing a digital terrain model. (2) An algorithm for intensity nor-
malization. lidR currently has range_correction.

use_class integer vector. By default the terrain is computed by using ground points (class
2) and water points (class 9). Relevant only for a normalization without a raster
DTM.

dtm raster. If dtm is provided, then the DTM is used in place of ground points. This
is different than providing a DTM in algorithm. If algorithm = dtm the dtm is
subtracted naively. If algorithm = tin() and dtm = raster the ground points
are not used and the DTM is interpolated as if it were made of regularly-spaced
ground points.

... normalized_height() supports add_lasattribute= TRUE to add the eleva-
tion above see level as an extra byte attribute and Wdegenerated = FALSE to
silence the warning about degenerated ground points.

e1 a LAS object

e2 A raster representing a digital terrain model in format from raster, stars or
terra..

Details

normalize_height Subtract digital terrain model (DTM) from a LiDAR point cloud to create a
dataset normalized with the ground at 0. The DTM can be a raster, but it can also be computed
on-the-fly. In this case the algorithm does not use rasterized data and each point is interpolated.
There is no inaccuracy due to the discretization of the terrain and the resolution of the terrain



86 normalize

is virtually infinite. A new attribute ’Zref’ records the former elevation values, which enables
the use of unnormalize_height to restore original point elevations.

normalize_intensity Normalize intensity values using multiple methods. The attribute ’Intensity’
records the normalized intensity. An extra attribute named ’RawIntensity’ records the original
intensities.

Non-supported LAScatalog options

The option select is not supported and not respected because it always preserves the file format
and all the attributes. select = "*" is imposed internally.

Examples

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile)

# ====================
# Normalize elevation
# ====================

# First option: use a raster as DTM
# --------------------------------------

dtm <- rasterize_terrain(las, 1, knnidw(k = 6L, p = 2))
nlas <- normalize_height(las, dtm)

# restore original elevations
las <- unnormalize_height(nlas)

# operator - can be used. This is equivalent to the previous
nlas <- las - dtm

# restore original elevations
las <- unnormalize_height(las)

# Second option: interpolate each point (no discretization)
# ---------------------------------------------------------

nlas <- normalize_height(las, tin())

# operator - can be used. This is equivalent to the previous
las <- unnormalize_height(nlas)
nlas <- las - tin()

## Not run:
# All the following syntaxes are correct
las <- normalize_height(las, knnidw())
las <- normalize_height(las, knnidw(k = 8, p = 2))
las <- las - knnidw()
las <- las - knnidw(k = 8)
las <- normalize_height(las, kriging())
las <- las - kriging(k = 8)



nstdmetrics 87

## End(Not run)

# ====================
# Normalize intensity
# ====================

# pmin = 15 because it is an extremely small file
# strongly decimated to reduce its size. There are
# actually few multiple returns
sensor <- track_sensor(las, Roussel2020(pmin = 15))

# Here the effect is virtually null because the size of
# the sample is too small to notice any effect of range
las <- normalize_intensity(las, range_correction(sensor, Rs = 2000))

nstdmetrics Predefined non standard metrics

Description

Functions and metrics from the literature. See details and references

Usage

rumple_index(x, y = NULL, z = NULL, ...)

gap_fraction_profile(z, dz = 1, z0 = 2)

LAD(z, dz = 1, k = 0.5, z0 = 2)

entropy(z, by = 1, zmax = NULL)

VCI(z, zmax, by = 1)

Arguments

x A RasterLayer, a stars a SpatRaster or a vector of x coordinates.

y numeric. If x is a vector of coordinates: the associated y coordinates.

z vector of positive z coordinates

... unused

z0 numeric. The bottom limit of the profile

k numeric. is the extinction coefficient

by, dz numeric. The thickness of the layers used (height bin)

zmax numeric. Maximum elevation for an entropy normalized to zmax.



88 nstdmetrics

Details

rumple_index Computes the roughness of a surface as the ratio between its area and its projected
area on the ground. If the input is a gridded object (raster) the function computes the surfaces
using Jenness’s algorithm (see references). If the input is a point cloud the function uses a
Delaunay triangulation of the points and computes the area of each triangle.

gap_fraction_profile Computes the gap fraction profile using the method of Bouvier et al. (see
reference). The function assesses the number of laser points that actually reached the layer
z+dz and those that passed through the layer [z, z+dz]. By definition the layer 0 will always
return 0 because no returns pass through the ground. Therefore, the layer 0 is removed from
the returned results.

LAD Computes a leaf area density profile based on the method of Bouvier et al. (see reference)
The function assesses the number of laser points that actually reached the layer z+dz and those
that passed through the layer [z, z+dz] (see gap_fraction_profile). Then it computes the log
of this quantity and divides it by the extinction coefficient k as described in Bouvier et al. By
definition the layer 0 will always return infinity because no returns pass through the ground.
Therefore, the layer 0 is removed from the returned results.

entropy A normalized Shannon vertical complexity index. The Shannon diversity index is a mea-
sure for quantifying diversity and is based on the number and frequency of species present.
This index, developed by Shannon and Weaver for use in information theory, was successfully
transferred to the description of species diversity in biological systems (Shannon 1948). Here
it is applied to quantify the diversity and the evenness of an elevational distribution of las
points. It makes bins between 0 and the maximum elevation. If there are negative values the
function returns NA.

VCI Vertical Complexity Index. A fixed normalization of the entropy function from van Ewijk et
al. (2011) (see references)

Value

numeric. The computed Rumple index.

A data.frame containing the bin elevations (z) and the gap fraction for each bin (gf)

A number between 0 and 1

A number between 0 and 1

References

Jenness, J. S. (2004). Calculating landscape surface area from digital elevation models. Wildlife
Society Bulletin, 32(3), 829–839.

Bouvier, M., Durrieu, S., Fournier, R. a, & Renaud, J. (2015). Generalizing predictive models of
forest inventory attributes using an area-based approach with airborne las data. Remote Sensing of
Environment, 156, 322-334. http://doi.org/10.1016/j.rse.2014.10.004

Pretzsch, H. (2008). Description and Analysis of Stand Structures. Springer Berlin Heidelberg.
http://doi.org/10.1007/978-3-540-88307-4 (pages 279-280) Shannon, Claude E. (1948), "A mathe-
matical theory of communication," Bell System Tech. Journal 27, 379-423, 623-656.

van Ewijk, K. Y., Treitz, P. M., & Scott, N. A. (2011). Characterizing Forest Succession in Central
Ontario using LAS-derived Indices. Photogrammetric Engineering and Remote Sensing, 77(3),
261-269. Retrieved from <Go to ISI>://WOS:000288052100009



nstdmetrics 89

Examples

x <- runif(20, 0, 100)
y <- runif(20, 0, 100)

if (require(geometry, quietly = TRUE))
{
# Perfectly flat surface, rumple_index = 1
z <- rep(10, 20)
rumple_index(x, y, z)

# Rough surface, rumple_index > 1
z <- runif(20, 0, 10)
rumple_index(x, y, z)

# Rougher surface, rumple_index increases
z <- runif(20, 0, 50)
rumple_index(x, y, z)

# Measure of roughness is scale-dependent
rumple_index(x, y, z)
rumple_index(x/10, y/10, z)
}
z <- c(rnorm(1e4, 25, 6), rgamma(1e3, 1, 8)*6, rgamma(5e2, 5,5)*10)
z <- z[z<45 & z>0]

hist(z, n=50)

gapFraction = gap_fraction_profile(z)

plot(gapFraction, type="l", xlab="Elevation", ylab="Gap fraction")
z <- c(rnorm(1e4, 25, 6), rgamma(1e3, 1, 8)*6, rgamma(5e2, 5,5)*10)
z <- z[z<45 & z>0]

lad <- LAD(z)

plot(lad, type="l", xlab="Elevation", ylab="Leaf area density")
z <- runif(10000, 0, 10)

# expected to be close to 1. The highest diversity is given for a uniform distribution
entropy(z, by = 1)

z <- runif(10000, 9, 10)

# Must be 0. The lowest diversity is given for a unique possibility
entropy(z, by = 1)

z <- abs(rnorm(10000, 10, 1))

# expected to be between 0 and 1.
entropy(z, by = 1)
z <- runif(10000, 0, 10)



90 old_spatial_packages

VCI(z, by = 1, zmax = 20)

z <- abs(rnorm(10000, 10, 1))

# expected to be closer to 0.
VCI(z, by = 1, zmax = 20)

old_spatial_packages Older R Spatial Packages

Description

lidR 4.0.0 no longer uses the sp and raster packages. New functions are based on sf, terra
and stars. However, to maintain backward compatibility the old functions from v<4.0.0 were pre-
served.

rgdal and rgeos will be retired on Jan 1st 2024. The raster and sp packages are based on
rgdal and rgeos. lidR was based on raster and sp because it was created before the sf, terra
and stars packages. This means that sooner or later users and packages that are still based on old
R spatial packages will run into trouble. According to Edzer Pebesma, Roger Bivand:

R users who have been around a bit longer, in particular before packages like sf and stars were
developed, may be more familiar with older packages like maptools, sp, rgeos, and rgdal. A
fair question is whether they should migrate existing code and/or existing R packages depending on
these packages. The answer is: yes (see reference).

The following functions are not formally deprecated but users should definitely move their work-
flow to modern spatial packages. lidR will maintain the old functions as long as it does not generate
issues on CRAN. So, it might be until Jan 1st 2024 or later, who knows...

Usage

as.spatial(x)

## S3 method for class 'LAS'
as.spatial(x)

## S3 method for class 'LAScatalog'
as.spatial(x)

tree_metrics(las, func = ~list(Z = max(Z)), attribute = "treeID", ...)

grid_canopy(las, res, algorithm)

grid_density(las, res = 4)

grid_terrain(



old_spatial_packages 91

las,
res = 1,
algorithm,
...,
keep_lowest = FALSE,
full_raster = FALSE,
use_class = c(2L, 9L),
Wdegenerated = TRUE,
is_concave = FALSE

)

grid_metrics(
las,
func,
res = 20,
start = c(0, 0),
filter = NULL,
by_echo = "all"

)

find_trees(las, algorithm, uniqueness = "incremental")

delineate_crowns(
las,
type = c("convex", "concave", "bbox"),
concavity = 3,
length_threshold = 0,
func = NULL,
attribute = "treeID"

)

Arguments

x, las an object of class LAS*

func see template_metrics

attribute, type see crown_metrics

... ignored

res, start see pixel_metrics

algorithm see rasterize_canopy, rasterize_terrain

full_raster, use_class, Wdegenerated, is_concave, keep_lowest
see rasterize_density

filter, by_echo see template_metrics

uniqueness see crown_metrics
concavity, length_threshold

see concaveman



92 pitfill_stonge2008

References

Edzer Pebesma, Roger Bivand Spatial Data Science with applications in R https://keen-swartz-
3146c4.netlify.app/older.html

pitfill_stonge2008 Pits and spikes filling

Description

Pits and spikes filling for raster. Typically used for post-processing CHM. This algorithm is from
St-Onge 2008 (see reference).

Usage

pitfill_stonge2008(
x,
lap_size = 3L,
thr_lap = 0.1,
thr_spk = -0.1,
med_size = 3L,
dil_radius = 0L

)

Arguments

x raster. SpatRaster, RasterLayer, stars.
lap_size integer. Size of the Laplacian filter kernel (integer value, in pixels).
thr_lap numeric. Threshold Laplacian value for detecting a cavity (all values above this

value will be considered a cavity). A positive value.
thr_spk numeric. Threshold Laplacian value for detecting a spike (all values below this

value will be considered a spike). A negative value.
med_size integer. Size of the median filter kernel (integer value, in pixels).
dil_radius integer. Dilation radius (integer value, in pixels).

References

St-Onge, B., 2008. Methods for improving the quality of a true orthomosaic of Vexcel UltraCam im-
ages created using alidar digital surface model, Proceedings of the Silvilaser 2008, Edinburgh, 555-
562. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=81365288221f3ac34b51a82e2cfed8d58defb10e

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile)
chm <- rasterize_canopy(las, 0.5, dsmtin())
sto <- pitfill_stonge2008(chm)

#terra::plot(c(chm, sto), col = lidR::height.colors(25))



plot 93

plot Plot a LAS* object

Description

Plot displays a 3D interactive windows based on rgl for LAS objects

Plot displays an interactive view for LAScatalog objects with pan and zoom capabilities based on
‘mapview()‘ from package ‘mapview‘. If the coordinate reference system (CRS) of the LAScatalog
is non empty, the plot can be displayed on top of base maps (satellite data, elevation, street, and so
on).

Plot displays a LASheader object exactly like it displays a LAScatalog object.

Usage

plot(x, y, ...)

## S4 method for signature 'LAS,missing'
plot(
x,
y,
...,
color = "Z",
pal = "auto",
bg = "black",
breaks = "pretty",
nbreaks = "auto",
backend = "rgl",
clear_artifacts = TRUE,
axis = FALSE,
legend = FALSE,
add = FALSE,
voxel = FALSE,
NAcol = "lightgray",
mapview = FALSE

)

## S4 method for signature 'LAScatalog,missing'
plot(x, y, mapview = FALSE, chunk_pattern = FALSE, overlaps = FALSE, ...)

