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adjust_indices_after_remove

Adjust Indices in a List

Description

This function adjusts a list of indices after certain indices have been removed. The new indices will
point to the same elements as the original indices. If an index is removed, it will also be removed
from the indices list.

Usage

adjust_indices_after_remove(indicesList, removedIndices)
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Arguments

indicesList A list of integer vectors, each representing a set of indices.

removedIndices A vector of integers representing the indices to be removed.

Value

A list of adjusted indices. Each set of indices is adjusted separately.

AIC.ldt.estim Akaike Information Criterion

Description

This function extracts Akaike information criterion from an ldt.estim object.

Usage

## S3 method for class 'ldt.estim'
AIC(object, ..., k = NA)

Arguments

object An object of class ldt.estim

... Additional arguments.

k Unused parameter.

Value

The value of AIC for the whole system. #’ @importFrom stats AIC

BIC.ldt.estim Bayesian Information Criterion

Description

This function extracts Baysian information criterion from an ldt.estim object.

Usage

## S3 method for class 'ldt.estim'
BIC(object, ...)

Arguments

object An object of class ldt.estim

... Additional arguments.
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Value

The value of BIC for the whole system.

boxCoxTransform Box-Cox Transformation of Numeric Matrix

Description

This function applies the Box-Cox transformation to the columns of a numeric matrix.

Usage

boxCoxTransform(data, lambdas, ...)

Arguments

data A numeric matrix to be transformed.

lambdas A numeric vector, a single number, NA, or NULL indicating the lambda param-
eter(s) for the Box-Cox transformation. Use NULL for no transformation, NA for
estimating the lambda parameter for each variable, a single number for equal
lambda parameter for all variables, and a numeric vector for distinct lambda
parameters for the corresponding variables.

... additional parameters for MASS::boxcox function.

Value

data transformed data

lambdas final lambda vector used in the calculations.

Examples

data <- matrix(rnorm(40), ncol = 2)
result <- ldt:::boxCoxTransform(data, c(0.5, 0.5))
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coef.ldt.estim Extract Coefficients Matrix

Description

This function extracts coefficient matrix from an ldt.estim object.

Usage

## S3 method for class 'ldt.estim'
coef(object, equations = NULL, removeZeroRest = FALSE, ...)

Arguments

object An object of class ldt.estim

equations A number, a numeric array or a string array specifying the indices or names of
the endogenous variables in the equations. NULL means all equations.

removeZeroRest If TRUE and model is restricted, zero restrictions are removed.

... Additional arguments.

Value

If zero restrictions are not removed, it is a matrix containing the coefficients of the system. Each
column of the matrix belongs to an equation. Explanatory variables are in the rows. Otherwise,
coefficients of different equations are reported in a list.

coefs.table Create Table of Coefficients

Description

This function summarizes a list of estimated models (output of estim.? functions) and creates a
table of coefficients.

Usage

coefs.table(
estimList,
depList = NULL,
tableFun = "coef_star",
formatNumFun = NULL,
regInfo = NULL,
textFun = NULL,
textFun_sub = NULL,
textFun_max = 20,
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expList = NA,
latex = TRUE,
numFormat = "%.2f"

)

Arguments

estimList A named list where each element is output from a estim.? function, all belong-
ing to a common analysis.

depList List of endogenous variable name to be included in the columns of the table. If
NULL, everything is added.

tableFun Function with arguments coef, std, pvalue, minInColm, maxInCol for format-
ting estimated coefficients. Can also use one of the following character strings
for predefined formatting: sign, sign_star, coef, coef_star, coef_star_std.

formatNumFun Function to format numbers if tableFun uses predefined formatting. It takes
two arguments: colIndex (determines the column index) and x (determines the
value).

regInfo List of keys (such as num_eq, num_dep, ...) to determine information at bottom
of table. Use "" (empty) for empty rows. A list of available options is given in
the details section.

textFun Function to change any text in columns or rows of the table to a more informative
text. It has two arguments: text and type.

textFun_sub List for replacing special characters. If NULL, ’list(c("%", "\\%"), c("", "\\"))’ is
used.

textFun_max Maximum length for texts in the table.
expList Determines the name of the explanatory variables to insert in table. If NA, it

inserts all coefficients. If it is an integer, it insert that number of explanatory
variables in the table. It can be a list of available explanatory variables. Use ...
for empty rows.

latex If TRUE, default options are for ’latex’, otherwise, ’html’.
numFormat default formatting for the numbers.

Details

The first part of the table is the header, followed by the coefficients. At the bottom, you can insert
the following items by specifying regInfo:

• An empty character string (i.e., "") for inserting empty line.
• "sigma2" for the covariance of regression, if it is available.
• An available metric name in the row names of estimList[[...]]$metrics.

Furthermore, second argument in textFun can be:

• hname: shows that the text is a header name from the estimList elements.
• dname: shows that the text is an endogenous variable name from the columns of coefs matrix.
• rname: shows that the text is a key given in regInfo.
• ename: shows that the text is an explanatory variable name from the rows of coefs matrix.
• NULL: shows that the text is a specific code or something else.
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Value

A data frame with (formatted) requested information.

Examples

# See 'search.?' or 'estim.?' functions for some examples.

combine.search Combine a List of ldt.search Objects

Description

Combine a List of ldt.search Objects

Usage

combine.search(list, method)

Arguments

list A list of ldt.search objects

method Method in objects

Value

the combined ldtsearch object

data.berka Berka and Sochorova (1993) Dataset for Loan Default

Description

This dataset is a part of the Berka and Sochorova (1993) study, which contains information on loan
defaults. The data was generated using the code in the ’/data-raw/data-berka.R’ file.

Usage

data.berka
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Format

A list with the following items:

y A vector representing the labels. It contains 1 for default and 0 for non-default. Any observation
with default (i.e., ’default’ and ’finished with default’) is considered to be a positive.

x A matrix with explanatory variables in the columns.

w A vector with the weight of each observation. This is mathematically generated to balance the
observations.

descriptions A list that describes the column names.

Source

Berka and Sochorova (1993)

data.pcp IMF’s Primary Commodity Prices

Description

This is a subset of the IMF’s Primary Commodity Prices dataset (non-index data is omitted). The
data was generated using the code in the ’/data-raw/data-pcp.R’ file.

Usage

data.pcp

Format

A list with the following items:

data A data frame with monthly variables in the columns.

descriptions A list that describes the columns of data.

datatypes A character array that describes the type of data in the columns of data.

start A number that indicates the frequency of the first observation in data.

Source

International Commodity Prices (2023)
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data.wdi Long-run Growth from World Development Indicator Dataset

Description

This dataset is derived from the World Development Indicator (WDI) dataset. It contains informa-
tion on long-run output growth after 2006 and its potential explanatory variables before that year.
The data was generated using the code in the ’/data-raw/data-wdi.R’ file.

Usage

data.wdi

Format

A list with the following items:

y A vector representing the long-run output growth after 2006. Each element represents a country.
x A matrix with explanatory variables in the columns. Each row represents a country.
splitYear A number that indicates how y and x are calculated.
names A list of pairs that describe the code and the name of variables in y and x.

Source

World Bank (2022)

endogenous Extract Endogenous Variable(s) Data

Description

This function extracts data of a endogenous variable(s) from an estimated model.

Usage

endogenous(object, equations = NULL, ...)

Arguments

object An object of class ldt.estim.
equations A number, a numeric array or a string array specifying the indices or names of

the endogenous variables in the equations. NULL means all equations.
... Additional arguments.

Value

A data frame containing the endogenous data.
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eqList2Matrix Convert a List of Equations to a Matrix

Description

This function takes a list of equations and a data frame, and returns a matrix where the response
variables are in the first columns, and the predictor variables are in the subsequent columns.

Usage

eqList2Matrix(equations, data, addIntercept = FALSE)

Arguments

equations A formula or a list of formula objects representing the equations.

data A matrix or a data frame containing the variables in the equations.

addIntercept Logical. If TRUE, an intercept column is added after the response variables.
Default is FALSE.

Details

The function checks for duplicate response variables across equations and throws an error if any are
found. It also ensures that predictor variables are not duplicated in the final matrix.

Value

result A matrix with response variables in the first columns, predictor variables in
subsequent columns, and optionally an intercept column. The matrix does not
contain duplicate columns.

numResponse Number of response variables in the first columns.

Examples

data <- data.frame(income = c(50000, 60000, 80000, 85000, 65000),
age = c(25, 32, 47, 51, 36),
education = c(16, 18, 20, 20, 16),
savings = c(20000, 25000, 30000, 35000, 40000))

equations <- list(as.formula("income ~ age + education"),
as.formula("savings ~ age + education"))

matrix_data <- ldt:::eqList2Matrix(equations, data, addIntercept = TRUE)
print(matrix_data)
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estim.bin Estimate a Binary Choice Model

Description

Use this function to estimate a binary choice model.

Usage

estim.bin(
data,
linkFunc = c("logit", "probit"),
pcaOptionsX = NULL,
costMatrices = NULL,
optimOptions = get.options.newton(),
aucOptions = get.options.roc(),
simFixSize = 0,
simTrainFixSize = 0,
simTrainRatio = 0.75,
simSeed = 0,
weightedEval = FALSE,
simMaxConditionNumber = Inf

)

Arguments

data A list that determines data and other required information for the model search
process. Use get.data() function to generate it from a matrix or a data.frame.

linkFunc A character string that shows the probability assumption. It can be logit or
probit.

pcaOptionsX A list of options to use principal components of the x, instead of the actual
values. Set NULL to disable. Use get.options.pca() for initialization.

costMatrices A list of numeric matrices where each one determines how to score the calcu-
lated probabilities. See and use search.bin for more information and initializa-
tion.

optimOptions A list for Newton optimization options. Use get.options.newton function to get
the options.

aucOptions A list of options for AUC calculation. See and use [get.options.roc()] for
more information and initialization.

simFixSize An integer that determines the number of out-of-sample simulations. Use zero
to disable the simulation.

simTrainFixSize

An integer representing the number of data points in the training sample in the
out-of-sample simulation. If zero, trainRatio will be used.
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simTrainRatio A number representing the size of the training sample relative to the available
size, in the out-of-sample simulation. It is effective if trainFixSize is zero.

simSeed A seed for the random number generator. Use zero for a random value.

weightedEval If TRUE, weights will be used in evaluations.
simMaxConditionNumber

A number for the maximum value for the condition number in the simulation.

Details

As documented in chapter 12 in Greene and Hensher (2010), binary regression is a statistical tech-
nique used to estimate the probability of one of two possible outcomes for a variable such as y, i.e.,
p = P (y = 1) and q = P (y = 0). The most commonly used binary regression models are the logit
and probit models. In general, a binary regression model can be written as f(p) = z′γ + v, where
the first element in γ is the intercept and f(p) is a link function. For logit and probit models we have
f(p) = ln p

1−p and f(p) = Φ−1(p) respectively, where Φ−1 is the inverse cumulative distribution
function of the standard normal distribution.

