Package 'leidenbase'

Title: R and C/C++ Wrappers to Run the Leiden find_partition() Function
Description: An R to C/C++ interface that runs the Leiden community detection algorithm to find a basic partition (). It runs the equivalent of the 'leidenalg' find_partition() function, which is given in the 'leidenalg' distribution file 'leiden/src/functions.py'. This package includes the required source code files from the official 'leidenalg' distribution and functions from the R 'igraph' package. The 'leidenalg' distribution is available from <https://github.com/vtraag/leidenalg/> and the R 'igraph' package is available from <https://igraph.org/r/>. The Leiden algorithm is described in the article by Traag et al. (2019) <doi:10.1038/s41598-019-41695-z>. Leidenbase includes code from the packages: igraph version 0.9.8 with license GPL (>= 2), leidenalg version 0.8.10 with license GPL 3.
Authors: Brent Ewing [aut, cre], Vincent Traag [ctb], Gábor Csárdi [ctb], Tamás Nepusz [ctb], Szabolcs Horvat [ctb], Fabio Zanini [ctb]
Maintainer: Brent Ewing <[email protected]>
License: GPL-3
Version: 0.1.31
Built: 2024-11-25 07:00:45 UTC
Source: CRAN

Help Index


Leiden find partition community detection function

Description

R to C wrapper that runs the basic Leiden community detection algorithm, which is similar to the find_partition() function in the python Leidenalg distribution.

Usage

leiden_find_partition(
  igraph,
  partition_type = c("CPMVertexPartition", "ModularityVertexPartition",
    "RBConfigurationVertexPartition", "RBERVertexPartition",
    "SignificanceVertexPartition", "SurpriseVertexPartition"),
  initial_membership = NULL,
  edge_weights = NULL,
  node_sizes = NULL,
  seed = NULL,
  resolution_parameter = 0.1,
  num_iter = 2,
  verbose = FALSE
)

Arguments

igraph

R igraph graph.

partition_type

String partition type name. Default is CPMVertexParition.

initial_membership

Numeric vector of initial membership assignments of nodes. These are 1-based indices. Default is one community per node.

edge_weights

Numeric vector of edge weights. Default is 1.0 for all edges.

node_sizes

Numeric vector of node sizes. Default is 1 for all nodes.

seed

Numeric random number generator seed. The seed value must be either NULL for random seed values or greater than 0 for a fixed seed value. Default is NULL.

resolution_parameter

Numeric resolution parameter. The value must be greater than 0.0. Default is 0.1. The resolution_parameter is ignored for the partition_types ModularityVertexPartition, SignificanceVertexPartition, and SurpriseVertexPartition.

num_iter

Numeric number of iterations. Default is 2.

verbose

A logic flag to determine whether or not we should print run diagnostics.

Details

The Leiden algorithm is described in From Louvain to Leiden: guaranteeing well-connected communities. V. A. Traag and L. Waltman and N. J. van Eck Scientific Reports, 9(1) (2019) DOI: 10.1038/s41598-019-41695-z.

Significance is described in Significant Scales in Community Structure V. A. Traag, G. Krings, and P. Van Dooren Scientific Reports, 3(1) (2013) DOI: 10.1038/srep02930

Notes excerpted from leidenalg/src/VertexPartition.py

  • CPMVertexPartition Implements Constant Potts Model. This quality function uses a linear resolution parameter and is well-defined for both positive and negative edge weights.

  • ModularityVertexPartition Implements modularity. This quality function is well-defined only for positive edge weights.

  • RBConfigurationVertexPartition Implements Reichardt and Bornholdt’s Potts model with a configuration null model. This quality function uses a linear resolution parameter and is well-defined only for positive edge weights.

  • RBERVertexPartition Implements Reichardt and Bornholdt’s Potts model with an Erdos-Renyi null model. This quality function uses a linear resolution parameter and is well-defined only for positive edge weights.

  • SignificanceVertexPartition Implements Significance. This quality function is well-defined only for unweighted graphs.

  • SurpriseVertexPartition Implements (asymptotic) Surprise. This quality function is well-defined only for positive edge weights.

Value

A named list consisting of a numeric vector of the node community memberships (1-based indices), a numeric quality value, a numeric modularity, a numeric significance, a numeric vector of edge weights within each community, a numeric vector of edge weights from each community, a numeric vector of edge weights to each community, and total edge weight in the graph.

References

V. A. Traag, L. Waltman, N. J. van Eck (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-41695-z

Significant Scales in Community Structure V. A. Traag, G. Krings, and P. Van Dooren Scientific Reports, 3(1) (2013) DOI: 10.1038/srep02930

Examples

library(igraph)
  fpath <- system.file( 'testdata', 'igraph_n1500_edgelist.txt.gz', package = 'leidenbase' )
  zfp <- gzfile(fpath)
  igraph <- read_graph( file = zfp, format='edgelist', n=1500 )
  res <- leiden_find_partition(igraph=igraph,
                               partition_type='CPMVertexPartition',
                               resolution_parameter=1e-5)