## S4 method for signature 'LASheader,missing'
plot(x, y, mapview = FALSE, ...)

height.colors(n)

forest.colors(n)



94 plot

random.colors(n)

pastel.colors(n)

Arguments

x A LAS* object

y Unused (inherited from R base)

... Will be passed to points3d (LAS) or plot if mapview = FALSE or to ‘mapview()‘
if mapview = TRUE (LAScatalog).

color characters. The attribute used to color the point cloud. Default is Z coordinates.
RGB is an allowed string even if it refers to three attributes simultaneously.

pal palette function, similar to heat.colors, or palette values. Default is "auto" pro-
viding an automatic coloring depending on the attribute color

bg The color for the background. Default is black.

breaks either a numeric vector with the actual breaks, or a name of a method accepted
by the style argument of classIntervals

nbreaks Number of colors breaks.

backend character. Can be "rgl" or "lidRviewer". If "rgl" is chosen the display relies
on the rgl package. If "lidRviewer" is chosen it relies on the lidRviewer
package, which is much more efficient and can handle million of points using
less memory. lidRviewer is not available on CRAN yet and should be installed
from github (see. https://github.com/Jean-Romain/lidRviewer).

clear_artifacts

logical. It is a known and documented issue that the 3D visualisation with rgl
displays artifacts. The points look aligned and/or regularly spaced in some view
angles. This is because rgl computes with single precision float. To fix that
the point cloud is shifted to (0,0) to reduce the number of digits needed to rep-
resent its coordinates. The drawback is that the point cloud is not plotted at its
actual coordinates.

axis logical. Display axis on XYZ coordinates.

legend logical. Display a gradient colour legend.

add If FALSE normal behaviour otherwise must be the output of a prior plot function
to enable the alignment of a second point cloud.

voxel boolean or numeric. Displays voxels instead of points. Useful to render the out-
put of voxelize_points, for example. However it is computationally demanding
to render and can easily take 15 seconds for 10000 voxels. It should be reserved
for small scenes. If boolean the voxel resolution is guessed automatically. Oth-
erwise users can provide the size of the voxels. To reduce the rendering time,
an internal optimization removes voxels that are not visible when surrounded by
other voxels.

NAcol a color for NA values.

mapview logical. If FALSE the catalog is displayed in a regular plot from R base. Since
v4.0.4 ‘mapview = TRUE‘ is also possible with LAS objects.

https://github.com/Jean-Romain/lidRviewer


plot.lasmetrics3d 95

chunk_pattern logical. Display the current chunk pattern used to process the catalog.

overlaps logical. Highlight the overlaps between files.

n The number of colors (> 1) to be in the palette

Examples

## Not run:
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile)

plot(las)
plot(las, color = "Intensity")
plot(las, color = "ScanAngleRank", pal = rainbow)

# If outliers break the color range, use the breaks parameter
las$Intensity[150] <- 1000L
plot(las, color = "Intensity")
plot(las, color = "Intensity", breaks = "quantile", nbreaks = 50)

plot(las, color = "Classification")

# This dataset is already tree segmented
plot(las, color = "treeID")
plot(las, color = "treeID", pal = random.colors)

# single file LAScatalog using data provided in lidR
ctg = readLAScatalog(LASfile)
plot(ctg)
plot(ctg, map = T, map.types = "Esri.WorldImagery")

## End(Not run)

plot.lasmetrics3d Plot voxelized LiDAR data

Description

This function implements a 3D plot method for ’lasmetrics3d’ objects

Usage

## S3 method for class 'lasmetrics3d'
plot(x, y, ...)



96 plot_3d

Arguments

x An object of the class lasmetrics3d

y Unused (inherited from R base)

... Supplementary parameters for plot. The function internally uses the same plot
function than LAS objects.

Examples

## Not run:
LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
lidar = readLAS(LASfile)

voxels = voxel_metrics(lidar, list(Imean = mean(Intensity)), res = 5)
plot(voxels, color = "Imean", colorPalette = heat.colors(50), trim=60)

## End(Not run)

plot_3d Add a spatial object to a point cloud scene

Description

Add a raster (‘raster‘, ‘stars‘ ‘terra‘) object that represents a digital terrain model or a ‘SpatialPoints-
DataFrame‘ or ‘sf‘ that represents tree tops to a point cloud scene. To add elements to a scene with
a point cloud plotted with the function plot from lidR, the functions ‘add_*‘ take as first argument
the output of the plot function (see examples), because the plot function does not plot the actual
coordinates of the point cloud, but offset values. See function plot and its argument ‘clear_artifacts‘
for more details. It works only with ‘rgl‘ i.e. ‘backend = "rgl"‘ which is the default.

Usage

plot_dtm3d(dtm, bg = "black", clear_artifacts = TRUE, ...)

add_dtm3d(x, dtm, ...)

add_treetops3d(x, ttops, z = "Z", ...)

add_flightlines3d(x, flightlines, z = "Z", ...)

Arguments

dtm An object of the class ‘RasterLayer‘ or ‘stars‘ or ‘SpatRaster‘

bg The color for the background. Default is black.



plugins 97

clear_artifacts

logical. It is a known and documented issue that 3D visualisation with rgl
displays artifacts. The points and lines are inaccurately positioned in the space
and thus the rendering may look false or weird. This is because ‘rgl‘ computes
with single precision ‘float‘. To fix this, the objects are shifted to (0,0) to reduce
the number of digits needed to represent their coordinates. The drawback is that
the objects are not plotted at their actual coordinates.

... Supplementary parameters for surface3d or spheres3d.

x The output of the function plot used with a LAS object.

ttops A ‘SpatialPointsDataFrame‘ or ‘sf/sfc‘ that contains tree tops coordinates.

z character. The name of the attribute that contains the height of the tree tops
or of the flightlines. Only for XY geometries Ignored if the input have XYZ
geometries

flightlines A ‘SpatialPointsDataFrame‘ or ‘sf‘ that contains flightlines coordinates.

Examples

## Not run:
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile)

dtm <- rasterize_terrain(las, algorithm = tin())
ttops <- locate_trees(las, lmf(ws = 5))

plot_dtm3d(dtm)

x <- plot(las)
add_dtm3d(x, dtm)
add_treetops3d(x, ttops)

plot(las) |> add_dtm3d(dtm) |> add_treetops3d(ttops)

## End(Not run)

plugins Plugin system

Description

Tools to build plugin functions for lidR

Usage

plugin_dsm(f, omp = FALSE)

plugin_dtm(f, omp = FALSE)



98 plugins

plugin_gnd(f, omp = FALSE)

plugin_decimate(f, omp = FALSE)

plugin_shape(f, omp = FALSE)

plugin_snag(f, omp = FALSE)

plugin_track(f, omp = FALSE)

plugin_nintensity(f, omp = FALSE)

plugin_outliers(f, omp = FALSE)

plugin_itd(f, omp = FALSE, raster_based = FALSE)

plugin_its(f, omp = FALSE, raster_based = FALSE)

Arguments

f a function

omp logical is the function natively parallized with OpenMP

raster_based logical. For ITS and ITD algorithms, is the method raster-based or or point-
cloud-based?

Examples

## Not run:
mba <- function(n = 1, m = 1, h = 8, extend = TRUE) {

f <- function(las, where) {
res <- MBA::mba.points(las@data, where, n, m , h, extend)
return(res$xyz.est[,3])

}

f <- plugin_dtm(f)
return(f)

}

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile)

dtm = rasterize_terrain(las, algorithm = mba())

## End(Not run)



point_metrics 99

point_metrics Point-based metrics

Description

Computes a series of user-defined descriptive statistics for a LiDAR dataset for each point based on
its k-nearest neighbours or its sphere neighbourhood.

Usage

point_metrics(las, func, k, r, xyz = FALSE, filter = NULL, ...)

point_eigenvalues(
las,
k,
r,
xyz = FALSE,
metrics = FALSE,
coeffs = FALSE,
filter = NULL

)

Arguments

las An object of class LAS

func formula. An expression to be applied to each point neighbourhood (see also
template_metrics).

k, r integer and numeric respectively for k-nearest neighbours and radius of the
neighborhood sphere. If k is given and r is missing, computes with the knn,
if r is given and k is missing computes with a sphere neighborhood, if k and r
are given computes with the knn and a limit on the search distance.

xyz logical. Coordinates of each point are returned in addition to each metric. Oth-
erwise an ID referring to each point.

filter formula of logical predicates. Enables the function to run only on points of
interest in an optimized way. See examples.

... unused.

metrics logical. Compute metrics or not

coeffs logical. Principal component coefficients are returned

Details

When the neighbourhood is knn the user-defined function is fed with the current processed point and
its k-1 neighbours. The current point being considered as the 1-neighbour with a distance 0 to the
reference point. The points are ordered by distance to the central point. When the neighbourhood is
a sphere the processed point is also included in the query but points are coming in a random order.



100 point_metrics

point_eigenmetrics computes the eigenvalues of the covariance matrix and computes associated
metrics following Lucas et al, 2019 (see references). It is equivalent to point_metrics(las,
.stdshapemetrics) but much faster because it is optimized and parallelized internally.

Performances

It is important to bear in mind that this function is very fast for the feature it provides i.e. mapping
a user-defined function at the point level using optimized memory management. However, it is still
computationally demanding.

To help users to get an idea of how computationally demanding this function is, let’s compare it
to pixel_metrics. Assuming we want to apply mean(Z) on a 1 km² tile with 1 point/m² with a
resolution of 20 m (400 m² cells), then the function mean is called roughly 2500 times (once per
cell). On the contrary, with point_metrics, mean is called 1000000 times (once per point). So the
function is expected to be more than 400 times slower in this specific case (but it does not provide
the same feature).

This is why the user-defined function is expected to be well-optimized, otherwise it might dras-
tically slow down this already heavy computation. See examples.

Examples

## Not run:
LASfile <- system.file("extdata", "Topography.laz", package="lidR")

# Read only 0.5 points/m^2 for the purposes of this example
las = readLAS(LASfile, filter = "-thin_with_grid 2")

# Computes the eigenvalues of the covariance matrix of the neighbouring
# points and applies a test on these values. This function simulates the
# 'shp_plane()' algorithm from 'segment_shape()'
plane_metrics1 = function(x,y,z, th1 = 25, th2 = 6) {

xyz <- cbind(x,y,z)
cov_m <- cov(xyz)
eigen_m <- eigen(cov_m)$value
is_planar <- eigen_m[2] > (th1*eigen_m[3]) && (th2*eigen_m[2]) > eigen_m[1]
return(list(planar = is_planar))

}

# Apply a user-defined function
M <- point_metrics(las, ~plane_metrics1(X,Y,Z), k = 25)
#> Computed in 6.3 seconds

# We can verify that it returns the same as 'shp_plane'
las <- segment_shapes(las, shp_plane(k = 25), "planar")
#> Computed in 0.1 seconds

all.equal(M$planar, las$planar)

# At this stage we can be clever and find that the bottleneck is
# the eigenvalue computation. Let's write a C++ version of it with



print.LAS 101

# Rcpp and RcppArmadillo
Rcpp::sourceCpp(code = "
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
SEXP eigen_values(arma::mat A) {
arma::mat coeff;
arma::mat score;
arma::vec latent;
arma::princomp(coeff, score, latent, A);
return(Rcpp::wrap(latent));
}")

plane_metrics2 = function(x,y,z, th1 = 25, th2 = 6) {
xyz <- cbind(x,y,z)
eigen_m <- eigen_values(xyz)
is_planar <- eigen_m[2] > (th1*eigen_m[3]) && (th2*eigen_m[2]) > eigen_m[1]
return(list(planar = is_planar))

}

M <- point_metrics(las, ~plane_metrics2(X,Y,Z), k = 25)
#> Computed in 0.5 seconds

all.equal(M$planar, las$planar)
# Here we can see that the optimized version is way better but is still 5-times slower
# because of the overhead of calling R functions and switching back and forth from R to C++.

M <- point_eigenvalues(las, k = 25)
is_planar = M$eigen_medium > (25*M$eigen_smallest) & (6*M$eigen_medium) > M$eigen_largest

# Use the filter argument to process only first returns
M1 <- point_metrics(las, ~plane_metrics2(X,Y,Z), k = 25, filter = ~ReturnNumber == 1)
dim(M1) # 13894 instead of 17182 previously.

## End(Not run)

print.LAS Tools inherited from base R for LAS* objects

Description

Tools inherited from base R for LAS* objects

Usage

## S3 method for class 'LAS'
print(x, ...)

## S3 method for class 'LAScatalog'



102 print.LAS

print(x, ...)

## S3 method for class 'lidRAlgorithm'
print(x, ...)

## S3 method for class 'raster_template'
print(x, ...)

## S3 method for class 'LAS'
summary(object, ...)

## S3 method for class 'LAScatalog'
summary(object, ...)

## S3 method for class 'LAS'
dim(x)

## S3 method for class 'LAScatalog'
dim(x)

ncol.LAS(x)

nrow.LAScatalog(x)

## S3 method for class 'LAS'
names(x)

## S3 method for class 'LASheader'
names(x)

## S3 method for class 'LAS'
rbind(...)

npoints(x, ...)

density(x, ...)