Given an independent sample of length N , the parameters of the binary regression model are esti-
mated using maximum likelihood estimation. Assuming that some observations are more reliable
or informative than others and wi for i = 1, . . . , N reflects this fact, the likelihood function is given
by:

L(γ) =

N∏
i=1

(pi)
wiyi(1− pi)

wi(1−yi),

where pi =
exp γzi

1+exp γzi
for logit model and pi = Φ(γzi) for probit model. ldt uses feasible GLS to

calculate the initial value of the coefficients and a weighted least squares estimator to calculate the
initial variance matrix of the error terms (see page 781 in Greene (2020)). The condition number
of the estimation is calculated by multiplying 1-norm of the observed information matrix at the
maximum likelihood estimator and its inverse (e.g., see page 94 in Trefethen and Bau (1997)).
Furthermore, if x is a new observations for the explanatory variables, the predicted probability of
the positive class is estimated by pi =

exp γx
1+exp γx for logit model and pi = Φ(γx) for probit model.

Note that the focus in ldt is model uncertainty and the main purpose of exporting this method is to
show the inner calculations of the search process in search.bin function.

References

Greene WH (2020). Econometric analysis, 8th edition. Pearson Education Limited, New York.
ISBN 9781292231136.

Greene WH, Hensher DA (2010). Modeling ordered choices: A primer. Cambridge University
Press. ISBN 9780511845062, doi:10.1017/cbo9780511845062.

Trefethen LN, Bau D (1997). Numerical linear algebra. Society for Industrial and Applied Mathe-
matics. ISBN 9780898714876.

See Also

search.bin
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Examples

# Example 1 (simulation, small model):
set.seed(123)
sample <- sim.bin(3L, 100)
print(sample$coef)

data <- data.frame(sample$y, sample$x)

# Estimate using glm
fit <- glm(Y ~ X1 + X2, data = data, family = binomial())
print(fit)

# Estimate using 'ldt::estim.bin'
fit <- estim.bin(data = get.data(data = data,

equations = list(Y ~ X1 + X2)),
linkFunc = "logit")

print(fit)
plot_data <- plot(fit, type = 1)
# See 'plot.ldt.estim()' function documentation

# Example 2 (simulation, large model with PCA analysis):
sample <- sim.bin(30L, 100, probit = TRUE)
data <- data.frame(sample$y, sample$x)
colnames(data) <- c(colnames(sample$y),colnames(sample$x))
pca_options <- get.options.pca(ignoreFirst = 1, exactCount = 3)
fit <- estim.bin(data = get.data(cbind(sample$y, sample$x),

endogenous = ncol(sample$y),
addIntercept = FALSE),

linkFunc = "probit",
pcaOptionsX = pca_options)

print(fit)
plot_data <- plot(fit, type = 2)

estim.binary.model.string

Get Model Name

Description

Get Model Name

Usage

estim.binary.model.string(object)

Arguments

object A estim.bin object
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Value

model string

estim.sur Estimate a SUR Model

Description

Use this function to estimate a Seemingly Unrelated Regression model.

Usage

estim.sur(
data,
searchSigMaxIter = 0,
searchSigMaxProb = 0.1,
restriction = NULL,
pcaOptionsY = NULL,
pcaOptionsX = NULL,
simFixSize = 0,
simTrainFixSize = 0,
simTrainRatio = 0.75,
simSeed = 0,
simMaxConditionNumber = Inf

)

Arguments

data A list that determines data and other required information for the search process.
Use get.data() function to generate it from a matrix or a data.frame.

searchSigMaxIter

An integer for the maximum number of iterations in searching for significant
coefficients. Use 0 to disable the search.

searchSigMaxProb

A number for the maximum value of type I error to be used in searching for
significant coefficients. If p-value is less than this, it is interpreted as significant.

restriction A km x q matrix of restrictions where m is the number of endogenous data, k is
the number of exogenous data, and q is the number of unrestricted coefficients.

pcaOptionsY A list of options to use principal components of the endogenous data, instead of
the actual values. Set NULL to disable. Use get.options.pca() for initializa-
tion.

pcaOptionsX A list of options to use principal components of the exogenous data, instead of
the actual values. Set NULL to disable. Use get.options.pca() for initializa-
tion.

simFixSize An integer that determines the number of out-of-sample simulations. Use zero
to disable the simulation.
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simTrainFixSize

An integer representing the number of data points in the training sample in the
out-of-sample simulation. If zero, trainRatio will be used.

simTrainRatio A number representing the size of the training sample relative to the available
size, in the out-of-sample simulation. It is effective if trainFixSize is zero.

simSeed A seed for the random number generator. Use zero for a random value.
simMaxConditionNumber

A number for the maximum value for the condition number in the simulation.

Details

As described in section 10.2 in Greene (2020), this type of statistical model consists of multiple
regression equations, where each equation may have a different set of exogenous variables and
the disturbances between the equations are assumed to be correlated. The general form with m
equations can be written as yi = z′iγi + vi and E(vivj) = σ2

ij for i = 1, . . .m. Assuming that
a sample of N independent observations is available, we can stack the observations and use the
following system for estimation:

Y = XB + V, vecB = Rγ,

where the columns of Y : N × m contain the endogenous variables for each equation and the
columns of X : N × k contain the explanatory variables, with k being the number of unique
explanatory variables in all equations. Note that X combines the zi variables, and the restrictions
imposed by R : mk × q and γ : q × 1 determine a set of zero constraints on B : k ×m, resulting
in a system of equations with different sets of exogenous variables.

Imposing restrictions on the model using the R matrix is not user-friendly, but it is suitable for use
in this package, as users are not expected to specify such restrictions, but only to provide a list of
potential regressors. Note that in this package, most procedures, including significance search, are
supposed to be automated.

The unrestricted estimators (i.e., B̂ = (X ′X)−1X ′Y , and Σ̂ = (V̂ ′V̂ )/N where V̂ = Y − XB̂)
are used to initialize the feasible GLS estimators:

B̃ = RW−1R′[V̂ − 1⊗ x′]vecY, Σ̃ = (Ṽ ′Ṽ )/N,

where W = R′[V̂ −1⊗X ′X]R and Ṽ = Y −XB̃. The properties of these estimators are discussed
in proposition 5.3 in Lütkepohl (2005). See also section 10.2 in Greene (2020). The maximum
likelihood value is calculated by −N

2 (m(ln 2π + 1) + ln |Σ̃|). The condition number is calculated
by multiplying 1-norm of W and its inverse (e.g., see page 94 in Trefethen and Bau (1997)). Fur-
thermore, given an out-of-sample observation such as x : k× 1, the prediction is yf = B̃′x, and its
variance is estimated by the following formula:

varyf = Ṽ + (x′ ⊗ Im)RW−1R′(x⊗ Im).

Note that the focus in ldt is model uncertainty and for more sophisticated implementations of the
FGLS estimator, you may consider using other packages such as systemfit.

Finally, note that the main purpose of exporting this method is to show the inner calculations of the
search process in search.sur function.
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References
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See Also

search.sur

Examples

# Example 1 (simulation, small model):
set.seed(123)
sample <- sim.sur(sigma = 2L, coef = 3L, nObs = 100)
print(sample$coef)
print(sample$sigma)

data <- data.frame(sample$y, sample$x)

# Use systemfit to estimate:
exp_names <- paste0(colnames(sample$x), collapse = " + ")
fmla <- lapply(1:ncol(sample$y), function(i) as.formula(paste0("Y", i, " ~ -1 +", exp_names)))
fit <- systemfit::systemfit(fmla, data = data, method = "SUR")
print(fit)

# Use 'ldt::estim.sur' function
fit <- estim.sur(data = get.data(cbind(sample$y, sample$x),

endogenous = ncol(sample$y),
addIntercept = FALSE))

# or, by using formula list:
fit <- estim.sur(data = get.data(data = data,

equations = fmla,
addIntercept = FALSE))

print(fit)
print(fit$estimations$sigma)
plot_data <- plot(fit, equation = 1)

# Example 2 (simulation, large model with significancy search):
num_obs <- 100
sample <- sim.sur(sigma = 2L, coef = 3L, nObs = num_obs)
print(sample$coef)

# create irrelevant data:

https://doi.org/10.1007/978-3-540-27752-1
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num_x_ir <- 20
x_ir <- matrix(rnorm(num_obs * num_x_ir), ncol = num_x_ir)
data_x <- data.frame(sample$x, x_ir)
colnames(data_x) <- c(colnames(sample$x), paste0("z", 1:num_x_ir))

fit <- estim.sur(data = get.data(cbind(sample$y, data_x),
endogenous = ncol(sample$y),
addIntercept = FALSE),

searchSigMaxIter = 100,
searchSigMaxProb = 0.05)

print(fit$estimations$coefs)
# coefficient matrix, with lots of zero restrictions

# Example 3 (simulation, large model with PCA):
# by using data of the previous example
fit <- estim.sur(data = get.data(cbind(sample$y, data_x),

endogenous = ncol(sample$y),
addIntercept = FALSE),

pcaOptionsX = get.options.pca(2,4))
print(fit$estimations$coefs)
# coefficients are: intercept and the first exogenous variable and 4 PCs

estim.varma Estimate a VARMA Model

Description

Use this function to estimate a Vector Autoregressive Moving Average model.

Usage

estim.varma(
data,
params = NULL,
seasonsCount = 0,
lbfgsOptions = get.options.lbfgs(),
olsStdMultiplier = 2,
pcaOptionsY = NULL,
pcaOptionsX = NULL,
maxHorizon = 0,
simFixSize = 0,
simHorizons = NULL,
simUsePreviousEstim = FALSE,
simMaxConditionNumber = Inf

)
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Arguments

data A list that determines data and other required information for the search process.
Use get.data() function to generate it from a matrix or a data.frame.

params An integer vector that determines the values for the parameters of the VARMA
model: (p,d,q,P,D,Q). If NULL, c(1,0,0,0,0,0) is used.

seasonsCount An integer value representing the number of observations per unit of time.

lbfgsOptions A list containing L-BFGS optimization options. Use get.options.lbfgs function
for initialization.

olsStdMultiplier

A number used as a multiplier for the standard deviation of OLS, used for re-
stricting maximum likelihood estimation.

pcaOptionsY A list of options to use principal components of y, instead of the actual values.
Set to NULL to disable. Use get.options.pca() for initialization.

pcaOptionsX A list of options to use principal components of x, instead of the actual values.
Set to NULL to disable. Use get.options.pca() for initialization.

maxHorizon An integer representing the maximum prediction horizon. Set to zero to disable
prediction.

simFixSize An integer that determines the number of out-of-sample simulations. Use zero
to disable simulation.

simHorizons An integer vector representing the prediction horizons to be used in out-of-
sample simulations. See also get.search.metrics().

simUsePreviousEstim

If TRUE, parameters are initialized only in the first step of the simulation. The
initial values of the n-th simulation (with one more observation) are the estima-
tions from the previous step.

simMaxConditionNumber

A number representing the maximum value for the condition number in simula-
tion.

Details

The VARMA model can be used to analyze multivariate time series data with seasonal or non-
seasonal patterns. According to Lütkepohl (2005), it considers interdependencies between the se-
ries, making it a powerful tool for prediction. The specification of this model is given by:

∆d∆D
s yt = c+

p∑
i=1

Aiyt−i +

q∑
i=1

Biϵt−i + Cxt +

P∑
i=1

Aisyt−is +

Q∑
i=1

Bisvt−is + vt,

where yt : m×1 is the vector of endogenous variables, xt : k×1 is the vector exogenous variables,
s is the number of seasons and (p, d, q, P,D,Q) determines the lag structure of the model. Further-
more, c, C,Ai and Bi for all available i determines the model’s parameters. vt is the disturbance
vector and is contemporaneously correlated between different equations, i.e., E(vtv

′
t) = Σ. Given

a sample of size T , the model can be estimated using maximum likelihood estimation. However, to
ensure identifiability, it is necessary to impose additional constraints on the parameters (see chap-
ter 12 in Lütkepohl (2005)). In this function, diagonal MA equation form is used (see Dufour and
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Pelletier (2022)). In this function, the feasible GLS estimator is used to initialize the maximum like-
lihood, and the OLS estimator is used to calculate the initial value of the variance matrix of the error
term. The condition number is calculated similar to the other models (see estim.sur or e.g., page
94 in Trefethen and Bau (1997)). Furthermore, given a prediction horizon and required exogenous
data, prediction is performed in a recursive schema, in which the actual estimated errors are used
if available and zero otherwise. The variance of the predictions is also calculated recursively. Note
that this function does not incorporate the coefficients uncertainty in calculation of the variance (see
section 3.5 in Lütkepohl (2005)).

Finally, note that the main purpose of exporting this method is to show the inner calculations of the
search process in search.varma function.

Value

A nested list with the following items:

counts Information about different aspects of the estimation such as the number of ob-
servation, number of exogenous variables, etc.

estimations Estimated coefficients, standard errors, z-statistics, p-values, etc.

metrics Value of different goodness of fit and out-of-sample performance metrics.

prediction Information on the predicted values.

simulation Information on the simulations.

info Some other general information.

References

Dufour J, Pelletier D (2022). “Practical methods for modeling weak VARMA processes: Identi-
fication, estimation and specification with a macroeconomic application.” Journal of Business &
Economic Statistics, 40(3), 1140–1152. doi:10.1080/07350015.2021.1904960.

Lütkepohl H (2005). New introduction to multiple time series analysis. Springer, Berlin. ISBN
3540401725, doi:10.1007/9783540277521.

Trefethen LN, Bau D (1997). Numerical linear algebra. Society for Industrial and Applied Mathe-
matics. ISBN 9780898714876.

See Also

search.varma

Examples

# Example 1 (simulation, ARMA):
num_eq <- 1L
num_ar <- 2L
num_ma <- 1L
num_exo <- 1L
sample <- sim.varma(num_eq, arList = num_ar, maList = num_ma, exoCoef = num_exo, nObs = 110)
# estimate:

https://doi.org/10.1080/07350015.2021.1904960
https://doi.org/10.1007/978-3-540-27752-1
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fit <- estim.varma(data = get.data(cbind(sample$y, sample$x)[1:100,],
endogenous = num_eq,
newData = sample$x[101:110,, drop=FALSE]),

params = c(num_ar, 0, num_ma, 0, 0, 0),
maxHorizon = 10,
simFixSize = 5,
simHorizons = c(1:10))

print(fit)

pred <- predict(fit, actualCount = 10)
plot(pred, simMetric = "mape")

# split coefficient matrix:
get.varma.params(fit$estimations$coefs, numAR = num_ar, numMA = num_ma, numExo = num_exo)

# Example 2 (simulation, VARMA):
num_eq <- 3L
num_ar <- 2L
num_ma <- 1L
num_ma <- 1L
num_exo <- 2L
sample <- sim.varma(num_eq, arList = num_ar, maList = num_ma, exoCoef = num_exo, nObs = 110)
# estimate:
fit <- estim.varma(data = get.data(cbind(sample$y, sample$x)[1:100,],

endogenous = num_eq,
newData = sample$x[101:110,]),

params = c(num_ar, 0, num_ma, 0, 0, 0),
maxHorizon = 10,
simFixSize = 5,
simHorizons = c(1:10))

pred <- predict(fit, actualCount = 10)
plot(pred, simMetric = "mape")

# split coefficient matrix:
get.varma.params(fit$estimations$coefs, numAR = num_ar, numMA = num_ma, numExo = num_exo)

estim.varma.model.string

Get the Specification of an ldt.estim.varma Model

Description

Use this function to get the name of a VARMA model, such that: If It is multivariate, it will be VAR,
otherwise AR; If moving average terms are present, it will be ARMA or VARMA; If it is seasonal,
it will be S-ARMA or S-VARMA; If it is integrated, it will be S-ARMA (D=?,d=?); ..., and any
possible combination. Parameters will be reported in parenthesis after the name of the model.

Usage

estim.varma.model.string(obj)
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Arguments

obj AN object of class ldt.estim.varma.

Value

A character string representing the specification of the model.

exogenous Extract Exogenous Variable(s) Data

Description

This function extracts data of an exogenous variable(s) in an equation from an estimated model. It
takes zero restrictions imposed into account.

Usage

exogenous(object, equation = 1, ...)

Arguments

object An object of class ldt.estim.

equation A number or a string specifying the equation with exogenous data.

... Additional arguments.

Value

A matrix containing the exogenous data.

fan.plot Fan Plot Function

Description

This function creates a fan plot.
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Usage

fan.plot(
data,
dist = "normal",
lambda = NA,
quantiles = c(0.05, 0.1, 0.25, 0.75, 0.9, 0.95),
gradient = FALSE,
ylimSuggest = c(NA, NA),
ylimExpand = 0.1,
newPlot = TRUE,
boundColor = "blue",
plotArgs = list(),
actualArgs = list(),
medianArgs = list(),
polygonArgs = list(border = NA)

)

Arguments

data A matrix where columns represent the parameters of distributions. E.g., for
normal distribution, the columns will be mean and variance. The first rows can
be actual values given in the first column.

dist A string indicating the type of distribution. Currently, it can be either "normal"
or "log-normal". Default is "normal".

lambda A numeric value for Box-Cox transformation. If NA, no transformation is ap-
plied. Default is NULL.

quantiles A numeric vector of quantiles for shading. Default is c(0.05, 0.1, 0.25, 0.75, 0.9,
0.95).

gradient A logical value indicating whether to create a gradient fan plot. If FALSE, a
standard fan plot is created. Default is FALSE.

ylimSuggest A numeric vector of length 2 indicating the suggested y-axis limits. Use NA for
automatic calculation. Default is c(NA, NA).

ylimExpand A numeric value indicating the proportion to expand the y-axis limits. Default
is 0.1.

newPlot A logical value indicating whether to create a new plot. If FALSE, the fan plot
is added to the existing plot. Default is TRUE.

boundColor A string indicating the color of the boundary of the fan plot. Default is "blue".

plotArgs A list of additional arguments passed to the plot function when creating a new
plot.

actualArgs A list of additional arguments passed to the lines function when plotting actual
values.

medianArgs A list of additional arguments passed to the lines function when plotting median
values.

polygonArgs A list of additional arguments passed to the polygon function when creating the
fan plot.
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Value

This function does not return a value but creates a fan plot as a side effect.

fitted.ldt.estim Extract Fitted Data

Description

This function calculates and returns fitted values for an ldt.estim object.

Usage

## S3 method for class 'ldt.estim'
fitted(object, equations = NULL, ...)

Arguments

object An object of class ldt.estim.

equations A number, a numeric array or a string array specifying the equations with resid-
ual data. If NULL, residuals in all equations are returned.

... Additional arguments.

Value

A matrix containing the exogenous data.

get.combinations Define Combinations for Search Process

Description

This function defines a structure for a two-level nested loop used in a model search (or screening)
process. The outer loop is defined by a vector of sizes and all the combinations of the variables
are generated automatically. The inner loop is defined by a list of predefined combinations of the
variables. Each variable can belong to either endogenous or exogenous variables based on their
usage.
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Usage

get.combinations(
sizes = c(1),
partitions = NULL,
numFixPartitions = 0,
innerGroups = list(c(1)),
numTargets = 1,
stepsNumVariables = c(NA),
stepsFixedNames = NULL,
stepsSavePre = NULL

)

Arguments

sizes A numeric vector or a list of numeric vectors that determines the sizes of outer
loop combinations. For example, if the outer loop belongs to the endogenous
variables, c(1, 2) means all models with 1 and 2 equations. If the outer loop
belongs to exogenous variables, c(1,2) means all regressions with 1 and 2 ex-
ogenous variables. It can also be a list of numeric vectors for step-wise search.
Each vector determines the size of the models in a step. In the next step, a subset
of potential variables is selected by using stepsNumVariables argument.

partitions A list of numeric vectors or character vectors that partitions the outer loop vari-
ables. No model is estimated with two variables from the same partition.

numFixPartitions

A single number that determines the number of partitions at the beginning of
partitions to be included in all models.

innerGroups A list of numeric vectors or character vectors that determines different combina-
tions of the variables for the inner loop. For example, if the inner loop belongs
to exogenous data, list(c(1), c(1, 2)) means estimating all models with just
the first exogenous variable and all models with both first and second exogenous
variables.

numTargets An integer for the number of target variables at the first columns of the data
matrix. Results of a search process are specific to these variables. A model is
not estimated if it does not contain a target variable.

stepsNumVariables

A numeric vector. If sizes is a list (i.e., a step-wise search), this vector must be
of equal length and determines the number of variables (with best performance)
in each step.

stepsFixedNames

A character vector. If sizes is a list (i.e., a step-wise search), this vector deter-
mines the name of variables to be included in all steps.

stepsSavePre A name for saving and loading progress, if sizes is a list. Each step’s result is
saved in a file (name=paste0(stepsSavePre,i)) where i is the index of the
step.
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Details

The get.combinations function in the ldt package uses a two-level nested loop to iterate over
different combinations of endogenous and exogenous variables. This is similar to running the fol-
lowing code:

for (endo in list(c(1), c(1, 2)))
for (exo in list(c(1), c(1, 2)))
Estimate a model using \code{endo} and \code{exo} indexation

However, predefining both loops is not memory efficient. Therefore, ldt uses a running algorithm
to define the outer loop. It asks for the desired size of endogenous or exogenous variables in the
model (i.e., sizes) and creates the outer groups using all possible combinations of the variables.
The partitions and numFixPartitions parameters can be used to restrict this set.