## S4 method for signature 'LAS'
density(x, ...)

## S4 method for signature 'LASheader'
density(x, ...)

## S4 method for signature 'LAScatalog'
density(x, ...)

Arguments

x a LAS* object



range_correction 103

... LAS* objects if it is the sole argurment (e.g. in rbind())

object A LAS* object or other lidR related objects.

range_correction Intensity normalization algorithm

Description

This function is made to be used in normalize_intensity. It corrects intensity with a range correction
according to the formula (see references):

Inorm = Iobs

(
R

Rs

)f

To achieve the range correction the position of the sensor must be known at different discrete times.
Using the ’gpstime’ of each point, the position of the sensor is interpolated from the reference and
a range correction is applied.

Usage

range_correction(sensor, Rs, f = 2.3, gpstime = "gpstime", elevation = "Z")

get_range(las, sensor, gpstime = "gpstime", elevation = "Z")

Arguments

sensor ‘SpatialPointsDataDrame‘ or ‘sf‘ object containing the coordinates of the sensor
at different timepoints t. The time and elevation are stored as attributes (default
names are ’gpstime’ and ’Z’). Z can also come from the geometry if the input
records XYZ coordinates. It can be computed with track_sensor.

Rs numeric. Range of reference.

f numeric. Exponent. Usually between 2 and 3 in vegetation contexts.
gpstime, elevation

character. The name of the attributes that store the gpstime of the position
and the elevation of the sensor respectively. If the input contains 3 coordinates
points, ‘elevation‘ is not considered.

las an object of class LAS. get_range() is a regular function documented here for
convenience.

References

Gatziolis, D. (2011). Dynamic Range-based Intensity Normalization for Airborne, Discrete Return
Lidar Data of Forest Canopies. Photogrammetric Engineering & Remote Sensing, 77(3), 251–259.
https://doi.org/10.14358/pers.77.3.251



104 rasterize

Examples

# A valid file properly populated
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las <- readLAS(LASfile)

# pmin = 15 because it is an extremely tiny file
# strongly decimated to reduce its size. There are
# actually few multiple returns
sensor <- track_sensor(las, Roussel2020(pmin = 15))

# Here the effect is virtually null because the size of
# the sample is too small to notice any effect of range
las <- normalize_intensity(las, range_correction(sensor, Rs = 2000))

# This might be useful for some applications
R = get_range(las, sensor)

rasterize Rasterize a point cloud

Description

Rasterize a point cloud in different ways to compute a DTM, a CHM or a density map. Most raster
products can be computed with pixel_metrics but some are more complex and require dedicated
and optimized functions. See Details and Examples.

Usage

rasterize_canopy(las, res = 1, algorithm = p2r(), ...)

rasterize_density(las, res = 4, ...)

rasterize_terrain(
las,
res = 1,
algorithm = tin(),
use_class = c(2L, 9L),
shape = "convex",
...

)

Arguments

las An object of class LAS or LAScatalog.

res numeric. The size of a grid cell in point cloud coordinates units. Can also be
RasterLayer or a stars or a SpatRaster used as layout.



rasterize 105

algorithm function. A function that implements an algorithm to compute a digital surface
model or a digital terrain model. lidR implements p2r, dsmtin, pitfree for dig-
ital surface models, and knnidw, tin, and kriging for digital terrain models (see
respective documentation and examples).

... Use pkg = "terra|raster|stars" to get an output in SpatRaster, RasterLayer
or stars format. Default is getOption("lidR.raster.default").

use_class integer vector. By default the terrain is computed by using ground points (class
2) and water points (class 9).

shape By default the interpolation is made only within the "convex" hull of the point
cloud to get a DTM with the shape of the point cloud. This prevents meaningless
interpolations where there is no data. It can also be "concave" or "bbox". It
can also be an sfc to define a polygon in which to perform the interpolation.

Details

rasterize_terrain Interpolates the ground points and creates a rasterized digital terrain model.
The algorithm uses the points classified as "ground" and "water" (Classification = 2 and 9,
respectively, according to LAS file format specifications) to compute the interpolation. How
well the edges of the dataset are interpolated depends on the interpolation method used. A
buffer around the region of interest is always recommended to avoid edge effects.

rasterize_canopy Creates a digital surface model (DSM) using several possible algorithms. If
the user provides a normalized point cloud, the output is indeed a canopy height model (CHM).

rasterize_density Creates a map of the point density. If a "pulseID" attribute is found, also
returns a map of the pulse density.

Value

RasterLayer or a stars or a SpatRaster depending on the settings.

Non-supported LAScatalog options

The option select is not supported and not respected in rasterize_* because it is internally
known what is best to select.
The option chunk_buffer is not supported and not respected in rasterize_canopy and rasterize_density
because it is not necessary.

Examples

# =====================
# Digital Terrain Model
# =====================

LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile, filter = "-inside 273450 5274350 273550 5274450")
#plot(las)

dtm1 = rasterize_terrain(las, algorithm = knnidw(k = 6L, p = 2))
dtm2 = rasterize_terrain(las, algorithm = tin())

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


106 rasterize

## Not run:
dtm3 = rasterize_terrain(las, algorithm = kriging(k = 10L))

plot(dtm1, col = gray(0:25/25))
plot(dtm2, col = gray(0:25/25))
plot(dtm3, col = gray(0:25/25))
plot_dtm3d(dtm1)
plot_dtm3d(dtm2)
plot_dtm3d(dtm3)

## End(Not run)

# =====================
# Digital Surface Model
# =====================

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile, filter = "-inside 481280 3812940 481330 3812990")
col <- height.colors(15)

# Points-to-raster algorithm with a resolution of 1 meter
chm <- rasterize_canopy(las, res = 1, p2r())
plot(chm, col = col)

# Points-to-raster algorithm with a resolution of 0.5 meters replacing each
# point by a 20-cm radius circle of 8 points
chm <- rasterize_canopy(las, res = 0.5, p2r(0.2))
plot(chm, col = col)

# Basic triangulation and rasterization of first returns
chm <- rasterize_canopy(las, res = 0.5, dsmtin())
plot(chm, col = col)

# Khosravipour et al. pitfree algorithm
chm <- rasterize_canopy(las, res = 0.5, pitfree(c(0,2,5,10,15), c(0, 1.5)))
plot(chm, col = col)

# ====================
# Digital Density Map
# ====================

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, filter = "-inside 684800 5017800 684900 5017900")

d <- rasterize_density(las, 5)
plot(d)

las <- retrieve_pulses(las)
d <- rasterize_density(las)
plot(d)



readLAS 107

readLAS Read .las or .laz files

Description

Reads .las or .laz files into an object of class LAS. If several files are read at once the returned LAS
object is considered as one LAS file. The optional parameters enable the user to save a substantial
amount of memory by choosing to load only the attributes or points of interest. LAS formats 1.0 to
1.4 are supported. Point Data Record Format 0 to 10 are supported.

readLAS is the original function and always works. Using one of the read*LAS functions adds
information to the returned object to register a point-cloud type. Registering the correct point type
may improve the performance of some functions by enabling users to select an appropriate spa-
tial index. See spatial indexing. Notice that by legacy and for backwards-compatibility reasons,
readLAS() and readALSLAS() are equivalent because lidR was originally designed for ALS and
thus the original function readLAS() was (supposedly) used for ALS. Reading a TLS dataset with
readLAS() instead of readTLSLAS() is perfectly valid and performs similarly to versions <= 3.0.0,
with neither performance degradation nor improvements.

Usage

readLAS(files, select = "*", filter = "")

readALSLAS(files, select = "*", filter = "")

readTLSLAS(files, select = "*", filter = "")

readUAVLAS(files, select = "*", filter = "")

readDAPLAS(files, select = "*", filter = "")

readMSLAS(files1, files2, files3, select = "*", filter = "")

Arguments

files characters. Path(s) to one or several a file(s). Can also be a LAScatalog object.

select character. Read only attributes of interest to save memory (see details).

filter character. Read only points of interest to save memory (see details).
files1, files2, files3

characters. Path(s) to one or several a file(s). Each argument being one channel
(see section ’Multispectral data’). ‘files2‘ and ‘files3‘ can be missing.

Details

Select: the ’select’ argument specifies the data that will actually be loaded. For example, ’xyzia’
means that the x, y, and z coordinates, the intensity and the scan angle will be loaded. The sup-
ported entries are t - gpstime, a - scan angle, i - intensity, n - number of returns, r - return number, c



108 readLAS

- classification, s - synthetic flag, k - keypoint flag, w - withheld flag, o - overlap flag (format 6+), u
- user data, p - point source ID, e - edge of flight line flag, d - direction of scan flag, R - red channel
of RGB color, G - green channel of RGB color, B - blue channel of RGB color, N - near-infrared
channel, C - scanner channel (format 6+), W - Full waveform. Also numbers from 1 to 9 for the
extra bytes data numbers 1 to 9. 0 enables all extra bytes to be loaded and ’*’ is the wildcard that
enables everything to be loaded from the LAS file.
Note that x, y, z are implicit and always loaded. ’xyzia’ is equivalent to ’ia’.

Filter: the ’filter’ argument allows filtering of the point cloud while reading files. This is much
more efficient than filter_poi in many ways. If the desired filters are known before reading the file,
the internal filters should always be preferred. The available filters are those from LASlib and can be
found by running the following command: readLAS(filter = "-help"). (see also rlas::read.las).
From rlas v1.3.6 the transformation commands can also be passed via the argument filter.

Value

A LAS object

Full waveform

With most recent versions of the rlas package, full waveform (FWF) can be read and lidR pro-
vides some compatible functions. However, the support of FWF is still a work-in-progress in the
rlas package. How it is read, interpreted and represented in R may change. Consequently, tools
provided by lidR may also change until the support of FWF becomes mature and stable in rlas.
See also rlas::read.las.

Remember that FWF represents an insanely huge amount of data. It terms of memory it is like
having between 10 to 100 times more points. Consequently, loading FWF data in R should be
restricted to relatively small point clouds.

Multispectral data

Multispectral laser data are often stored in 3 different files. If this is the case readMSLAS reads the
.las or .laz files of each channel and merges them into an object of class LAS and takes care of
attributing an ID to each channel. If the multisprectral point cloud is already stored in a single file
leave file2 and file3 missing.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile)
las = readLAS(LASfile, select = "xyz")
las = readLAS(LASfile, select = "xyzi", filter = "-keep_first")
las = readLAS(LASfile, select = "xyziar", filter = "-keep_first -drop_z_below 0")

# Negation of attributes is also possible (all except intensity and angle)
las = readLAS(LASfile, select = "* -i -a")



readLAScatalog 109

readLAScatalog Create an object of class LAScatalog

Description

Create an object of class LAScatalog from a folder or a collection of filenames. A LAScatalog is
a representation of a collection of las/laz files. A computer cannot load all the data at once. A
LAScatalog is a simple way to manage all the files sequentially. Most functions from lidR can
be used seamlessly with a LAScatalog using the internal LAScatalog processing engine. To take
advantage of the LAScatalog processing engine the user must first adjust some processing options
using the appropriate functions. Careful reading of the LAScatalog class documentation is required
to use the LAScatalog class correctly.

readLAScatalog is the original function and always works. Using one of the read*LAScatalog
functions adds information to the returned object to register a point-cloud type. Registering the cor-
rect point type may improve the performance of some functions by enabling users to select an ap-
propriate spatial index. See spatial indexing. Notice that by legacy and for backwards-compatibility
reasons readLAScatalog() and readALSLAScatalog() are equivalent because lidR was originally
designed for ALS and thus the original function readLAScatalog() was (supposedly) used for
ALS.

Usage

readLAScatalog(
folder,
progress = TRUE,
select = "*",
filter = "",
chunk_size = 0,
chunk_buffer = 30,
...

)

readALSLAScatalog(folder, ...)

readTLSLAScatalog(folder, ...)

readUAVLAScatalog(folder, ...)

readDAPLAScatalog(folder, ...)

catalog(folder, ...)

Arguments

folder string. The path of a folder containing a set of las/laz files. Can also be a vector
of file paths.



110 readLASheader

progress, select, filter, chunk_size, chunk_buffer
Easily accessible processing options tuning. See LAScatalog-class and engine_options.

... Extra parameters to list.files. Typically recursive = TRUE. Propagates also to
readLAScatalog

Value

A LAScatalog object

Examples

# A single file LAScatalog using data provided with the package
LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
ctg = readLAScatalog(LASfile)
plot(ctg)

## Not run:
ctg <- readLAScatalog("</path/to/folder/of/las/>")

# Internal engine will sequentially process chunks of size 500 x 500 m
opt_chunk_size(ctg) <- 500

# Internal engine will align the 500 x 500 m chunks on x = 250 and y = 300
opt_alignment(ctg) <- c(250, 300)

# Internal engine will not display a progress estimation
opt_progress(ctg) <- FALSE

# Internal engine will not return results into R.
# Instead it will write results in files.
# Files will be named e.g.
# filename_256000_1.ext
# filename_257000_2.ext
# filename_258000_3.ext
# ...
opt_output_files(ctg) <- "/path/filename_{XBOTTOM}_{ID}"

# More details in the documentation
help("LAScatalog-class", "lidR")
help("engine_options", "lidR")

## End(Not run)

readLASheader Read a .las or .laz file header

Description

Reads a .las or .laz file header into an object of class LASheader. This function strictly reads the
header while the function readLAS can alter the header to fit the actual data loaded.



retrieve_pulses 111

Usage

readLASheader(file)

Arguments

file characters. Path to one file.