For the inner loop, you must provide the desired combination of variables (endogenous or exoge-
nous). Given m as the number of variables, you can generate all possible combinations using the
following code:

m <- 4
combinations <- unlist(lapply(1:m, function(i) {
t(combn(1:m, i, simplify = FALSE))

}), recursive = FALSE)

You can use this as the innerGroups argument. However, this might result in a large model set.

Note that in ldt, if the data matrix does not have column names, default names for the endogenous
variables are Y1, Y2, ..., and default names for the exogenous variables are X1, X2, .... See
get.data() function for more details.

Also note that ldt ensure that all possible models can be estimated with the given number of
partitions and sizes. If it’s not possible, it will stop with an error message.

Value

A list suitable for use in ldt::search.? functions. The list contains:

sizes The sizes of outer loop combinations.

partitions The partitions of outer loop variables.
numFixPartitions

The number of fixed partitions at the beginning.

innerGroups Different combinations of variables for inner loop.

numTargets The number of target variables at first columns.
stepsNumVariables

The number of variables in each step for step-wise search.
stepsFixedNames

The names of fixed variables in each step for step-wise search.

stepsSavePre The name for saving and loading progress for step-wise search.
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Examples

# Some basic examples are given in this section. However, more practical examples are available
# for the \code{search.?} functions.

# Example 1:
combinations1 <- get.combinations(sizes = c(1, 2))
# The function will generate all possible combinations of sizes 1 and 2.

# Example 2: Using partitions
combinations2 <- get.combinations(sizes = c(1, 2), partitions = list(c(1, 2), c(3, 4)))

# Here, we're specifying partitions for the variables.
# The function will generate combinations such that no model is estimated with two variables
# from the same partition.

# Example 3: Specifying inner groups
combinations3 <- get.combinations(sizes = c(1, 2), innerGroups = list(c(1), c(1, 2)))

# In this example, we're specifying different combinations of variables for the inner loop.
# For instance, \code{list(c(1), c(1, 2))} means estimating all models with just the first
# variable and all models with both first and second variables.

# Example 4: Step-wise search
combinations4 <- get.combinations(sizes = list(c(1), c(1, 2)), stepsNumVariables = c(NA, 1))

# This example demonstrates a step-wise search. In the first step (\code{sizes = c(1)}), all
# models with one variable are estimated.
# In the next step (\code{sizes = c(1, 2)}), a subset of potential variables is selected based
# on their performance in the previous step and all models with both first and second variables
# are estimated.

get.data Transform and Prepare Data for Analysis

Description

This function prepares a data matrix for analysis. It applies a Box-Cox transformation to the en-
dogenous variables, adds an intercept column, and optionally includes new rows with exogenous
data.

Usage

get.data(
data,
endogenous = 1,
equations = NULL,
weights = NULL,
lambdas = NULL,



28 get.data

newData = NULL,
addIntercept = TRUE,
...

)

Arguments

data A data.frame or a numeric matrix that serves as the primary data source.

endogenous A single number indicating the number of endogenous variables in the first
columns, or a list of names specifying the endogenous variables. The remaining
variables will be treated as exogenous.

equations A formula or a list of formula objects that represent the equations to be used
instead of endogenous. If provided, the final data will be a matrix where the
response variables are in the first columns and the predictor variables are in the
subsequent columns.

weights A numeric vector or a column matrix representing weights of observations. Not
all applications implement this parameter.

lambdas A numeric vector, a single number, NA, or NULL indicating the lambda param-
eter(s) for the Box-Cox transformation. Use NULL for no transformation, NA for
estimating the lambda parameter for each variable, a single number for an equal
lambda parameter for all variables, and a numeric vector for distinct lambda
parameters for corresponding variables.

newData A data.frame or a numeric matrix representing new data for exogenous variables.
It should have a structure similar to data, excluding endogenous or response
variables.

addIntercept A logical value indicating whether to add an intercept column to the final matrix.

... Additional parameters for the MASS::boxcox function.

Details

This function is designed to prepare a data matrix for model search (or screening) analysis. It
performs several operations to transform and structure the data appropriately.

The function first checks if the input data is a matrix or a data frame. If new data is provided, it also
checks its type. It then extracts the frequency of the first observation from the ldtf attribute of the
data, if available.

If no equations are provided, the function assumes that the endogenous variables are in the first
columns of the data. It checks if an intercept is already present and throws an error if one is
found and addIntercept is set to TRUE. It then validates the number of endogenous variables and
converts the data to a numeric matrix.

If column names are missing, they are added based on the number of endogenous and exogenous
variables. If new data is provided, it checks its structure and matches it with the exogenous part of
the original data.

If equations are provided, they are used to transform the original data into a matrix where response
variables are in the first columns and predictor variables in subsequent columns. The new data is
also transformed accordingly.
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The function then applies a Box-Cox transformation to the endogenous variables if lambda parame-
ters are provided. Weights are added if provided, and an intercept column is added if addIntercept
is set to TRUE.

Finally, the function returns a list containing all relevant information for further analysis. This
includes the final data matrix, number of endogenous and exogenous variables, number of obser-
vations in original and new data, lambda parameters used in Box-Cox transformation, and flags
indicating whether an intercept or weights were added.

Value

A list suitable for use in ldt::search.? functions. The list contains:

data The final data matrix. Endogenous variables are in the first columns, followed
by weights (if provided), then the intercept (if added), and finally the exogenous
variables.

numEndo The number of endogenous variables in the data.

numExo The number of exogenous variables in the data (including ’intercept’ if it is
added).

newX The matrix of new observations for exogenous variables.

lambdas The lambda parameters used in the Box-Cox transformation.

hasIntercept Indicates whether an intercept column is added to the final matrix.

hasWeight Indicates whether there is a weight column in the final matrix.

startFrequency Frequency of the first observation, extracted from ldtf attribute of data, if
available. This will be used in time-series analysis such as VARMA estimation.

Examples

# Example 1:
data <- matrix(1:24, ncol = 6)
result <- get.data(data, endogenous = 1)
print(result$data)

# Example 2:
data <- matrix(1:24, ncol = 6,

dimnames = list(NULL,c("V1", "V2", "V3", "V4", "V5", "V6")))
result <- get.data(data, endogenous = c("V6", "V1"))
print(result$data)

# Example 3:
data <- data.frame(matrix(1:24, ncol = 6))
colnames(data) <- c("X1", "X2", "Y2", "X3", "Y1", "X4")
equations <- list(

Y1 ~ X2 + X1,
Y2 ~ X4 + X3)

result <- get.data(data, equations = equations)
print(result$data)
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get.data.append.newX Append newX to data$data matrix.

Description

Use it for VARMA estimation

Usage

get.data.append.newX(data, maxHorizon = NA)

Arguments

data The output of get.data function.

maxHorizon Number of expected new data

Value

The input data with updated data matrix

get.data.check.discrete

Check if a column is discrete

Description

For example, it checks if the endogenous variable in binary model is 0 and 1 (number of choices is
2)

Usage

get.data.check.discrete(data, colIndex = 1)

Arguments

data Output of get.data function

colIndex The index of column to be checked.

Value

Number of choices in the model, if no error occured. This means, the maximum value for the
discrete data will be the output minus one.



get.data.check.intercept 31

get.data.check.intercept

Check for an intercept in a matrix

Description

This function checks if any column in the matrix is intercept.

Usage

get.data.check.intercept(matrix)

Arguments

matrix data matrix

Value

The index of the intercept. ’-1’ in intercept is not found.

get.data.keep.complete

Remove Rows with Missing Observations from Data

Description

Remove Rows with Missing Observations from Data

Usage

get.data.keep.complete(data, warn = TRUE)

Arguments

data Output of get.data function

warn If true, warning message about the indices of the removed rows is shown

Value

The input data but with updated data$data and data$obsCount
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get.indexation Get Numeric Indices in a Combination

Description

This function takes the output of the get.combinations function and a numeric matrix with given
column names. It converts all character vectors in innerGroups or partitions to numeric vectors
based on the index of the columns.

Usage

get.indexation(combinations, data, isInnerExogenous)

Arguments

combinations A list returned by the get.combinations function.

data A list returned by get.data function.
isInnerExogenous

Use TRUE if outer loop is defined over the endogenous variables and FALSE if it
is for exogenous.

Value

A list similar to the input combinations, but with all character vectors in innerGroups or partitions
converted to numeric vectors based on the index of the columns in the data matrix. It sums the ex-
ogenous indexes with the number of endogenous variables and returns zero-based indexation for C
code.

get.options.lbfgs Get Options for L-BFGS Optimization

Description

Use this function to get optimization options in estim.varma or search.varma functions.

Usage

get.options.lbfgs(
maxIterations = 100,
factor = 1e+07,
projectedGradientTol = 0,
maxCorrections = 5

)
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Arguments

maxIterations A positive integer representing the maximum number of iterations.

factor A number that determines the condition for stopping the iterations. Use, for
example, 1e12 for low accuracy, 1e7 (default) for moderate accuracy, and 1e1
for extremely high accuracy. The default is 1e7.

projectedGradientTol

A number used to stop the iteration using the projected gradient. The default is
zero.

maxCorrections The maximum number of variable metric corrections allowed in the limited
memory matrix. The default is 5.

Value

A list with the given options.

get.options.neldermead

Options for Nelder-Mead Optimization

Description

Use this function to get the required options when Nelder-Mead optimization is needed such as
s.gld.from.moments function.

Usage

get.options.neldermead(
maxIterations = 100,
tolerance = 1e-06,
reflection = 1,
expansion = 2,
contraction = 0.5,
shrink = 1

)

Arguments

maxIterations (int) Maximum number of iterations.

tolerance A small number to determine the convergence. The algorithm terminates when
the difference between the best and worst points in the simplex is less than this
value.

reflection A number for reflection coefficient. It controls how far the worst point is re-
flected through the centroid of the remaining points.

expansion A number that determines the expansion coefficient. It controls how far the
reflected point is expanded along the line connecting it to the centroid.
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contraction A number that determines the contraction coefficient. It controls how far the
worst point is contracted towards the centroid.

shrink A number that determines the shrink coefficient. It controls how much the sim-
plex is shrunk towards the best point when all other moves are rejected.

Value

A list with the given options.

get.options.newton Get Options for Newton Optimization

Description

Use this function to get optimization options in estim.bin or search.bin functions.

Usage

get.options.newton(
maxIterations = 100,
functionTol = 1e-04,
gradientTol = 0,
useLineSearch = TRUE

)

Arguments

maxIterations An integer representing the maximum number of iterations.

functionTol A small value used to test the convergence of the objective function.

gradientTol A small value used to test the convergence of the gradient.

useLineSearch If TRUE, line search is used.

Value

A list with the given options.
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get.options.pca Get Options for PCA

Description

Use this function to get PCA options in estim.bin, estim.sur, estim.varma, or s.pca functions.

Usage

get.options.pca(ignoreFirst = 1, exactCount = 0, cutoffRate = 0.8, max = 1000)

Arguments

ignoreFirst A number representing the number of variables to exclude at the beginning of
data matrices (such as intercept) from PCA.

exactCount A number that determines the number of components to be used. If zero, the
number of components is determined by the cutoffRate.

cutoffRate A number between 0 and 1 that determines the cutoff rate for the cumulative
variance ratio in order to determine the number of PCA components. It is not
used if exactCount is positive.

max A number representing the maximum number of components when cutoffRate
is used.

Details

See details of s.pca function.

Value

A list with the given options.

See Also

estim.bin, estim.sur, estim.varma, s.pca

Examples

# See 's.pca' function.
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get.options.roc Get Options for ROC and AUC Calculations

Description

Use this function to get the required options for search.bin, estim.bin, or s.roc functions.

Usage

get.options.roc(
lowerThreshold = 0,
upperThreshold = 1,
epsilon = 1e-12,
pessimistic = FALSE,
costs = NULL,
costMatrix = NULL

)

Arguments

lowerThreshold A number representing the lower bound for calculating partial AUC.

upperThreshold A number representing the upper bound for calculating partial AUC.

epsilon A small number used to ignore small floating point differences when comparing
scores.

pessimistic If TRUE, sequences of equally scored instances are treated differently and a pes-
simistic metric is calculated (see Fawcett (2006) An introduction to ROC analy-
sis, fig. 6).

costs The cost of each observation. If NULL, the cost of all observations will be 1.

costMatrix A 2x2 cost matrix in which: (1,1) is the cost of TN, (2,2) is the cost of TP, (1,2)
is the cost of FP and (2,1) is the cost of FN. The first column is multiplied by the
corresponding value in the costs vector (see Fawcett (2006), ROC graphs with
instance-varying costs).

Details

See details of s.roc function.

Value

A list with the given options.

See Also

search.bin, estim.bin, s.roc
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Examples

# See 's.roc' function.

get.search.items Specify the Purpose of the Model Search Process

Description

Use this function to list the required items and information that should be saved and retrieved from
the model set search process in search.? functions.

Usage

get.search.items(
model = TRUE,
type1 = FALSE,
type2 = FALSE,
bestK = 1,
all = FALSE,
inclusion = FALSE,
cdfs = numeric(0),
extremeMultiplier = 0,
mixture4 = FALSE

)

Arguments

model If TRUE, some information about the models is saved.

type1 If TRUE and implemented, extra information is saved. This can be the coefficients
in the SUR search or predictions in the VARMA search.

type2 If TRUE and implemented, extra information is saved. This is similar to type1.
It is reserved for future updates.

bestK The number of best items to be saved in model, type1, or type2 information.

all If TRUE, all models’ information is saved.

inclusion If TRUE, inclusion weights are saved.

cdfs Weighted average of the CDFs at each given point is calculated (for type1 and
type2 cases).

extremeMultiplier

A number that determines the multiplier in the extreme bound analysis (for
type1 and type2 cases). Use zero to disable it.

mixture4 If TRUE, the first four moments of the average distributions are calculated in
type1 and type2 cases.
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Value

A list with the given options.

get.search.metrics Get Options for Measuring Performance

Description

Use this function to get measuring options in search.? functions.

Usage

get.search.metrics(
typesIn = c("aic"),
typesOut = NULL,
simFixSize = 2,
trainRatio = 0.75,
trainFixSize = 0,
seed = 0,
horizons = c(1L),
weightedEval = FALSE,
minMetrics = list(aic = 0)

)

Arguments

typesIn A list of evaluation metrics when the model is estimated using all available data.
It can be aic, sic, frequencyCostIn, brierIn, or aucIn. NULL means no
metric.

typesOut A list of evaluation metrics in a out-of-sample simulation. It can be sign,
direction, rmse, rmspe, mae, mape, crps, frequencyCostOut, brierOut, or
aucOut. Null means no metric.

simFixSize An integer that determines the number of out-of-sample simulations. Use zero
to disable the simulation.

trainRatio A number representing the size of the training sample relative to the available
size, in the out-of-sample simulation. It is effective if trainFixSize is zero.

trainFixSize An integer representing the number of data points in the training sample in the
out-of-sample simulation. If zero, trainRatio will be used.

seed A seed for the random number generator. Use zero for a random value. It can
be negative to get reproducible results between the search.? function and the
estim.? function.

horizons An array of integers representing the prediction horizons to be used in out-of-
sample simulations, if the model supports time-series prediction. If NULL, c(1)
is used.
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weightedEval If TRUE, weights are used in evaluating discrete-choice models.

minMetrics a list of minimum values for adjusting the weights when applying the AIC
weight formula. It can contain the following members: aic, sic, brierIn,
rmse, rmspe, mae, mape, crps, brierOut. Members can be numeric vectors for
specifying a value for each target variable. See details.

Details

An important aspect of ldt is model evaluation during the screening process. This involves consid-
ering both in-sample and out-of-sample evaluation metrics. In-sample metrics are computed using
data that was used in the estimation process, while out-of-sample metrics are computed using new
data. These metrics are well documented in the literature, and I will provide an overview of the
main computational aspects and relevant references.

Value

A list with the given options.

AIC and SIC

According to Burnham and Anderson (2002) or Greene (2020), AIC and SIC are two commonly
used metrics for comparing and choosing among different models with the same endogenous vari-
able(s). Given L∗ as the maximum value of the likelihood function in a regression analysis with
k estimated parameters and N observations, AIC is calculated by 2k − 2 lnL∗ and SIC is calcu-
lated by k lnN − 2 lnL∗. SIC includes a stronger penalty for increasing the number of estimated
parameters in the model.

These metrics can be converted into weights using the formula w = exp(−0.5x), where x is the
value of the metric. When divided by the sum of all weights, w can be interpreted as the probability
that a given model is the best model among all members of the model set (see section 2.9 in Burn-
ham and Anderson (2002)). Compared to the Burnham and Anderson (2002) discussion and since
f(x) = exp(−0.5x) transformation is invariant to translation, the minimum AIC part is removed in
the screening process. This is an important property because it enables the use of running statistics
and parallel computation.

MSE, RMSE, MSPE, and RMSPE

According to Hyndman and Athanasopoulos (2018), MSE and RMSE are two commonly used
scale-dependent metrics, while MAPE is a commonly used unit-free metric. ldt also calculates the
less common RMSPE metric. If there are n predictions and ei = yi − ŷi for i = 1 . . . n is the
prediction error, i.e., the distance between actual values (yi) and predictions (ŷi), these metrics can
be expressed analytically by the following formulas:

MAE =
1

n

n∑
i=1

|ei|

MAPE =
1

n

n∑
i=1

∣∣∣∣eiyi
∣∣∣∣× 100
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RMSE =

√√√√ 1

n

n∑
i=1

(ei)2

RMSPE =

√√√√ 1

n

n∑
i=1

(
ei
yi

)2

× 100

Note that, first MAPE and RMSPE are not defined if yi is zero and may not be meaningful or
useful if it is near zero or negative. Second, although these metrics cannot be directly interpreted as
weights, they are treated in a manner similar to AIC in the ldt package.. Third, caution is required
when target variables are transformed, for example to a logarithmic scale. ldt provides an option
to transform the data back when calculating these metrics.

Brier

The Brier score measures the accuracy of probabilistic predictions for binary outcomes. It is calcu-
lated as the mean squared difference between the actual values (yi) and the predicted probabilities
(pi). Assuming that there are n predictions, its formula is given by:

Brier =
∑

(yi−p̂i)
2

n ,

where pi is the predicted probability that the i-th observation is positive. The value of this metric
ranges from 0 to 1, with lower values indicating better predictions. In the screening process in ldt,
both in-sample and out-of-sample observations can be used to calculate this metric. Although this
metric cannot be directly interpreted as a weight, it is treated in a manner similar to AIC.

AUC

As described by Fawcett (2006), the receiver operating characteristic curve (ROC) plots the true pos-
itive rate (sensitivity) against the false positive rate (1-specificity) at different classification thresh-
olds. The area under this curve is known as the AUC. Its value ranges from 0 to 1, with higher
values indicating that the model is better at distinguishing between the two classes Fawcett (2006,
2006). In the screening process in ldt, both in-sample and out-of-sample observations can be used
to calculate this metric. There is also an option to calculate the pessimistic or an instance-varying
costs version of this metric. Although this metric does not have a direct interpretation as weights,
in ldt its value is considered as weight.

CRPS

According to Gneiting et al. (2005), the continuous ranked probability score (CRPS) is a metric
used to measure the accuracy of probabilistic predictions. Unlike MAE, RMSE, etc., CRPS takes
into account the entire distribution of the prediction, rather than focusing on a specific point of the
probability distribution. For n normally distributed predictions with mean ŷi and variance var(ŷi),
this metric can be expressed analytically as:

CRPS =
∑n

i=1 σ
(

1√
π
− 2Φ(zi) + zi(2ϕ(zi)− 1)

)
,

where zi = (yi − ŷi)/
√

var(ŷi), and Φ and ϕ are CDF and density functions of standard normal
distribution. Although this metric cannot be directly interpreted as a weight, it is treated in a manner
similar to AIC in the ldt package.
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Other metrics

There are some other metrics in ldt. One is “directional prediction accuracy”, which is calculated
as the proportion of predictions that correctly predict the direction of change relative to the previous
observation. Its value ranges from 0 to 1, with higher values indicating better performance of the
model. Its value is used as the weight of a model. Note that this is applicable only to time-series
data.

Another similar metric is “sign prediction accuracy”, which reports the proportion of predictions
that have the same sign as the actual values. It is calculated as the number of correct sign predictions
divided by the total number of predictions. Its value ranges from 0 to 1, with higher values indicating
better performance of the model. Its value is used as the weight of a model.
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get.search.modelchecks

Set Options to Exclude a Model Subset

Description

Use this function to determine which models should be skipped in the search process.