Value

A LASheader object

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
header = readLASheader(LASfile)

print(header)
plot(header)

## Not run:
plot(header, mapview = TRUE)
## End(Not run)

retrieve_pulses Retrieve individual pulses, flightlines or scanlines

Description

Retrieve each individual pulse, individual flightline or individual scanline and assigns a number to
each point. The LAS object must be properly populated according to LAS specifications otherwise
users could find unexpected outputs.

Usage

retrieve_pulses(las)

retrieve_flightlines(las, dt = 30)

retrieve_scanlines(las)

Arguments

las A LAS object

dt numeric. The threshold time-lag used to retrieve flightlines



112 sample_homogenize

Details

retrieve_pulses Retrieves each individual pulse. It uses GPS time. An attribute pulseID is
added in the LAS object

retrieve_scanlines Retrieves each individual scanline. When data are sampled according to a
saw-tooth pattern (oscillating mirror), a scanline is one line, or row of data. The function relies
on the GPS field time to order the data. Then, the ScanDirectionFlag attribute is used to
retrieve each scanline. An attribute scanlineID is added in the LAS object

retrieve_flightlines Retrieves each individual flightline. It uses GPS time. In a continuous
dataset, once points are ordered by GPS time, the time between two consecutive points does
not exceed a few milliseconds. If the time between two consecutive points is too long it means
that the second point is from a different flightline. The default threshold is 30 seconds. An
attribute flightlineID is added in the LAS object.

Value

An object of class LAS

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile)

las <- retrieve_pulses(las)
las

las <- retrieve_flightlines(las)
#plot(las, color = "flightlineID")

sample_homogenize Point Cloud Decimation Algorithm

Description

This function is made to be used in decimate_points. It implements an algorithm that creates a grid
with a given resolution and filters the point cloud by randomly selecting some points in each cell. It
is designed to produce point clouds that have uniform densities throughout the coverage area. For
each cell, the proportion of points or pulses that will be retained is computed using the actual local
density and the desired density. If the desired density is greater than the actual density it returns
an unchanged set of points (it cannot increase the density). The cell size must be large enough to
compute a coherent local density. For example, in a 2 points/m^2 point cloud, 25 square meters
would be feasible; however 1 square meter cells would not be feasible because density does not
have meaning at this scale.

Usage

homogenize(density, res = 5, use_pulse = FALSE)



sample_maxima 113

Arguments

density numeric. The desired output density.

res numeric. The resolution of the grid used to filter the point cloud

use_pulse logical. Decimate by removing random pulses instead of random points (re-
quires running retrieve_pulses first)

See Also

Other point cloud decimation algorithms: sample_maxima, sample_per_voxel, sample_random

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile, select = "xyz")

# Select points randomly to reach an homogeneous density of 1
thinned <- decimate_points(las, homogenize(1,5))
plot(rasterize_density(thinned, 10))

sample_maxima Point Cloud Decimation Algorithm

Description

These functions are made to be used in decimate_points. They implement algorithms that create a
grid with a given resolution and filters the point cloud by selecting the highest/lowest point within
each cell.

Usage

highest(res = 1)

lowest(res = 1)

Arguments

res numeric. The resolution of the grid used to filter the point cloud

See Also

Other point cloud decimation algorithms: sample_homogenize, sample_per_voxel, sample_random

Other point cloud decimation algorithms: sample_homogenize, sample_per_voxel, sample_random



114 sample_per_voxel

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile, select = "xyz")

# Select the highest point within each cell of an overlayed grid
thinned = decimate_points(las, highest(4))
#plot(thinned)

# Select the lowest point within each cell of an overlayed grid
thinned = decimate_points(las, lowest(4))
#plot(thinned)

sample_per_voxel Point Cloud Decimation Algorithm

Description

This functions is made to be used in decimate_points. It implements an algorithm that creates a 3D
grid with a given resolution and filters the point cloud by randomly selecting n points within each
voxel

Usage

random_per_voxel(res = 1, n = 1)

Arguments

res numeric. The resolution of the voxel grid used to filter the point cloud

n integer. The number of points to select

See Also

Other point cloud decimation algorithms: sample_homogenize, sample_maxima, sample_random

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, select = "xyz")
thinned <- decimate_points(las, random_per_voxel(8, 1))
#plot(thinned)



sample_random 115

sample_random Point Cloud Decimation Algorithm

Description

This function is made to be used in decimate_points. It implements an algorithm that randomly
removes points or pulses to reach the desired density over the whole area (see area).

Usage

random(density, use_pulse = FALSE)

Arguments

density numeric. The desired output density.

use_pulse logical. Decimate by removing random pulses instead of random points (re-
quires running retrieve_pulses first)

See Also

Other point cloud decimation algorithms: sample_homogenize, sample_maxima, sample_per_voxel

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile, select = "xyz")

# Reach a pulse density of 1 on the overall dataset
thinned1 = decimate_points(las, random(1))
plot(rasterize_density(las))
plot(rasterize_density(thinned1))

segment Segment a point cloud

Description

Segment a point cloud using different methods. segment_* functions add a new attribute to the point
cloud to label each point. They segment either individual trees, snags, or geometrical features.

Usage

segment_shapes(las, algorithm, attribute = "Shape", filter = NULL)

segment_snags(las, algorithm, attribute = "snagCls")

segment_trees(las, algorithm, attribute = "treeID", uniqueness = "incremental")



116 segment

Arguments

las An object of class LAS or LAScatalog.

algorithm function. An algorithm for segmentation. For individual tree segmentation, lidR
has dalponte2016, watershed, li2012, and silva2016. More experimental algo-
rithms may be found in the package lidRplugins. For snag segmentation, lidR
has wing2015. For geometry segmentation, lidR has shp_plane, shp_hplane,
and shp_line.

attribute character. The returned LAS object as a new attribute (in a new column). This
parameter controls the name of the new attribute.

filter formula of logical predicates. Enables the function to run only on points of
interest in an optimized way. See the examples.

uniqueness character. A method to compute a unique ID. Can be ’incremental’, ’gpstime’
or ’bitmerge’. See section ’Uniqueness’. This feature must be considered as
’experimental’.

Details

segment_trees Individual tree segmentation with several possible algorithms. The returned point
cloud has a new extra byte attribute named after the parameter attribute independently of
the algorithm used.

segment_shapes Computes, for each point, the eigenvalues of the covariance matrix of the neigh-
bouring points. The eigenvalues are later used either to segment linear/planar points or to
compute derived metrics. The points that meet a given criterion based on the eigenvalue are
labelled as approximately coplanar/colinear or any other shape supported.

segment_snags Snag segmentation using several possible algorithms. The function attributes a
number identifying a snag class (snagCls attribute) to each point of the point cloud. The
classification/segmentation is done at the point cloud level and currently only one algorithm
is implemented, which uses LiDAR intensity thresholds and specified neighbourhoods to dif-
ferentiate bole and branch from foliage points.

Non-supported LAScatalog options

The option select is not supported and not respected because it always preserves the file format
and all the attributes. select = "*" is imposed internally.

Uniqueness

By default the tree IDs are numbered from 1 to n, n being the number of trees found. The prob-
lem with such incremental numbering is that, while it ensures a unique ID is assigned for each
tree in a given point-cloud, it also guarantees duplication of tree IDs in different tiles or chunks
when processing a LAScatalog. This is because each chunk/file is processed independently of the
others and potentially in parallel on different computers. Thus, the index always restarts at 1 on
each chunk/file. Worse, in a tree segmentation process, a tree that is located exactly between 2
chunks/files will have two different IDs for its two halves.

This is why we introduced some uniqueness strategies that are all imperfect and that should be seen
as experimental. Please report any troubleshooting. Using a uniqueness-safe strategy ensures that

https://github.com/Jean-Romain/lidRplugins


segment 117

trees from different files will not share the same IDs. It also ensures that two halves of a tree on the
edge of a processing chunk will be assigned the same ID.

incremental Number from 0 to n. This method does not ensure uniqueness of the IDs. This is the
legacy method.

gpstime This method uses the gpstime of the highest point of a tree (apex) to create a unique ID.
This ID is not an integer but a 64-bit decimal number, which is suboptimal but at least it is
expected to be unique if the gpstime attribute is consistent across files. If inconsistencies
with gpstime are reported (for example gpstime records the week time and was reset to 0 in a
coverage that takes more than a week to complete), there is a (low) probability of getting ID
attribution errors.

bitmerge This method uses the XY coordinates of the highest point (apex) of a tree to create a
single 64-bit number with a bitwise operation. First, XY coordinates are converted to 32-
bit integers using the scales and offsets of the point cloud. For example, if the apex is at
(10.32, 25.64) with a scale factor of 0.01 and an offset of 0, the 32-bit integer coordinates
are X = 1032 and Y = 2564. Their binary representations are, respectively, (here displayed
as 16 bits) 0000010000001000 and 0000101000000100. X is shifted by 32 bits and becomes
a 64-bit integer. Y is kept as-is and the binary representations are unionized into a 64-bit
integer like (here displayed as 32 bit) 00000100000010000000101000000100 that is guaran-
teed to be unique. However R does not support 64-bit integers. The previous steps are done
at C++ level and the 64-bit binary representation is reinterpreted into a 64-bit decimal num-
ber to be returned in R. The IDs thus generated are somewhat weird. For example, the tree
ID 00000100000010000000101000000100 which is 67635716 if interpreted as an integer be-
comes 3.34164837074751323479078607289E-316 if interpreted as a decimal number. This
is far from optimal but at least it is guaranteed to be unique if all files have the same offsets
and scale factors.

All the proposed options are suboptimal because they either do not guarantee uniqueness in all
cases (inconsistencies in the collection of files), or they imply that IDs are based on non-integers or
meaningless numbers. But at least it works and deals with some of the limitations of R.

Examples

# ==============
# Segment trees
# ==============

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile, select = "xyz", filter = "-drop_z_below 0")

# Using Li et al. (2012)
las <- segment_trees(las, li2012(R = 3, speed_up = 5))
#plot(las, color = "treeID")

# ==============
# Segment shapes
# ==============

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, filter = "-keep_random_fraction 0.5")



118 set_lidr_threads

# Use the eigenvalues to estimate if points are part of a local plan
las <- segment_shapes(las, shp_plane(k = 15), "Coplanar")
#plot(las, color = "Coplanar")

## Not run:
# Drop ground point at runtime
las <- segment_shapes(las, shp_plane(k = 15), "Coplanar", filter = ~Classification != 2L)
#plot(las, color = "Coplanar")

# ==============
# Segment snags
# ==============

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile, select = "xyzi", filter="-keep_first") # Wing also included -keep_single

# For the Wing2015 method, supply a matrix of snag BranchBolePtRatio conditional
# assessment thresholds (see Wing et al. 2015, Table 2, pg. 172)
bbpr_thresholds <- matrix(c(0.80, 0.80, 0.70,

0.85, 0.85, 0.60,
0.80, 0.80, 0.60,
0.90, 0.90, 0.55),
nrow =3, ncol = 4)

# Run snag classification and assign classes to each point
las <- segment_snags(las, wing2015(neigh_radii = c(1.5, 1, 2), BBPRthrsh_mat = bbpr_thresholds))

# Plot it all, tree and snag points...
plot(las, color="snagCls", colorPalette = rainbow(5))

# Filter and plot snag points only
snags <- filter_poi(las, snagCls > 0)
plot(snags, color="snagCls", colorPalette = rainbow(5)[-1])

# Wing et al's (2015) methods ended with performing tree segmentation on the
# classified and filtered point cloud using the watershed method

## End(Not run)

set_lidr_threads Set or get number of threads that lidR should use

Description

Set and get number of threads to be used in lidR functions that are parallelized with OpenMP.
0 means to utilize all CPU available. get_lidr_threads() returns the number of threads that
will be used. This affects lidR package but also the data.table package by internally calling
setDTthreads because several functions of lidR rely on data.table but it does not change R itself
or other packages using OpenMP.



shape_detection 119

Usage

set_lidr_threads(threads)

get_lidr_threads()

Arguments

threads Positive scalar. Default 0 means use all CPU available. Values > 1 mean using
n cores, values in ]0, 1[ mean using a fraction of the cores e.g. 0.5 = half.

See Also

lidR-parallelism

shape_detection Algorithms for shape detection of the local point neighbourhood

Description

These functions are made to be used in segment_shapes. They implement algorithms for local
neighbourhood shape estimation.

Usage

shp_plane(th1 = 25, th2 = 6, k = 8)

shp_hplane(th1 = 25, th2 = 6, th3 = 0.98, k = 8)

shp_line(th1 = 10, k = 8)

shp_hline(th1 = 10, th2 = 0.02, k = 8)

shp_vline(th1 = 10, th2 = 0.98, k = 8)

Arguments

th1, th2, th3 numeric. Threshold values (see details)

k integer. Number of neighbours used to estimate the neighborhood.

Details

In the following, a1, a2, a3 denote the eigenvalues of the covariance matrix of the neighbouring
points in ascending order. |Z1|, |Z2|, |Z3| denote the norm of the Z component of first, second and
third axis of the decomposition. th1, th2, th3 denote a set of threshold values. Points are labelled
TRUE if they meet the following criteria. FALSE otherwise.