Usage

get.search.modelchecks(
estimation = TRUE,
maxConditionNumber = Inf,
minObsCount = 0,
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minDof = 0,
minOutSim = 0,
minR2 = -Inf,
maxAic = Inf,
maxSic = Inf,
prediction = FALSE,
predictionBound = 10

)

Arguments

estimation If TRUE, the model is estimated with all data and is ignored if this estimation
fails. If FALSE, you might get a ’best model’ that cannot be estimated.

maxConditionNumber

A number used to ignore an estimation that has a high condition number (if
implemented in the search).

minObsCount An integer used to ignore an estimation where the number of observations (after
dealing with NA) is low. Use 0 to disable this check.

minDof An integer used to ignore an estimation with low degrees of freedom (equation-
wise). Use 0 to disable this check.

minOutSim An integer used to ignore estimations with a low number of out-of-sample sim-
ulations (if implemented in the search).

minR2 A number used to ignore estimations with a low value for ’R2’ (if implemented
in the search).

maxAic A number used to ignore estimations with a high ’AIC’ (if implemented in the
search).

maxSic A number used to ignore estimations with a high ’SIC’ (if implemented in the
search).

prediction If TRUE, model data is predicted given all data and is ignored if this process fails.
If FALSE, you might get a ’best model’ that cannot be used for prediction.

predictionBound

A list containing two matrices: lower and upper, which represent the bounds
for checking predictions. Each column corresponds to a target variable, and
each row corresponds to a horizon. If the data has been transformed using a
Box-Cox transformation, these bounds will be compared with the transformed
data. Alternatively, predictionBound can be a numeric value. In this case, the
bounds are created by creating a confidence interval, assuming normality and
using mean and standard errors of the growth rates. Any model that produces
a prediction outside of these bounds will be ignored. To disable this check, set
predictionBound to NULL.

Value

A list with the given options.
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get.search.options Get Extra Options for Model Search Process

Description

Use this function to determine how the model search is performed.

Usage

get.search.options(parallel = FALSE, reportInterval = 0)

Arguments

parallel If TRUE, a parallel search algorithm is used. This generally changes the speed
and memory usage.

reportInterval An integer representing the time interval (in seconds) for reporting progress (if
any significant change has occurred). Set to zero to disable reporting.

Value

A list with the given options.

get.varma.params Split VARMA parameter into its Components

Description

Use this function to extract AR, MA, intercept, and exogenous coefficients from the VARMA esti-
mation.

Usage

get.varma.params(
coef,
numAR = 1,
numMA = 0,
numExo = 0,
intercept = TRUE,
numAR_s = 0,
numMA_s = 0,
numSeasons = 1

)
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Arguments

coef A matrix of coefficients with dimensions numEq x numAR * numEq + numMA *
numEq + numExo + ifelse(intercept, 1, 0).

numAR A non-negative integer scalar specifying the number of AR lags.

numMA A non-negative integer scalar specifying the number of MA lags.

numExo A non-negative integer scalar specifying the number of exogenous variables.

intercept A logical scalar indicating whether an intercept is included in the model.

numAR_s A non-negative integer scalar specifying the number of seasonal AR lags.

numMA_s A non-negative integer scalar specifying the number of seasonal MA lags.

numSeasons A non-negative integer scalar specifying the number of seasons.

Value

A list with the following items:

• arList: A list containing the AR coefficients for each lag.

• intercept: A numeric vector of length numEq containing the intercept, or NULL if intercept
= FALSE.

• exoCoef: A matrix of dimensions numEq x numExo containing the exogenous coefficients, or
NULL if numExo = 0.

• maList: A list containing the MA coefficients for each lag.

See Also

estim.varma

Examples

# see 'search.varma' or 'estim.varma' functions.

logLik.ldt.estim Extract Maximum Log-Likelihood

Description

This function extracts maximum log-likelihood from an ldt.estim object.

Usage

## S3 method for class 'ldt.estim'
logLik(object, ...)
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Arguments

object An object of class ldt.estim

... Additional arguments.

Value

The value of the maximum log-likelihood for the whole system.

plot.ldt.estim Plot Diagnostics for ldt.estim Object

Description

This function creates diagnostic plots for estimated regression models of ldt.estim class.

Usage

## S3 method for class 'ldt.estim'
plot(
x,
equation = 1,
type = c(1, 2, 3, 4, 5, 6),
ablineArgs = list(col = "lightblue"),
textArgs = list(pos = 3, cex = 0.7, col = "red"),
...

)

Arguments

x An object of type ldt.estim.

equation A number or a name of endogenous variable specifying an equation in the esti-
mated system.

type One of these numbers: 1, 2, 3, or 5. See which argument in plot.lm documenta-
tion.

ablineArgs A list of additional arguments to customize the "text" function used for labeling
influential observations.

textArgs A list of additional arguments to customize the "abline" function.

... additional arguments to be passed to "plot" (or "qqnorm" function for type=2,
or "barplot" for type=4).
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Details

This function is designed to be similar to plot.lm function. However, note that an ldt.estim object
might be a system estimation.

Some plots use standardized residuals. Note that they are not calculated in a system estimation
context. See residuals.ldt.estim documentation for a description. Cook’s distance is also calculated
equation-wise. Its formula is:

d =
r2i

k ∗ var(r)
hii

(1− hii)2

where ri and hii are residual and leverage in i-th observation, respectively. var(r) is variance of
residuals and k is the number of estimated coefficients in the equation. Note that Cook’s distance is
not implemented for weighted observations.

Value

This function creates diagnostic plots for regression models. It also returns a list with x and y data
used in plot functions.

plot.ldt.varma.prediction

Plot Predictions from a VARMA model

Description

Plot Predictions from a VARMA model

Usage

## S3 method for class 'ldt.varma.prediction'
plot(
x,
variable = 1,
xAxisArgs = list(),
fanPlotArgs = list(),
simMetric = NULL,
simLineArgs = list(),
simPointsArgs = list(),
...

)

Arguments

x An object of class ldt.varma.prediction, which is the output of predict.ldt.estim.varma
function.

variable Index or name of the variable to be plotted.

xAxisArgs Arguments to pass to axis function
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fanPlotArgs Additional arguments for the fan.plot function. lambda is added automatically.

simMetric Name of metric to plot its details, provided that simulation details are available.
If NULL, simulation details are not plotted.

simLineArgs Arguments to pass to line function for simulation lines (if available).

simPointsArgs Arguments to pass to points function for simulation points (if available).

... Additional parameters (unused)

Value

This function does not return a value.

predict.ldt.estim Extract Prediction Results

Description

This function extracts predicted mean and its variance from an ldt.estim object. new data must
be provided while estimating the model.

Usage

## S3 method for class 'ldt.estim'
predict(object, ...)

Arguments

object An object of class ldt.estim

... Additional arguments.

Value

A list containing the predicted (projected) means and variances.
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predict.ldt.estim.varma

Extract Prediction Results from a ldt.estim.varma Object

Description

This function extracts predicted mean and its variance from an ldt.estim.varma object. new data
must be provided while estimating the model.

Usage

## S3 method for class 'ldt.estim.varma'
predict(object, actualCount = 0, startFrequency = NULL, ...)

Arguments

object An object of class ldt.estim.varma

actualCount Number of actual observations to be included in the result.

startFrequency Frequency of the first observation used in the estimation. This is object of class
ldtf.

... Additional arguments.

Details

If estimation data undergoes a Box-Cox transformation, the resulting values will not be transformed
accordingly.

Value

An object of class ldt.varma.prediction, which is a list with predicted means and (if available)
variances.

print.ldt.estim Prints an ldt.estim object

Description

Prints the main results in an ldt.estim object.

Usage

## S3 method for class 'ldt.estim'
print(x, ...)
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Arguments

x An object of class ldt.estim

... Additional arguments

Details

An ldt.search object is an output from one of the search.? functions (see search.sur, search.varma,
or search.bin).

Value

This function has no output.

print.ldt.estim.projection

Prints an ldt.estim.projection object

Description

An ldt.estim.projection object is the output of predict.ldt.estim() function.

Usage

## S3 method for class 'ldt.estim.projection'
print(x, ...)

Arguments

x An object of class ldt.estim.projection

... Additional arguments

Value

This function has no output.
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print.ldt.list Prints an ldt.list object

Description

Prints an ldt.list object

Usage

## S3 method for class 'ldt.list'
print(x, ...)

Arguments

x An object of class ldt.list
... Additional arguments

Value

This function has no output.

print.ldt.search Prints an ldt.search object

Description

Prints the main results in an ldt.search object. This includes information about the first best
models and significant coefficients.

Usage

## S3 method for class 'ldt.search'
print(x, ...)

Arguments

x An object of class ldt.search
... Additional arguments

Details

An ldt.search object is an output from one of the search.? functions (see search.sur, search.varma,
or search.bin).

Value

This function has no output.
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print.ldt.varma.prediction

Prints an ldt.varma.prediction object

Description

An ldt.varma.prediction object is the output of predict.ldt.estim.varma() function.

Usage

## S3 method for class 'ldt.varma.prediction'
print(x, ...)

Arguments

x An object of class ldt.varma.prediction

... Additional arguments

Value

This function has no output.

rand.mnormal Generate Random Samples from a Multivariate Normal Distribution

Description

Use this function to get random samples from a multivariate normal distribution.

Usage

rand.mnormal(n, mu = NULL, sigma = NULL, p = NULL, byRow = TRUE)

Arguments

n The number of samples to generate.

mu The mean vector of the distribution. If NULL, it defaults to a zero vector of length
p. If NA, it is set to a random vector.

sigma The covariance matrix of the distribution. If NULL, it defaults to an identity
matrix of size p x p. If NA, it is set to a random positive definite matrix.

p The dimension of the distribution, if both mu and sigma are NA or NULL.

byRow If TRUE, generated samples are stored in the rows. Otherwise, they are stored in
the columns.
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Value

A list containing the generated sample (p x n), mu, and sigma.

Examples

s1 <- rand.mnormal(10, mu = c(0, 0), sigma = matrix(c(1, 0.5, 0.5, 1), ncol = 2))
s2 <- rand.mnormal(10, mu = c(1,1), sigma = NA, p = 2)
s3 <- rand.mnormal(10, p = 2, byRow = FALSE) #standard normal

residuals.ldt.estim Extract Residuals Data

Description

This function returns residuals from or calculates the standardized residuals for an ldt.estim ob-
ject.

Usage

## S3 method for class 'ldt.estim'
residuals(object, equations = NULL, standardized = FALSE, pearson = TRUE, ...)

Arguments

object An object of class ldt.estim.

equations A number, a numeric array or a string array specifying the equations with resid-
ual data. If NULL, residuals in all equations are returned.

standardized If TRUE, standardized residuals are returned. See details.

pearson If TRUE, it returns (or uses) Pearson residuals for binary choice regression.

... Additional arguments.

Details

The standardized residuals have identical variance. In order to calculate the standardized residuals,
each residual is divided by s

√
wi(1− hii) where s is the standard error of residuals and hii is

the leverage of i-th observation. wi is the weight of the i-th observation if data is weighted, and
1 otherwise. Note that while the residuals are estimated in a system, the hii is calculated in a
univariate context as the i-th diagonal of X(X ′X)−1X ′ matrix, where X is the exogenous variables
in the corresponding equation.

Value

A matrix containing the residuals data.
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s.cluster.h Hierarchical Clustering

Description

This function performs hierarchical clustering on a group of variables, given their distances from
each other.

Usage

s.cluster.h(distances, linkage = "single")

Arguments

distances Lower triangle of a symmetric distance matrix (without the diagonal). This can
be the output of s.distance function.

linkage Character string specifying the method for calculating the distance in a left-right
node merge. It can be single, complete, uAverage, wAverage, or ward.

Details

The main purpose of exporting this statistics helper method is to show the inner calculations of the
package.

Value

A list with the following items:

merge An integer matrix representing the merge matrix.

height A numeric vector representing the heights.

order An integer vector representing the orders.

Examples

n <- 10
data <- data.frame(x = rnorm(n), y = rnorm(n), z = rnorm(n))
distances <- s.distance(data)
clusters <- s.cluster.h(distances)
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s.cluster.h.group Group Variables with Hierarchical Clustering

Description

This function groups the columns of a numeric matrix based on the hierarchical clustering algo-
rithm.

Usage

s.cluster.h.group(
data,
nGroups = 2,
threshold = 0,
distance = "correlation",
linkage = "single",
correlation = "pearson"

)

Arguments

data A numeric matrix with variables in the columns.
nGroups Integer value specifying the number of required groups.
threshold Numeric value specifying a threshold for omitting variables. If the distance

between two variables in a group is less than this value, the second one will be
omitted. Note that a change in the order of the columns might change the results.

distance Character string specifying how distances are calculated. It can be correlation,
absCorrelation, euclidean, manhattan, or maximum. See s.distance func-
tion.

linkage Character string specifying how distances are calculated in a left-right node
merge. It can be single, complete, uAverage, wAverage, or ward. See s.cluster.h
function.

correlation Character string specifying the type of correlation if distance is correlation. It
can be pearson or spearman. See s.distance function.

Details

The results might be different from R’s ’cutree’ function. (I don’t know how ’cutree’ works) Here
this function iterates over the nodes and whenever a split occurs, it adds a group until the required
number of groups is reached.

Value

A list with the following items:

groups A list of integer vectors representing the indexes of variables in each group.
removed An integer vector representing the indexes of removed variables.
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s.combine.stats4 Combine Mean, Variance, Skewness, and Kurtosis This function com-
bines two sets of mean, variance, skewness, and kurtosis and generates
the combined statistics.

Description

Combine Mean, Variance, Skewness, and Kurtosis This function combines two sets of mean, vari-
ance, skewness, and kurtosis and generates the combined statistics.

Usage

s.combine.stats4(list1, list2)

Arguments

list1 A list representing the first mean, variance, skewness, kurtosis, weight, and
count.

list2 A list representing the second distribution (similar to list1).

Details

Assume there are two samples with meani, variancei, skewnessi, and kurtosisi for i = 1, 2,
this function calculates the mean, variance, skewness, and kurtosis of the combined sample. It does
not need the data itself. It is based on population variance, skewness, and kurtosis and calculates
the population statistics. Note that the kurtosis is not excess kurtosis.

Value

A list similar to list1.

Examples

n <- 1000 # sample size (increase it for more accurate result)
sample1 <- rchisq(n,3)
sample2 <- rchisq(n,5)

d1 <- list(mean = mean(sample1),
variance = var(sample1),
skewness = moments::skewness(sample1),
kurtosis = moments::kurtosis(sample1),
count=length(sample1),
weight = length(sample1))

d2 <- list(mean = mean(sample2),
variance = var(sample2),
skewness = moments::skewness(sample2),
kurtosis = moments::kurtosis(sample2),
count=length(sample2),
weight = length(sample2))
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c <- s.combine.stats4(d1,d2)

# we can compare the results:
combined <- c(sample1,sample2)
mean_c = mean(combined)
variance_c = var(combined)
skewness_c = moments::skewness(combined)
kurtosis_c = moments::kurtosis(combined)

s.distance Get the Distances Between Variables

Description

This function calculates the distances between the columns of a numeric matrix.

Usage

s.distance(
data,
distance = "correlation",
correlation = "pearson",
checkNan = TRUE

)

Arguments

data A numeric matrix with variables in the columns.
distance Character string specifying the type of distance. It can be correlation, absCorrelation,

euclidean, manhattan, or maximum.
correlation Character string specifying the type of correlation if distance is correlation. It

can be pearson or spearman.
checkNan Logical value indicating whether to check for NAs (and omit them if any exist).

Details

The main purpose of exporting this statistics helper method is to show the inner calculations of the
package.

Value

A symmetric matrix (lower triangle as a vector).

Examples

n <- 10
data <- data.frame(x = rnorm(n), y = rnorm(n), z = rnorm(n))
distances <- s.distance(data)
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s.gld.density.quantile

GLD Density-Quantile Function

Description

This function calculates the densities of a Generalized Lambda Distribution (FKLM) given a vector
of probabilities.

Usage

s.gld.density.quantile(probs, p1, p2, p3, p4)

Arguments

probs A numeric vector representing the probabilities.

p1 Numeric value representing the first parameter (location) of the distribution.

p2 Numeric value representing the second parameter (scale) of the distribution.

p3 Numeric value representing the third parameter (skewness) of the distribution.

p4 Numeric value representing the fourth parameter (kurtosis) of the distribution.

Details

It is a helper statistics method in this package and is generally used to plot density function of a
GLD distribution.

Value

A numeric vector representing the densities for each probability in probs.

See Also

s.gld.quantile

Examples

# In this example we use this function and plot the density function for
# standard normal distribution:
probs <- seq(0.1,0.9,0.1)
x <- s.gld.quantile(probs, 0,1,0,0)
y <- s.gld.density.quantile(probs, 0,1,0,0)
plot(x,y)
lines(x,y)
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s.gld.from.moments Get the GLD Parameters from the moments

Description

Calculates the parameters of the generalized lambda distribution (FKML), given the first four mo-
ments of the distribution.

Usage

s.gld.from.moments(
mean = 0,
variance = 1,
skewness = 0,
excessKurtosis = 0,
type = 0,
start = NULL,
nelderMeadOptions = get.options.neldermead()

)

Arguments

mean A number for the mean of the distribution.

variance A number for the variance of the distribution.

skewness A number for the skewness of the distribution.

excessKurtosis A number for the excess kurtosis of the distribution.

type An integer to restrict the shape of the distribution. See details section.

start A numeric vector of size 2 for the starting value.
nelderMeadOptions

A list of options for Nelder-Mead algorithm. Use get.options.neldermead for
initialization.

Details

The type of the distribution is determined by one or two restrictions:

• type 0: general, no restriction

• type 1: symmetric ’type 0’, p3 == p4

• type 2: uni-modal continuous tail, p3 < 1 & p4 < 1

• type 3: symmetric ’type 2’, p3 == p4

• type 4: uni-modal continuous tail finite slope, p3 <= 0.5 & p4 <= 0.5

• type 5: symmetric ’type 4’, p3 == p4

• type 6: uni-modal truncated density curves, p3 >= 2 & p4 >= 2 (includes uniform distribution)

• type 7: symmetric ’type 6’, p3 == p4
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• type 8: S shaped, (p3 > 2 & 1 < p4 < 2) or (1 < p3 < 2 & p4 > 2)

• type 9: U shaped, (1 < p3 <= 2) and (1 < p4 <= 2)

• type 10: symmetric ’type 9’, p3 == p4

• type 11: monotone, p3 > 1 & p4 <= 1

Value

A vector of length 5. The first 4 elements are the parameters of the GLD distribution. The last one
is the number of iterations.

Examples

res <- s.gld.from.moments(0,1,0,0, start = c(0,0), type = 4)
probs <- seq(0.1,0.9,0.1)
x <- s.gld.quantile(probs, res[1],res[2],res[3],res[4])
y <- s.gld.density.quantile(probs, res[1],res[2],res[3],res[4])
plot(x,y)
lines(x,y)

s.gld.quantile GLD Quantile Function

Description

This function calculates the quantiles of a Generalized Lambda Distribution (FKML).

Usage

s.gld.quantile(probs, p1, p2, p3, p4)

Arguments

probs A numeric vector of probabilities.

p1 Numeric value representing the first parameter of the distribution (location of
the distribution).

p2 Numeric value representing the second parameter of the distribution (scale of
the distribution).

p3 Numeric value representing the third parameter of the distribution (skewness of
the distribution).

p4 Numeric value representing the fourth parameter of the distribution (kurtosis of
the distribution).
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Details

It is a helper statistics method in this package and is generally used to plot density function of a
GLD distribution. See the example of s.gld.density.quantile function for more details.

Value

A numeric vector representing the quantiles for each probability in probs.

See Also

s.gld.density.quantile

Examples

res = s.gld.quantile(c(0.1,0.5,0.95), 0,1,0,0) # standard normal distribution

s.metric.from.weight Convert a Weight to Metric

Description

This function converts a weight to its metric equivalent.

Usage

s.metric.from.weight(value, metricName, minValue = 0)

Arguments

value Numeric value of the weight.

metricName Character string specifying the name of the metric. See get.search.metrics
function for the list of available options.

minValue A minimum value used in exponential weight formula.

Details

See s.weight.from.metric and get.search.metrics for more details.

Note that the main purpose of exporting this statistics helper method is to show the inner calculations
of the package.

Value

A numeric value representing the converted weight.

See Also

s.weight.from.metric
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Examples

weight <- s.weight.from.metric(-3.4, "sic")
metric <- s.metric.from.weight(weight, "sic")

s.pca Principal Component Analysis

Description

This function performs PCA on the columns of a matrix.

Usage

s.pca(x, center = TRUE, scale = TRUE, newX = NULL)

Arguments

x A numeric matrix with variables in the columns.

center Logical value indicating whether to demean the columns of x.

scale Logical value indicating whether to scale the columns of x to unit variance.

newX A numeric matrix to be used in projection. Its structure must be similar to x.

Details

The main purpose of exporting this statistics helper method is to show the inner calculations of the
package.

Value

A list with the following items:

removed0Var An integer vector showing the zero-based indices of removed columns with zero
variances.

directions Directions matrix.

stds An integer vector showing the standard deviation of the principal components.

stds2Ratio Shows stds^2/sum(stds^2).

projections Projections matrix if newX is provided.

See Also

get.options.pca
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Examples

set.seed(340)
data <- matrix(rnorm(500), nrow = 50, ncol = 10)

# using prcomp function
resR = prcomp(data, center = TRUE, scale. = TRUE)

# using s.pca in this package
res = s.pca(data,TRUE,TRUE,data)

# res$projections and resR$x must be equal
# res$directions and t(resR$rotation) must be equal

# ----- ANOTHER EXAMPLE: PCA where there is a constant variable:
data <- data.frame( x = rnorm(100), y = rnorm(100), z = rep(0, 100))

# using s.pca in this package
res <- s.pca(data)

# using prcomp function
res_invalid <- try(prcomp(data, center = TRUE,

scale. = TRUE))
# Fails, we should remove 'z' first

s.roc Get ROC Curve Data for Binary Classification

Description

This function calculates the required points for plotting the ROC curve and the AUC.