120 shape_detection

shp_plane Detection of plans based on criteria defined by Limberger & Oliveira (2015) (see refer-
ences). A point is labelled TRUE if the neighborhood is approximately planar, that is:

a2 > (th1 × a1)&(th2 × a2) > a3

shp_hplane The same as ’plane’ but with an extra test on the orientation of the Z vector of the
principal components to test the horizontality of the surface.

a2 > (th1 × a1)&(th2 × a2) > a3&|Z3| > th3

In theory |Z3| should be exactly equal to 1. In practice 0.98 or 0.99 should be fine

shp_line Detection of lines inspired by the Limberger & Oliveira (2015) criterion. A point is
labelled TRUE if the neighbourhood is approximately linear, that is:

th1 × a2 < a3&th1 × a1 < a3

shp_hline Detection of horizontal lines inspired by the Limberger & Oliveira (2015) criterion. A
point is labelled TRUE if the neighbourhood is approximately linear and horizontal, that is:

th1 × a2 < a3&th1 × a1 < a3&|Z1| < th2

In theory |Z1| should be exactly equal to 0. In practice 0.02 or 0.01 should be fine

shp_vline Detection of vertical lines inspired by the Limberger & Oliveira (2015) criterion. A
point is labelled TRUE if the neighbourhood is approximately linear and vertical, that is:

th1 × a2 < a3&th1 × a1 < a3&|Z1| > th2

In theory |Z1| should be exactly equal to 1. In practice 0.98 or 0.99 should be fine

References

Limberger, F. A., & Oliveira, M. M. (2015). Real-time detection of planar regions in unorganized
point clouds. Pattern Recognition, 48(6), 2043–2053. https://doi.org/10.1016/j.patcog.2014.12.020

Examples

# Generating some data
n = 400
xplane = runif(n,0,6)
yplane = runif(n,0,6)
zplane = xplane + 0.8 * yplane + runif(n, 0, 0.1)
plane = data.frame(X = xplane, Y = yplane, Z = zplane)

xhplane = runif(n,5,15)
yhplane = runif(n,0,10)
zhplane = 5 + runif(n, 0, 0.)
hplane = data.frame(X = xhplane, Y = yhplane, Z = zhplane)

tline = 1:n



smooth_height 121

xline = 0.05*tline
yline = 0.01*tline
zline = 0.02*tline + runif(n, 0, 0.1)
line = data.frame(X = xline, Y = yline, Z = zline)

thline = 1:n
xhline = 0.05*thline + runif(n, 0, 0.05)
yhline = 10 - 0.01*thline + runif(n, 0, 0.05)
zhline = 3 + runif(n, 0, 0.05)
hline = data.frame(X = xhline, Y = yhline, Z = zhline)

tvline = 1:n
xvline = 5 + runif(n, 0, 0.05)
yvline = 5 + runif(n, 0, 0.05)
zvline = 0.02*tline
vline = data.frame(X = xvline, Y = yvline, Z = zvline)

las <- rbind(plane, line, hplane, hline, vline)
las <- LAS(las)

las <- segment_shapes(las, shp_plane(k = 20), "plane")
las <- segment_shapes(las, shp_hplane(k = 20), "hplane")
las <- segment_shapes(las, shp_line(k = 20), "line")
las <- segment_shapes(las, shp_hline(k = 20), "hline")
las <- segment_shapes(las, shp_vline(k = 20), "vline")

#plot(las)
#plot(las, color = "plane")
#plot(las, color = "hplane")
#plot(las, color = "line")
#plot(las, color = "hline")
#plot(las, color = "vline")

smooth_height Smooth a point cloud

Description

Point cloud-based smoothing algorithm. Two methods are available: average within a window and
Gaussian smooth within a window. The attribute Z of the returned LAS object is the smoothed Z.
A new attribute Zraw is added to store the original values and can be used to restore the point cloud
with unsmooth_height.

Usage

smooth_height(
las,
size,
method = c("average", "gaussian"),
shape = c("circle", "square"),



122 snag_wing2015

sigma = size/6
)

unsmooth_height(las)

Arguments

las An object of class LAS

size numeric. The size of the windows used to smooth.

method character. Smoothing method. Can be ’average’ or ’gaussian’.

shape character. The shape of the windows. Can be circle or square.

sigma numeric. The standard deviation of the gaussian if the method is gaussian.

Details

This method does not use raster-based methods to smooth the point cloud. This is a true point cloud
smoothing. It is not really useful by itself but may be interesting in combination with filters, for
example to develop new algorithms.

Value

An object of the class LAS.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, select = "xyz")

las <- decimate_points(las, highest(1))
#plot(las)

las <- smooth_height(las, 5, "gaussian", "circle", sigma = 2)
#plot(las)

las <- unsmooth_height(las)
#plot(las)

snag_wing2015 Snags Segmentation Algorithm

Description

This function is made to be used in segment_snags. It implements an algorithms for snags segmen-
tation based on Wing et al (2015) (see references). This is an automated filtering algorithm that
utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove
lidar points associated with live trees and retain lidar points associated with snags.



snag_wing2015 123

Usage

wing2015(
neigh_radii = c(1.5, 1, 2),
low_int_thrsh = 50,
uppr_int_thrsh = 170,
pt_den_req = 3,
BBPRthrsh_mat = NULL

)

Arguments

neigh_radii numeric. A vector of three radii used in quantifying local-area centered neigh-
borhoods. See Wing et al. (2015) reference page 171 and Figure 4. Defaults are
1.5, 1, and 2 for the sphere, small cylinder and large cylinder neighborhoods,
respectively.

low_int_thrsh numeric. The lower intensity threshold filtering value. See Wing et al. (2015)
page 171. Default is 50.

uppr_int_thrsh numeric. The upper intensity threshold filtering value. See Wing et al. (2015)
page 171. Default is 170.

pt_den_req numeric. Point density requirement based on plot-level point density defined
classes. See Wing et al. (2015) page 172. Default is 3.

BBPRthrsh_mat matrix. A 3x4 matrix providing the four average BBPR (branch and bole point
ratio) values for each of the three neighborhoods (sphere, small cylinder and
large cylinder) to be used for conditional assessments and classification into the
following four snag classes: 1) general snag 2) small snag 3) live crown edge
snag 4) high canopy cover snag. See Wing et al. (2015) page 172 and Table 2.
This matrix must be provided by the user.

Details

Note that this algorithm strictly performs a classification based on user input while the original
publication’s methods also included a segmentation step and some pre- (filtering for first and single
returns only) and post-process (filtering for only the snag classified points prior to segmentation)
tasks which are now expected to be performed by the user. Also, this implementation may have
some differences compared with the original method due to potential mis-interpretation of the Wing
et al. manuscript, specifically Table 2 where they present four groups of conditional assessments
with their required neighborhood point density and average BBPR values (BBPR = branch and bole
point ratio; PDR = point density requirement).

This algorithm attributes each point in the point cloud (snagCls column) into the following five
snag classes:

• 0: live tree - not a snag

• 1: general snag - the broadest range of snag point situations



124 snag_wing2015

• 2: small snag - isolated snags with lower point densities

• 3: live crown edge snag - snags located directly adjacent or intermixing with live trees crowns

• 4: high canopy cover snag - snags protruding above the live canopy in dense conditions (e.g.,
canopy cover >= 55%).

Author(s)

Implementation by Andrew Sánchez Meador & Jean-Romain Roussel

References

Wing, Brian M.; Ritchie, Martin W.; Boston, Kevin; Cohen, Warren B.; Olsen, Michael J. 2015.
Individual snag detection using neighborhood attribute filtered airborne lidar data. Remote Sensing
of Environment. 163: 165-179 https://doi.org/10.1016/j.rse.2015.03.013

Examples

LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
# Wing also included -keep_single
poi ="-keep_first -inside 481260 3812920 481310 3812960"
las <- readLAS(LASfile, select = "xyzi", filter = poi)

# For the Wing2015 method, supply a matrix of snag BranchBolePtRatio conditional
# assessment thresholds (see Wing et al. 2015, Table 2, pg. 172)
bbpr_thresholds <- matrix(c(0.80, 0.80, 0.70,

0.85, 0.85, 0.60,
0.80, 0.80, 0.60,
0.90, 0.90, 0.55),
nrow =3, ncol = 4)

# Run snag classification and assign classes to each point
las <- segment_snags(las, wing2015(neigh_radii = c(1.5, 1, 2), BBPRthrsh_mat = bbpr_thresholds))

# Plot it all, tree and snag points...
#plot(las, color="snagCls", colorPalette = rainbow(5))

# Filter and plot snag points only
snags <- filter_poi(las, snagCls > 0)
#plot(snags, color="snagCls", colorPalette = rainbow(5)[-1])

# Wing et al's (2015) methods ended with performing tree segmentation on the
# classified and filtered point cloud using the watershed method



stdmetrics 125

stdmetrics Predefined standard metrics functions

Description

Predefined metrics functions intended to me used in *_metrics function such as pixel_metrics,
cloud_metrics, crown_metrics, voxel_metrics and so on. Each function comes with a convenient
shortcuts for lazy coding. The lidR package aims to provide an easy way to compute user-defined
metrics rather than to provide them. However, for efficiency and to save time, sets of standard
metrics have been predefined (see details). Every function can be computed by every *_metrics
functions however stdmetrics* are more pixel-based metrics, stdtreemetrics are more tree-
based metrics and stdshapemetrics are more point-based metrics. For example the metric zmean
computed by stdmetrics_z makes sense when computed at the pixel level but brings no informa-
tion at the voxel level.

Usage

stdmetrics(x, y, z, i, rn, class, dz = 1, th = 2, zmin = 0)

stdmetrics_z(z, dz = 1, th = 2, zmin = 0)

stdmetrics_i(i, z = NULL, class = NULL, rn = NULL)

stdmetrics_rn(rn, class = NULL)

stdmetrics_pulse(pulseID, rn)

stdmetrics_ctrl(x, y, z)

stdtreemetrics(x, y, z)

stdshapemetrics(x, y, z)

.stdmetrics

.stdmetrics_z

.stdmetrics_i

.stdmetrics_rn

.stdmetrics_pulse

.stdmetrics_ctrl

.stdtreemetrics



126 stdmetrics

.stdshapemetrics

Arguments

x, y, z, i Coordinates of the points, Intensity

rn, class ReturnNumber, Classification

dz numeric. Layer thickness metric entropy

th numeric. Threshold for metrics pzabovex. Can be a vector to compute with
several thresholds.

zmin numeric. Lower bound of the integral for zpcumx metrics. See wiki page and
Wood et al. (2008) reference.

pulseID The number referencing each pulse

Format

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

An object of class formula of length 2.

Details

The function names, their parameters and the output names of the metrics rely on a nomenclature
chosen for brevity:

• z: refers to the elevation

• i: refers to the intensity

• rn: refers to the return number

• q: refers to quantile

• a: refers to the ScanAngleRank or ScanAngle

• n: refers to a number (a count)

• p: refers to a percentage

For example the metric named zq60 refers to the elevation, quantile, 60 i.e. the 60th percentile of
elevations. The metric pground refers to a percentage. It is the percentage of points classified as
ground. The function stdmetric_i refers to metrics of intensity. A description of each existing
metric can be found on the lidR wiki page.

Some functions have optional parameters. If these parameters are not provided the function com-
putes only a subset of existing metrics. For example, stdmetrics_i requires the intensity values,

https://github.com/r-lidar/lidR/wiki/stdmetrics
https://github.com/r-lidar/lidR/wiki/stdmetrics


stdmetrics 127

but if the elevation values are also provided it can compute additional metrics such as cumulative
intensity at a given percentile of height.

Each function has a convenient associated variable. It is the name of the function, with a dot
before the name. This enables the function to be used without writing parameters. The cost of such
a feature is inflexibility. It corresponds to a predefined behaviour (see examples)

stdmetrics is a combination of stdmetrics_ctrl + stdmetrics_z + stdmetrics_i + stdmetrics_rn

stdtreemetrics is a special function that works with crown_metrics. Actually, it won’t fail with
other functions but the output makes more sense if computed at the individual tree level.

stdshapemetrics is a set of eigenvalue based feature described in Lucas et al, 2019 (see refer-
ences).

References

M. Woods, K. Lim, and P. Treitz. Predicting forest stand variables from LiDAR data in the Great
Lakes – St. Lawrence forest of Ontario. The Forestry Chronicle. 84(6): 827-839. https://doi.org/10.5558/tfc84827-
6

Lucas, C., Bouten, W., Koma, Z., Kissling, W. D., & Seijmonsbergen, A. C. (2019). Identification
of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds. Remote Sensing,
11(3), 292.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, select = "*", filter = "-keep_random_fraction 0.5")

# All the predefined metrics
m1 <- pixel_metrics(las, ~stdmetrics(X,Y,Z,Intensity,ReturnNumber,Classification,dz=1), res = 40)

# Convenient shortcut
m2 <- pixel_metrics(las, .stdmetrics, res = 40)

# Basic metrics from intensities
m3 <- pixel_metrics(las, ~stdmetrics_i(Intensity), res = 40)

# All the metrics from intensities
m4 <- pixel_metrics(las, ~stdmetrics_i(Intensity, Z, Classification, ReturnNumber), res = 40)

# Convenient shortcut for the previous example
m5 <- pixel_metrics(las, .stdmetrics_i, res = 40)

# Combine some predefined function with your own new metrics
# Here convenient shortcuts are no longer usable.
myMetrics = function(z, i, rn)
{

first <- rn == 1L
zfirst <- z[first]
nfirst <- length(zfirst)
above2 <- sum(z > 2)



128 st_area

x <- above2/nfirst*100

# User's metrics
metrics <- list(

above2aboven1st = x, # Num of returns above 2 divided by num of 1st returns
zimean = mean(z*i), # Mean products of z by intensity
zsqmean = sqrt(mean(z^2)) # Quadratic mean of z

)

# Combined with standard metrics
return( c(metrics, stdmetrics_z(z)) )

}

m10 <- pixel_metrics(las, ~myMetrics(Z, Intensity, ReturnNumber), res = 40)

# Users can write their own convenient shorcuts like this:
.myMetrics = ~myMetrics(Z, Intensity, ReturnNumber)
m11 <- pixel_metrics(las, .myMetrics, res = 40)

st_area Surface covered by a LAS* object

Description

Surface covered by a LAS* object. The surface covered by a point cloud is mathematically 0. To
compute non zero values the function uses different strategies. The area is computed based on the
number of occupied cells, or on the area of the convex hull of the points depending on the density
and the size of the point cloud. The result is necessarily an approximation that depends on the
method used.
For a LAScatalog it is computed as the sum of the bounding boxes of the files. For overlapping tiles
the value may be larger than the total area covered because some regions are sampled twice. For
a LASheader it is computed with the bounding box. As a consequence, for the same file st_area
applied on a LASheader or on a LAS can return slightly different values. st_area() extends
sf:st_area(), area() extends raster:area(). area() is provided for backward compatibility.

Usage

## S3 method for class 'LAS'
st_area(x, ...)

## S3 method for class 'LASheader'
st_area(x, ...)

## S3 method for class 'LAScatalog'
st_area(x, ...)

area(x, ...)



st_bbox 129

## S4 method for signature 'LAS'
area(x, ...)

## S4 method for signature 'LASheader'
area(x, ...)

## S4 method for signature 'LAScatalog'
area(x, ...)

Arguments

x An object of class LAS*.

... unused.

Value

numeric. A number in the same units as the coordinate reference system.

st_bbox Bounding box of a LAS* object

Description

Bounding box of a LAS* object. st_bbox() extends sf, and ext() extends terra. The values
returned are similar to their parent functions.

Usage

## S3 method for class 'LAS'
st_bbox(obj, ...)

## S3 method for class 'LASheader'
st_bbox(obj, ...)

## S3 method for class 'LAScatalog'
st_bbox(obj, ...)

## S3 method for class 'LAScluster'
st_bbox(obj, ...)

## S4 method for signature 'LAS'
ext(x, ...)

## S4 method for signature 'LASheader'
ext(x, ...)



130 st_coordinates

## S4 method for signature 'LAScatalog'
ext(x, ...)

## S4 method for signature 'LAScluster'
ext(x, ...)

Arguments

obj, x An object of class LAS*.

... unused

Value

A bbox from sf, or a SpatExtent from terra.

Examples

f <- system.file("extdata", "example.las", package="rlas")
las <- readLAS(f)

st_bbox(las)
ext(las)

st_coordinates Coordinates of a LAS* object in a matrix form

Description

Retrieve coordinates of a LAS* object in matrix form. It creates a copy of the coordinates because
of the coercion from data.frame to matrix. This function inherits sf::st_coordinates

Usage

## S3 method for class 'LAS'
st_coordinates(x, z = TRUE, ...)

## S3 method for class 'LAScatalog'
st_coordinates(x, ...)

Arguments

x A LAS* object

z bool. Return XY or XYZ matrix

... unused.

Value

matrix



st_crs 131

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las <- readLAS(LASfile)
sf::st_coordinates(las)

st_crs Get or set the projection of a LAS* object

Description

Get or set the projection of a LAS* object. st_crs() extends sf:st_crs(), projection() and
crs() extend raster:projection() and raster:crs(). projection() and crs() are provided
for backward compatibility. For epsg() and wkt(), see details.

Usage

## S3 method for class 'LAS'
st_crs(x, ...)

## S3 method for class 'LAScatalog'
st_crs(x, ...)

## S3 method for class 'LASheader'
st_crs(x, ...)

## S3 method for class 'LAScluster'
st_crs(x, ...)

## S3 replacement method for class 'LAS'
st_crs(x) <- value

## S3 replacement method for class 'LASheader'
st_crs(x) <- value

## S3 replacement method for class 'LAScatalog'
st_crs(x) <- value

projection(x, asText = TRUE)

projection(x) <- value

crs(x, asText = FALSE)

crs(x, ...) <- value

## S4 method for signature 'LASheader'
crs(x, asText = FALSE)



132 st_crs

## S4 method for signature 'LAS'
crs(x, asText = FALSE)

## S4 replacement method for signature 'LAS'
crs(x, ...) <- value

## S4 method for signature 'LAScatalog'
crs(x, asText = FALSE)

## S4 method for signature 'LAScluster'
crs(x, asText = FALSE)

## S4 replacement method for signature 'LAScatalog'
crs(x, ...) <- value

## S4 replacement method for signature 'LASheader'
crs(x, ...) <- value

epsg(object, ...)

epsg(object) <- value

## S4 method for signature 'LASheader'
epsg(object, ...)

## S4 replacement method for signature 'LASheader'
epsg(object) <- value

## S4 method for signature 'LAS'
epsg(object)

## S4 replacement method for signature 'LAS'
epsg(object) <- value

wkt(obj)

wkt(obj) <- value

## S4 method for signature 'LASheader'
wkt(obj)

## S4 replacement method for signature 'LASheader'
wkt(obj) <- value

## S4 method for signature 'LAS'
wkt(obj)



st_crs 133

## S4 replacement method for signature 'LAS'
wkt(obj) <- value

Arguments

x, object, obj An object of class LAS*
... Unused.
value A CRS or a crs or a proj4string string or WKT string or an EPSG code.
asText logical. If TRUE, the projection is returned as text. Otherwise a CRS object is

returned.

Details

There are two ways to store the CRS of a point cloud in a LAS file:

• Store an EPSG code (for LAS 1.0 to 1.3)
• Store a WTK string (for LAS 1.4)

On the other hand, R spatial packages use a crs object to store the CRS. This is why the CRS
is duplicated in a LAS object. The information belongs within the header in a format that can be
written in a LAS file and in the slot crs, and also in a format that can be understood by other R
packages.

• st_crs return the CRS in sf format.
• st_crs<-: assigns a CRS from a CRS (sp), a crs (sf), a WKT string, a proj4string or an epsg

code. It updates the header of the LAS object either with the EPSG code for LAS formats <
1.4 or with a WKT string

• epsg: reads the epsg code from the header.
• wkt: reads the WKT string from the header.

Value

A st_crs() returns a sf::crs. projection() and crs() return a sp::CRS and should no longer
be used.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile)

# Get the EPSG code stored in the header (returns 0 if not recorded)
epsg(las)

# Get the WKT string stored in the header (LAS >= 1.4)
wkt(las)

# Overwrite the CRS (but does not reproject)
st_crs(las) <- 26918
las



134 st_hull

st_hull Concave and convex hulls for LAS objects

Description

Concave and convex hulls for LAS objects. st_convex_hull extends sf::st_convex_hull for
LAS objects. Both functions return a sfc_POLYGON. concaveman is very a fast 2D concave hull
algorithm for a set of points.

Usage

st_concave_hull(x, method = "concaveman", ...)

## S3 method for class 'LAS'
st_convex_hull(x)

concaveman(x, y = NULL, concavity = 2, length_threshold = 0)

Arguments

x, y An object of class LAS or XY coordinates of points in case of concaveman.
This can be specified as two vectors x and y, a 2-column matrix x, a list with
two components, etc.

method string. currently supports "concaveman".

... Propagate to the method.

concavity numeric a relative measure of concavity. 1 results in a relatively detailed shape,
Infinity results in a convex hull. You can use values lower than 1, but they can
produce pretty crazy shapes.

length_threshold

numeric. When a segment length is below this threshold, it stops being consid-
ered for further detailed processing. Higher values result in simpler shapes.

Details

The concaveman algorithm is based on ideas from Park and Oh (2012). A first implementation in
JavaScript was proposed by Vladimir Agafonkin in mapbox. This implementation dramatically im-
proved performance over the one stated in the paper using a spatial index. The algorithm was then
ported to R by Joël Gombin in the R package concaveman that runs the JavaScript implementation
proposed by Vladimir Agafonkin. Later, a C++ version of Vladimir Agafonkin’s JavaScript imple-
mentation was proposed by Stanislaw Adaszewski in concaveman-cpp. This concaveman function
uses Stanislaw Adaszewski’s C++ code making the concaveman algorithm an order of magnitude
(up to 50 times) faster than the Javascript version.

Value

A sfc_POLYGON from sf or a data.frame in the case of concaveman

https://github.com/mapbox/concaveman
https://github.com/joelgombin/concaveman
https://github.com/sadaszewski/concaveman-cpp


st_transform 135

References

Park, J.-S & Oh, S.-J. (2013). A New Concave Hull Algorithm and Concaveness Measure for
n-dimensional Datasets. Journal of Information Science and Engineering. 29. 379-392.

Examples

x <- runif(35)
y <- runif(35)
hull <- concaveman(x,y)
plot(x,y, asp = 1)
lines(hull, lwd = 3, col = "red")

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile, filter = "-drop_z_below 1")
hull = st_concave_hull(las, length_threshold = 10)
plot(hull)

st_transform Transform or convert coordinates of LAS objects

Description

Transform or convert coordinates of LAS objects st_transform() extends sf::st_transform()

Usage

## S3 method for class 'LAS'
st_transform(x, crs, ...)

Arguments

x An object of class LAS

crs crs object from sf or CRS object from sp

... additional arguments scale and xoffset, yoffset, zoffset for the output
LAS objects. It is not mandatory but recommended to consider providing such
information. Otherwise it will be guessed automatically which might not be the
best choice.

Value

A LAS object



136 track_sensor

Examples

LASfile <- system.file("extdata", "example.laz", package="rlas")
las = readLAS(LASfile)
st_crs(las)$Name
st_bbox(las)
tlas <- sf::st_transform(las, sf::st_crs(26918))
st_crs(tlas)$Name
st_bbox(tlas)

track_sensor Reconstruct the trajectory of the LiDAR sensor using multiple returns

Description

Use multiple returns to estimate the positioning of the sensor by computing the intersection in space
of the line passing through the first and last returns. To work, this function requires a dataset where
the ’gpstime’, ’ReturnNumber’, ’NumberOfReturns’ and ’PointSourceID’ attributes are properly
populated, otherwise the output may be incorrect or weird. For LAScatalog processing it is recom-
mended to use large chunks and large buffers (e.g. a swath width). The point cloud must not be
normalized.

Usage

track_sensor(
las,
algorithm,
extra_check = TRUE,
thin_pulse_with_time = 0.001,
multi_pulse = FALSE

)

Arguments

las An object of class LAS or LAScatalog.
algorithm function. An algorithm to compute sensor tracking. lidR implements Rous-

sel2020 and Gatziolis2019 (see respective documentation and examples).
extra_check boolean. Datasets are rarely perfectly populated, leading to unexpected errors.

Time-consuming checks of data integrity are performed. These checks can be
skipped as they account for an significant proportion of the computation time.
See also section ’Tests of data integrity’.

thin_pulse_with_time

numeric. In practice, it is not useful to compute the position using all multiple re-
turns. It is more computationally demanding but not necessarily more accurate.
This keeps only one pulse every x seconds. Set to 0 to use all multiple returns.
Use 0 if the file has already been read with filter = "-thin_pulses_with_time
0.001".

multi_pulse logical. TRUE only for systems with multiple pulses. Pulse ID must be recorded
in the UserData attribute.



track_sensor 137

Value

An sf object with POINT Z geometries. Information about the time interval and the score of the
positioning (according to the method used) are also in the table of attributes.

Non-supported LAScatalog options

The option ‘select‘ is not supported and not respected because it is internally known what is the best
to select
The option ‘output_files‘ is not supported and not respected because the output must be post-
processed as a whole

Test of data integrity

In theory, sensor tracking is a simple problem to solve as long as each pulse is properly identified
from a well-populated dataset. In practice, many problems may arise from datasets that are pop-
ulated incorrectly. Here is a list of problems that may happen. Those with a * denote problems
already encountered and internally checked to remove weird points:

• ’gpstime’ does not record the time at which pulses were emitted and thus pulses are not iden-
tifiable

• *A pulse (two or more points that share the same gpstime) is made of points from different
flightlines (different PointSourceID). This is impossible and denotes an improperly populated
PointSourceID attribute.

• ’ReturnNumber’ and ’NumberOfReturns’ are wrongly populated with either some Return-
Number > NumberOfReturn or several first returns by pulses

For a given time interval, when weird points are not filtered, the position is not computed for this
interval.

Author(s)

Jean-Francois Bourdon & Jean-Romain Roussel

Examples

# A valid file properly populated
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile)
#plot(las)

# pmin = 15 because it is an extremely small file
# strongly decimated to reduce its size. There are
# actually few multiple returns
flightlines <- track_sensor(las, Roussel2020(pmin = 15))

plot(las@header)
plot(sf::st_geometry(flightlines), add = TRUE)

#plot(las) |> add_flightlines3d(flightlines, radius = 10)



138 track_sensor_gatziolis2019

## Not run:
# With a LAScatalog "-drop_single" and "-thin_pulses_with_time"
# are used by default
ctg = readLAScatalog("folder/")
flightlines <- track_sensor(ctg, Roussel2020(pmin = 15))
plot(flightlines)

## End(Not run)

track_sensor_gatziolis2019

Sensor tracking algorithm

Description

This function is made to be used in track_sensor. It implements an algorithm from Gatziolis and
McGaughey 2019 (see reference) for sensor tracking using multiple returns to estimate the posi-
tioning of the sensor by computing the intersection in space of the lines passing through the first
and last returns.

Usage

Gatziolis2019(SEGLENFactor = 1.0059, AngleFactor = 0.8824, deltaT = 0.5)

Arguments

SEGLENFactor scalar. Weighting factor for the distance b/w 1st and last pulse returns

AngleFactor scalar. Weighting factor for view angle of mother pulse of a return

deltaT scalar. TimeBlock duration (in seconds)

Details

In the original paper, two steps are described: (1) closest point approach (CPA) and (2) cubic spline
fitting. Technically, the cubic spline fitting step is a post-processing step and is not included in this
algorithm.

The source code of the algorithm is a slight modification of the original source code provided
with the paper to fit with the lidR package.

Author(s)

Demetrios Gaziolis and Jean-Romain Roussel

References

Gatziolis, D., & McGaughey, R. J. (2019). Reconstructing Aircraft Trajectories from Multi-Return
Airborne Laser-Scanning Data. Remote Sensing, 11(19), 2258.



track_sensor_roussel2020 139

Examples

# A valid file properly populated
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile)
flightlines <- track_sensor(las, Gatziolis2019())

plot(las@header)
plot(flightlines, add = TRUE)

track_sensor_roussel2020

Sensor tracking algorithm

Description

This function is made to be used in track_sensor. It implements an algorithm from Roussel et al.
2020 (see reference) for sensor tracking using multiple returns to estimate the positioning of the
sensor by computing the intersection in space of the lines passing through the first and last returns.

Usage

Roussel2020(interval = 0.5, pmin = 50)

Arguments

interval numeric. Interval used to bin the gps times and group the pulses to compute a
position at a given timepoint t.

pmin integer. Minimum number of pulses needed to estimate a sensor position. For
a given interval, the sensor position is not computed if the number of pulses is
lower than pmin.

Details

When multiple returns from a single pulse are detected, the sensor computes their positions as
being in the center of the footprint and thus all aligned. Because of that behavior, a line drawn
between and beyond those returns must cross the sensor. Thus, several consecutive pulses emitted
in a tight interval (e.g. 0.5 seconds) can be used to approximate an intersection point in the sky
that corresponds to the sensor position given that the sensor carrier hasn’t moved much during this
interval. A weighted least squares method gives an approximation of the intersection by minimizing
the squared sum of the distances between the intersection point and all the lines.

References

Roussel Jean-Romain, Bourdon Jean-Francois, Achim Alexis, (2020) Range-based intensity nor-
malization of ALS data over forested areas using a sensor tracking method from multiple returns
(preprint) Retrieved from eartharxiv.org/k32qw https://doi.org/10.31223/osf.io/k32qw



140 voxelize_points

Examples

# A valid file properly populated
LASfile <- system.file("extdata", "Topography.laz", package="lidR")
las = readLAS(LASfile)

# pmin = 15 because it is an extremely tiny file
# strongly decimated to reduce its size. There are
# actually few multiple returns
flightlines <- track_sensor(las, Roussel2020(pmin = 15))

plot(las@header)
plot(flightlines, add = TRUE)

voxelize_points Voxelize a point cloud

Description

Reduce the number of points by voxelizing the point cloud. If the Intensity is part of the attributes
it is preserved and aggregated as mean(Intensity). Other attributes cannot be aggregated and are
lost.

Usage

voxelize_points(las, res)

Arguments

las An object of class LAS or LAScatalog.

res numeric. The resolution of the voxels. res = 1 for a 1x1x1 cubic voxels. Op-
tionally res = c(1,2) for non-cubic voxels (1x1x2 cuboid voxel).

Value

If the input is a LAS object, returns a LAS object. If the input is a LAScatalog, returns a LAScatalog.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile, select = "xyz")

las2 = voxelize_points(las, 5)
#plot(las2, voxel = TRUE)



writeLAS 141

writeLAS Write a .las or .laz file

Description

Write a LAS object into a binary .las or .laz file (compression specified in filename)

Usage

writeLAS(las, file, index = FALSE)

Arguments

las an object of class LAS.

file character. A character string naming an output file.

index boolean. Also write a lax file to index the points in the files

Value

Nothing. This function is used for its side-effect of writing a file.

Examples

LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las = readLAS(LASfile)
subset = clip_rectangle(las, 684850, 5017850, 684900, 5017900)
writeLAS(subset, tempfile(fileext = ".laz"))



Index

∗ LAScatalog processing engine
engine, 38
engine_options, 40

∗ datasets
asprs, 13
stdmetrics, 125

∗ digital surface model algorithms
dsm_pitfree, 32
dsm_point2raster, 34
dsm_tin, 35

∗ dtm algorithms
dtm_idw, 36
dtm_kriging, 37
dtm_tin, 38

∗ ground segmentation algorithms
gnd_csf, 46
gnd_mcc, 47
gnd_pmf, 48

∗ individual tree detection algorithms
itd_lmf, 52
itd_manual, 54

∗ individual tree segmentation algorithms
its_dalponte2016, 55
its_li2012, 57
its_silva2016, 58
its_watershed, 59

∗ las utilities
las_check, 68
las_utilities, 70

∗ metrics
point_metrics, 99

∗ noise segmentation algorithms
noise_ivf, 83
noise_sor, 84

∗ point cloud decimation algorithms
sample_homogenize, 112
sample_maxima, 113
sample_per_voxel, 114
sample_random, 115

∗ point-cloud based tree segmentation
algorithms

its_li2012, 57
∗ range

track_sensor, 136
∗ raster based tree segmentation algorithms

its_dalponte2016, 55
its_silva2016, 58
its_watershed, 59

∗ snags segmentation algorithms
snag_wing2015, 122

-,LAS,ANY-method (normalize), 85
.stdmetrics (stdmetrics), 125
.stdmetrics_ctrl (stdmetrics), 125
.stdmetrics_i (stdmetrics), 125
.stdmetrics_pulse (stdmetrics), 125
.stdmetrics_rn (stdmetrics), 125
.stdmetrics_z (stdmetrics), 125
.stdshapemetrics (stdmetrics), 125
.stdtreemetrics (stdmetrics), 125
[,LAS,logical,ANY-method (Extract), 42
[,LAS,numeric,ANY-method (Extract), 42
[,LAS,sf,ANY-method (Extract), 42
[,LAS,sfc,ANY-method (Extract), 42
[,LAScatalog,ANY,ANY-method (Extract),

42
[,LAScatalog,logical,ANY-method

(Extract), 42
[,LAScatalog,sf,ANY-method (Extract), 42
[,LAScatalog,sfc,ANY-method (Extract),

42
[[,LAS,ANY,missing-method (Extract), 42
[[,LAScatalog,ANY,missing-method

(Extract), 42
[[,LASheader,ANY,missing-method

(Extract), 42
[[<-,LAS,ANY,missing-method (Extract),

42
[[<-,LAScatalog,ANY,ANY-method

142



INDEX 143

(Extract), 42
[[<-,LASheader,character,missing-method

(Extract), 42
$,LAS-method (Extract), 42
$,LAScatalog-method (Extract), 42
$,LASheader-method (Extract), 42
$<-,LAS-method (Extract), 42
$<-,LAScatalog-method (Extract), 42
$<-,LASheader-method (Extract), 42

add_attribute, 5
add_dtm3d (plot_3d), 96
add_flightlines3d (plot_3d), 96
add_lasattribute (add_attribute), 5
add_lasattribute_manual

(add_attribute), 5
add_lasnir (add_attribute), 5
add_lasrgb (add_attribute), 5
add_treetops3d (plot_3d), 96
aggregate, 7
appropriate functions, 109
area, 115
area (st_area), 128
area,LAS-method (st_area), 128
area,LAScatalog-method (st_area), 128
area,LASheader-method (st_area), 128
as, 12
as.spatial (old_spatial_packages), 90
asprs, 13

catalog (readLAScatalog), 109
catalog_apply, 4, 15, 39, 73
catalog_boundaries, 20
catalog_intersect, 21
catalog_map (catalog_apply), 15
catalog_retile, 22
catalog_sapply (catalog_apply), 15
catalog_select (catalog_intersect), 21
catalog_subset (catalog_intersect), 21
classify, 23
classify_ground, 46–49
classify_ground (classify), 23
classify_noise, 83, 84
classify_noise (classify), 23
classify_poi (classify), 23
classIntervals, 94
clip, 25
clip_circle (clip), 25
clip_polygon (clip), 25

clip_rectangle (clip), 25
clip_roi, 9
clip_roi (clip), 25
clip_transect (clip), 25
cloud_metrics, 9, 125
cloud_metrics (aggregate), 7
concaveman, 8, 91
concaveman (st_hull), 134
count_not_quantized (las_utilities), 70
crown_metrics, 91, 125, 127
crown_metrics (aggregate), 7
crs, 61
crs (st_crs), 131
crs,LAS-method (st_crs), 131
crs,LAScatalog-method (st_crs), 131
crs,LAScluster-method (st_crs), 131
crs,LASheader-method (st_crs), 131
crs<- (st_crs), 131
crs<-,LAS-method (st_crs), 131
crs<-,LAScatalog-method (st_crs), 131
crs<-,LASheader-method (st_crs), 131
csf, 24
csf (gnd_csf), 46

dalponte2016, 116
dalponte2016 (its_dalponte2016), 55
data.table, 61
decimate_points, 27, 112–115
delineate_crowns

(old_spatial_packages), 90
density (print.LAS), 101
density,LAS-method (print.LAS), 101
density,LAScatalog-method (print.LAS),

101
density,LASheader-method (print.LAS),

101
deprecated, 28
dim.LAS (print.LAS), 101
dim.LAScatalog (print.LAS), 101
dsm_pitfree, 32, 34, 35
dsm_point2raster, 33, 34, 35
dsm_tin, 33, 34, 35
dsmtin, 33, 105
dsmtin (dsm_tin), 35
dtm_idw, 36, 37, 38
dtm_kriging, 36, 37, 38
dtm_tin, 36, 37, 38

engine, 38, 41



144 INDEX

engine_apply (engine), 38
engine_chunks (engine), 38
engine_crop (engine), 38
engine_merge (engine), 38
engine_options, 40, 40, 110
engine_write (engine), 38
entropy, 10, 126
entropy (nstdmetrics), 87
epsg (st_crs), 131
epsg,LAS-method (st_crs), 131
epsg,LASheader-method (st_crs), 131
epsg<- (st_crs), 131
epsg<-,LAS-method (st_crs), 131
epsg<-,LASheader-method (st_crs), 131
evlr (las_utilities), 70
ext,LAS-method (st_bbox), 129
ext,LAScatalog-method (st_bbox), 129
ext,LAScluster-method (st_bbox), 129
ext,LASheader-method (st_bbox), 129
extent, 16
Extract, 42

filter_duplicates (filters), 44
filter_first (filters), 44
filter_firstlast (filters), 44
filter_firstofmany (filters), 44
filter_ground (filters), 44
filter_last (filters), 44
filter_nth (filters), 44
filter_poi, 108
filter_poi (filters), 44
filter_single (filters), 44
filter_surfacepoints (deprecated), 28
filters, 44
find_trees (old_spatial_packages), 90
forest.colors (plot), 93
fwrite, 72

gap_fraction_profile, 88
gap_fraction_profile (nstdmetrics), 87
Gatziolis2019, 136
Gatziolis2019

(track_sensor_gatziolis2019),
138

get_lidr_threads (set_lidr_threads), 118
get_range (range_correction), 103
gnd_csf, 46, 48, 50
gnd_mcc, 47, 47, 50
gnd_pmf, 47, 48, 48

grid_canopy (old_spatial_packages), 90
grid_density (old_spatial_packages), 90
grid_metrics (old_spatial_packages), 90
grid_terrain (old_spatial_packages), 90

header (las_utilities), 70
height.colors (plot), 93
hexagon_metrics (aggregate), 7
hexbin_metrics (deprecated), 28
highest, 28
highest (sample_maxima), 113
homogenize, 28
homogenize (sample_homogenize), 112

index (lidR-spatial-index), 77
index<- (lidR-spatial-index), 77
interpret_waveform, 50
is, 51
is.parallelised, 74
is.quantized (las_utilities), 70
itd_lmf, 52, 55
itd_manual, 53, 54
its_dalponte2016, 55, 57, 59, 60
its_li2012, 56, 57, 59, 60
its_silva2016, 56, 57, 58, 60
its_watershed, 56, 57, 59, 59
ivf, 24
ivf (noise_ivf), 83

knnidw, 34, 38, 85, 105
knnidw (dtm_idw), 36
kriging, 34, 85, 105
kriging (dtm_kriging), 37

LAD, 10
LAD (nstdmetrics), 87
LAS, 5, 6, 8, 24, 26, 28, 45, 68, 77, 85, 93, 104,

107, 108, 116, 136, 140, 141
LAS (LAS-class), 60
LAS-class, 60
las_check, 68, 71
las_compression, 69
las_is_compressed (las_compression), 69
las_quantize (las_utilities), 70
las_reoffset (las_utilities), 70
las_rescale (las_utilities), 70
las_size (las_compression), 69
las_update (las_utilities), 70
las_utilities, 68, 70



INDEX 145

lasadd, 28
lasadddata (deprecated), 28
lasaddextrabytes (deprecated), 28
lasaddextrabytes_manual (deprecated), 28
LASBRIGDE (asprs), 13
LASBUILDING (asprs), 13
LAScatalog, 8, 15, 21, 22, 24, 26, 28, 40, 41,

68, 77, 78, 85, 93, 104, 107, 109,
116, 136, 140

LAScatalog class, 15
LAScatalog class documentation, 109
LAScatalog-class, 62, 72, 110
lascheck, 28
lascheck (deprecated), 28
lasclip, 28
lasclip (deprecated), 28
lasclipCircle (deprecated), 28
lasclipPolygon (deprecated), 28
lasclipRectangle (deprecated), 28
lasdetectshape, 28
lasdetectshape (deprecated), 28
lasfilter, 28
lasfilter (deprecated), 28
lasfilterdecimate (deprecated), 28
lasfilterduplicates (deprecated), 28
lasfilterfirst (deprecated), 28
lasfilterfirstlast (deprecated), 28
lasfilterfirstofmany (deprecated), 28
lasfilterground (deprecated), 28
lasfilterlast (deprecated), 28
lasfilternth (deprecated), 28
lasfiltersingle (deprecated), 28
lasfiltersurfacepoints, 28
lasfiltersurfacepoints (deprecated), 28
lasflightline, 28
lasflightline (deprecated), 28
LASGROUND (asprs), 13
lasground, 28
lasground (deprecated), 28
LASheader, 61, 66, 93, 110
LASheader-class, 67
LASHIGHVEGETATION (asprs), 13
LASKEYPOINT (asprs), 13
LASLOWPOINT (asprs), 13
LASLOWVEGETATION (asprs), 13
LASMEDIUMVEGETATION (asprs), 13
lasmergespatial, 28
lasmergespatial (deprecated), 28

LASNOISE (asprs), 13
LASNONCLASSIFIED (asprs), 13
lasnormalize, 28
lasnormalize (deprecated), 28
laspulse, 28
laspulse (deprecated), 28
LASRAIL (asprs), 13
lasrangecorrection, 28
lasrangecorrection (deprecated), 28
lasremoveextrabytes (deprecated), 28
lasreoffset, 28
lasreoffset (deprecated), 28
lasrescale, 28
lasrescale (deprecated), 28
LASROADSURFACE (asprs), 13
lasscanline (deprecated), 28
lasscanlines, 28
lassmooth, 28
lassmooth (deprecated), 28
lassnags, 28
lassnags (deprecated), 28
LASTRANSMISSIONTOWER (asprs), 13
lastrees, 28
lastrees (deprecated), 28
LASUNCLASSIFIED (asprs), 13
lasunnormalize (deprecated), 28
lasunsmooth (deprecated), 28
lasvoxelize, 28
lasvoxelize (deprecated), 28
LASWATER (asprs), 13
LASWIRECONDUCTOR (asprs), 13
LASWIREGUARD (asprs), 13
li2012, 74, 75, 116
li2012 (its_li2012), 57
lidR (lidR-package), 4
lidR-LAScatalog-drivers, 65, 72
lidR-package, 4
lidR-parallelism, 74, 119
lidR-spatial-index, 77
list.files, 110
lmf, 74, 75, 80
lmf (itd_lmf), 52
locate_trees, 52, 54, 56, 58, 80
lowest, 28
lowest (sample_maxima), 113

manual, 80
manual (itd_manual), 54
mcc, 24



146 INDEX

mcc (gnd_mcc), 47
merge_spatial, 82

names.LAS (print.LAS), 101
names.LASheader (print.LAS), 101
ncol.LAS (print.LAS), 101
noise_ivf, 83, 84
noise_sor, 83, 84
normalize, 85
normalize_height, 36–38
normalize_height (normalize), 85
normalize_intensity, 103
normalize_intensity (normalize), 85
npoints (print.LAS), 101
nrow.LAScatalog (print.LAS), 101
nstdmetrics, 87

old_spatial_packages, 90
opt_chunk_alignment, 64
opt_chunk_alignment (engine_options), 40
opt_chunk_alignment<- (engine_options),

40
opt_chunk_buffer, 64
opt_chunk_buffer (engine_options), 40
opt_chunk_buffer<- (engine_options), 40
opt_chunk_size, 64
opt_chunk_size (engine_options), 40
opt_chunk_size<- (engine_options), 40
opt_filter, 65
opt_filter (engine_options), 40
opt_filter<- (engine_options), 40
opt_independent_files (engine_options),

40
opt_independent_files<-

(engine_options), 40
opt_laz_compression (engine_options), 40
opt_laz_compression<- (engine_options),

40
opt_merge, 65
opt_merge (engine_options), 40
opt_merge<- (engine_options), 40
opt_output_files, 65
opt_output_files (engine_options), 40
opt_output_files<- (engine_options), 40
opt_progress, 63
opt_progress (engine_options), 40
opt_progress<- (engine_options), 40
opt_restart<-, 64
opt_restart<- (engine_options), 40

opt_select, 65
opt_select (engine_options), 40
opt_select<- (engine_options), 40
opt_stop_early, 64
opt_stop_early (engine_options), 40
opt_stop_early<- (engine_options), 40
opt_wall_to_wall, 64
opt_wall_to_wall (engine_options), 40
opt_wall_to_wall<- (engine_options), 40

p2r, 105
p2r (dsm_point2raster), 34
pastel.colors (plot), 93
payload (las_utilities), 70
phb (las_utilities), 70
pitfill_stonge2008, 92
pitfree, 105
pitfree (dsm_pitfree), 32
pixel_metrics, 91, 100, 104, 125
pixel_metrics (aggregate), 7
plot, 21, 54, 93, 94, 96
plot,LAS,missing-method (plot), 93
plot,LAScatalog,missing-method (plot),

93
plot,LASheader,missing-method (plot), 93
plot.lasmetrics3d, 95
plot_3d, 96
plot_dtm3d (plot_3d), 96
plot_metrics (aggregate), 7
plugin_decimate (plugins), 97
plugin_dsm (plugins), 97
plugin_dtm (plugins), 97
plugin_gnd (plugins), 97
plugin_itd (plugins), 97
plugin_its (plugins), 97
plugin_nintensity (plugins), 97
plugin_outliers (plugins), 97
plugin_shape (plugins), 97
plugin_snag (plugins), 97
plugin_track (plugins), 97
plugins, 97
pmf, 24
pmf (gnd_pmf), 48
point_eigenvalues (point_metrics), 99
point_metrics, 9, 99
points3d, 94
polygon_metrics (aggregate), 7
print.LAS, 101
print.LAScatalog (print.LAS), 101



INDEX 147

print.lidRAlgorithm (print.LAS), 101
print.raster_template (print.LAS), 101
projection (st_crs), 131
projection<- (st_crs), 131

quantize (las_utilities), 70

random, 28
random (sample_random), 115
random.colors (plot), 93
random_per_voxel, 28
random_per_voxel (sample_per_voxel), 114
range_correction, 85, 103
rasterize, 104
rasterize_canopy, 32, 34, 35, 55, 58, 59, 91
rasterize_canopy (rasterize), 104
rasterize_density, 91
rasterize_density (rasterize), 104
rasterize_terrain, 34, 36–38, 91
rasterize_terrain (rasterize), 104
rbind.LAS (print.LAS), 101
read*LAS(), 77
readALSLAS (readLAS), 107
readALSLAScatalog (readLAScatalog), 109
readDAPLAS (readLAS), 107
readDAPLAScatalog (readLAScatalog), 109
readLAS, 16, 62, 63, 65, 107, 110
readLAScatalog, 62, 109
readLASheader, 110
readMSLAS (readLAS), 107
readTLSLAS (readLAS), 107
readTLSLAScatalog (readLAScatalog), 109
readUAVLAS (readLAS), 107
readUAVLAScatalog (readLAScatalog), 109
remove_lasattribute (add_attribute), 5
retrieve_flightlines (retrieve_pulses),

111
retrieve_pulses, 111, 113, 115
retrieve_scanlines (retrieve_pulses),

111
rlas::header_create(), 66
rlas::read.las, 51, 108
Roussel2020, 136
Roussel2020 (track_sensor_roussel2020),

139
rumple_index (nstdmetrics), 87

sample_homogenize, 112, 113–115
sample_maxima, 113, 113, 114, 115

sample_per_voxel, 113, 114, 115
sample_random, 113, 114, 115
segment, 115
segment_shapes, 119
segment_shapes (segment), 115
segment_snags, 122
segment_snags (segment), 115
segment_trees, 55–60
segment_trees (segment), 115
sensor (lidR-spatial-index), 77
sensor<- (lidR-spatial-index), 77
sensor_tracking, 28
sensor_tracking (deprecated), 28
set_lidr_threads, 4, 74, 118
setDTthreads, 118
shape_detection, 119
shp_hline (shape_detection), 119
shp_hplane, 116
shp_hplane (shape_detection), 119
shp_line, 116
shp_line (shape_detection), 119
shp_plane, 116
shp_plane (shape_detection), 119
shp_vline (shape_detection), 119
silva2016, 116
silva2016 (its_silva2016), 58
smooth_height, 121
snag_wing2015, 122
sor, 24
sor (noise_sor), 84
spatial indexing, 61, 63, 107, 109
spheres3d, 97
st_area, 128
st_bbox, 16, 129
st_concave_hull, 20
st_concave_hull (st_hull), 134
st_convex_hull.LAS (st_hull), 134
st_coordinates, 130
st_crs, 131
st_crs<- (st_crs), 131
st_hull, 134
st_transform, 135
st_write, 72, 73
stdmetrics, 10, 125
stdmetrics_ctrl (stdmetrics), 125
stdmetrics_i (stdmetrics), 125
stdmetrics_pulse (stdmetrics), 125
stdmetrics_rn (stdmetrics), 125



148 INDEX

stdmetrics_z (stdmetrics), 125
stdshapemetrics (stdmetrics), 125
stdtreemetrics (stdmetrics), 125
storable_coordinate_range

(las_utilities), 70
summary.LAS (print.LAS), 101
summary.LAScatalog (print.LAS), 101
surface3d, 97

template_metrics, 91, 99
template_metrics (aggregate), 7
tin, 34, 85, 105
tin (dtm_tin), 38
tools (print.LAS), 101
track_sensor, 103, 136, 138, 139
track_sensor_gatziolis2019, 138
track_sensor_roussel2020, 139
tree_detection, 28
tree_detection (deprecated), 28
tree_hull, 28
tree_hulls (deprecated), 28
tree_metrics (old_spatial_packages), 90

unnormalize_height, 86
unnormalize_height (normalize), 85
unsmooth_height (smooth_height), 121
util_makeZhangParam, 48
util_makeZhangParam (gnd_pmf), 48

VCI, 10
VCI (nstdmetrics), 87
vlr (las_utilities), 70
voxel_metrics, 125
voxel_metrics (aggregate), 7
voxelize_points, 94, 140

watershed, 116
watershed (its_watershed), 59
wing2015, 116
wing2015 (snag_wing2015), 122
wkt (st_crs), 131
wkt,LAS-method (st_crs), 131
wkt,LASheader-method (st_crs), 131
wkt<- (st_crs), 131
wkt<-,LAS-method (st_crs), 131
wkt<-,LASheader-method (st_crs), 131
writeLAS, 6, 72, 141


	lidR-package
	add_attribute
	aggregate
	as
	asprs
	catalog_apply
	catalog_boundaries
	catalog_intersect
	catalog_retile
	classify
	clip
	decimate_points
	deprecated
	dsm_pitfree
	dsm_point2raster
	dsm_tin
	dtm_idw
	dtm_kriging
	dtm_tin
	engine
	engine_options
	Extract
	filters
	gnd_csf
	gnd_mcc
	gnd_pmf
	interpret_waveform
	is
	itd_lmf
	itd_manual
	its_dalponte2016
	its_li2012
	its_silva2016
	its_watershed
	LAS-class
	LAScatalog-class
	LASheader
	LASheader-class
	las_check
	las_compression
	las_utilities
	lidR-LAScatalog-drivers
	lidR-parallelism
	lidR-spatial-index
	locate_trees
	merge_spatial
	noise_ivf
	noise_sor
	normalize
	nstdmetrics
	old_spatial_packages
	pitfill_stonge2008
	plot
	plot.lasmetrics3d
	plot_3d
	plugins
	point_metrics
	print.LAS
	range_correction
	rasterize
	readLAS
	readLAScatalog
	readLASheader
	retrieve_pulses
	sample_homogenize
	sample_maxima
	sample_per_voxel
	sample_random
	segment
	set_lidr_threads
	shape_detection
	smooth_height
	snag_wing2015
	stdmetrics
	st_area
	st_bbox
	st_coordinates
	st_crs
	st_hull
	st_transform
	track_sensor
	track_sensor_gatziolis2019
	track_sensor_roussel2020
	voxelize_points
	writeLAS
	Index