Usage

s.roc(y, scores, weights = NULL, options = get.options.roc())

Arguments

y A numeric vector (Nx1) representing the actual values.
scores A numeric vector (Nx1) representing the calculated probabilities for the negative

observations.
weights A numeric vector (Nx1) representing the weights of the observations. Use NULL

for equal weights.
options A list from get.options.roc function for more options.

Details

This is generally a statistics helper method in this package and it shows the inner calculations. See
AUC section in get.search.metrics for a discussion.
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Value

A list with the following items:

n Number of observations.

auc Value of AUC.

points Points for plotting ROC.

Examples

y <- c(1, 0, 1, 0, 1, 1, 0, 0, 1, 0)
scores <- c(0.1, 0.2, 0.3, 0.5, 0.5, 0.5, 0.7, 0.8, 0.9, 1)
res1 <- s.roc(y,scores)
costs <- c(1,2,1,4,1,5,1,1,0.5,1)
costMatrix <- matrix(c(0.02,-1,-3,3),2,2)
opt <- get.options.roc(costs = costs, costMatrix = costMatrix)
res2 <- s.roc(y,scores,NULL,options = opt)

s.weight.from.metric Convert a Metric to Weight

Description

This function converts a metric to its weight equivalent.

Usage

s.weight.from.metric(value, metricName, minValue = 0)

Arguments

value Numeric value of the metric.

metricName Character string specifying the name of the metric. See get.search.metrics func-
tion for the list of available options.

minValue A minimum value to be used for metrics with exponential weight formula.

Details

Given a collection of models for the data, a metric is not generally a metric of the relative quality of
a model. This function converts the value of a metric to such a number. see get.search.metrics for
more details.

The main purpose of exporting this statistics helper method is to show the inner calculations of the
package.

Value

A numeric value representing the converted metric.
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See Also

s.metric.from.weight

Examples

weight <- s.weight.from.metric(-3.4, "sic")
metric <- s.metric.from.weight(weight, "sic")

search.bin Create a Model Set for Binary Choice Models

Description

Use this function to create a binary choice model set and search for the best models (and other
information) based on in-sample and out-of-sample evaluation metrics.

Usage

search.bin(
data,
combinations,
metrics = get.search.metrics(),
modelChecks = get.search.modelchecks(),
items = get.search.items(),
options = get.search.options(),
costMatrices = NULL,
searchLogit = TRUE,
searchProbit = FALSE,
optimOptions = get.options.newton(),
aucOptions = get.options.roc()

)

Arguments

data A list that determines data and other required information for the search process.
Use get.data() function to generate it from a matrix or a data.frame.

combinations A list that determines the combinations of the exogenous variables in the search
process. Use get.combinations() function to define it.

metrics A list of options for measuring performance. Use get.search.metrics function to
get them.

modelChecks A list of options for excluding a subset of the model set. Use get.search.modelchecks
function to get them.

items A list of options for specifying the purpose of the search. Use get.search.items
function to get them.
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options A list of extra options for performing the search. Use get.search.options function
to get them.

costMatrices A list of numeric matrices where each one determines how to score the calcu-
lated probabilities. Given the number of choices n, a frequency cost matrix is
an m x n+1 matrix. The first column determines the thresholds. Elements in the
j-th column determine the costs corresponding to the j-1-th choice in y. It can
be NULL if it is not selected in metrics.

searchLogit If TRUE, logit regressions are added to the model set.

searchProbit If TRUE, probit regressions are added to the model set.

optimOptions A list for Newton optimization options. Use get.options.newton function to get
the options.

aucOptions A list for AUC calculation options. Use get.options.roc function to get the op-
tions.

Value

A nested list with the following members:

counts Information about the expected number of models, number of estimated models,
failed estimations, and some details about the failures.

results A data frame with requested information in items list.

info The arguments and some general information about the search process such as
the elapsed time.

Note that the output does not contain any estimation results, but minimum required data to estimate
the models (Use summary() function to get the estimation).

See Also

estim.bin

Examples

# We simulate some data for this example:
# sample data:
n = 50 # number of observations
num_x_r <- 3L # number of relevant explanatory variables
num_x_ir <- 20 # (relatively large) number of irrelevant explanatory variables
set.seed(340)
sample <- sim.bin(num_x_r, n)
x_ir <- lapply(1:num_x_ir, function(x) rnorm(n))

# prepare data:
data <- data.frame(sample$y, sample$x, x_ir)
colnames(data) <- c("Y", colnames(sample$x), paste0("z", 1:num_x_ir))

# Use glm function to estimate and analyse:
fit <- glm(Y ~ . - Y, data = data, family = binomial())
summary(fit)
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# You can also use this package estimation function:
data0 <- get.data(data,

equations = list(Y ~ . - Y),
addIntercept = FALSE)

fit <- estim.bin(data = data0)
# format and print coefficients:
print(fit)

# Alternatively, You can define a binary choice model set:
x_sizes = c(1:3) # assuming we know the number of relevant explanatory variables is less than 3
metric_options <- get.search.metrics(typesIn = c("sic")) # We use SIC for searching
search_res <- search.bin(data = data0,

combinations = get.combinations(sizes = x_sizes),
metrics = metric_options)

print(search_res)

# Use summary function to estimate the best model:
search_sum <- summary(search_res, y = sample$y, x = data[,3:ncol(data)])

# format and print coefficients:
s_fit <- summary(search_res)
print(s_fit$results[[1]]$value)

# Try a step-wise search for creating a larger model set:
search_res <- search.bin(data = data0,

combinations = get.combinations(
sizes = list(c(1, 2, 3), c(4)),
stepsNumVariables = c(NA, 7)),

metrics = metric_options)
# combinations argument is different

print(search_res)
# Use summary like before.

search.rfunc Create a Model Set for an R Function

Description

Use this model to create a model set for an R function.

Usage

search.rfunc(
data = get.data(),
combinations = get.combinations(),
metrics = get.search.metrics(),
modelChecks = get.search.modelchecks(),
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items = get.search.items(),
options = get.search.options(),
rFuncName,
length1,
isInnerExogenous

)

Arguments

data A list that determines data and other required information for the search process.
Use get.data() function to generate it from a matrix or a data.frame.

combinations A list that determines the combinations of endogenous and exogenous variables
in the search process. Use get.combinations() function to define it.

metrics A list of options for measuring performance. Use get.search.metrics function to
get them.

modelChecks A list of options for excluding a subset of the model set. See and use get.search.modelchecks
function to get them.

items A list of options for specifying the purpose of the search. See and use get.search.items
function to get them.

options A list of extra options for performing the search. See and use get.search.options
function to get them.

rFuncName Name of a function that uses column indices and number of endogenous vari-
ables with respect to data. It should estimate a model and return a list with
required performance statistics. See details.

length1 An integer for the length of requested information. This can be the number of
exogenous variables.

isInnerExogenous

If TRUE, exogenous indices are defined by innerGroups in the combinations
argument.

Details

The central part of calling this function is to write a function with rFuncName name. This function
must have the following arguments:

• columnIndices: determines the variables to be used in the current iteration. These indices
point to the column of data$data matrix. E.g., you can create a matrix of available data
by using data$data[,colIndices]. It contains weight column index (at numEndo+1), if
data$hasWeight is TRUE.

• numEndo: can be used to divide the columnIndices into endogenous and exogenous indices.

• data, metrics, modelChecks, items: The arguments of current function which are passed
to this function.

The rFuncName function should use these arguments and estimate or predict by using any available
R function.

This function must return a List with the following items:
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• error (Character string or NULL): It not NULL or empty, it is considered as a failed estimation
with the given message.

• metrics (Numeric Matrix): Model performance for each target variable. Available target
variables must be in the columns and metrics in the rows.

• extra (Numeric Vector or NULL): Extra information in form of integers, which defines the
current model.

• type1means (Numeric Matrix or NULL): Means of type1 (coefficients or predictions) for
each target variable. Target variables must be in the columns. Make sure to skip the rows
which the model does not present any information.

• type1vars (Numeric Matrix or NULL): similar to type1means but for reporting the variances.

Value

A nested list with the following members:

counts Information about the expected number of models, number of estimated models,
failed estimations, and some details about the failures.

results A data frame with requested information in items list.
info The arguments and some general information about the search process such as

the elapsed time.

Note that the output does not contain any estimation results, but minimum required data to estimate
the models (Use summary() function to get the estimation).

search.steps Step-wise estimation

Description

This function uses the calculated inclusion weights and selects a subset of variables in each step.
Note that it uses the values for the first target variable and first metric and might not be suitable for
multi-target or multi-metric searches.

Usage

search.steps(method, isInnerExogenous, ...)

Arguments

method sur, bin or varma
isInnerExogenous

Determines if the inner indices are for exogenous variables.
... Additional arguments for the search function.

Value

the result
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search.sur Create a Model Set for SUR Models

Description

Use this function to create a Seemingly Unrelated Regression model set and search for the best
models (and other information) based on in-sample and out-of-sample evaluation metrics.

Usage

search.sur(
data = get.data(),
combinations = get.combinations(),
metrics = get.search.metrics(),
modelChecks = get.search.modelchecks(),
items = get.search.items(),
options = get.search.options(),
searchSigMaxIter = 0,
searchSigMaxProb = 0.1

)

Arguments

data A list that determines data and other required information for the search process.
Use get.data() function to generate it from a matrix or a data.frame.

combinations A list that determines the combinations of endogenous and exogenous variables
in the search process. Use get.combinations() function to define it.

metrics A list of options for measuring performance. Use get.search.metrics function to
get them.

modelChecks A list of options for excluding a subset of the model set. Use get.search.modelchecks
function to get them.

items A list of options for specifying the purpose of the search. Use get.search.items
function to get them.

options A list of extra options for performing the search. Use get.search.options function
to get them.

searchSigMaxIter

Maximum number of iterations in searching for significant coefficients. Use 0
to disable the search.

searchSigMaxProb

Maximum value of type I error to be used in searching for significant coeffi-
cients. If p-value is less than this, it is interpreted as significant.
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Value

A nested list with the following members:

counts Information about the expected number of models, number of estimated models,
failed estimations, and some details about the failures.

results A data frame with requested information in items list.

info The arguments and some general information about the search process such as
the elapsed time.

Note that the output does not contain any estimation results, but minimum required data to estimate
the models (Use summary() function to get the estimation).

See Also

estim.sur

Examples

num_y <- 2L # number of equations
num_x_r <- 3L # number of relevant explanatory variables
num_x_ir <-

10 # (relatively large) number of irrelevant explanatory variables
num_obs = 100 # number of observations

# create random data
sample <- sim.sur(sigma = num_y, coef = num_x_r, nObs = num_obs)
x_ir <- matrix(rnorm(num_obs * num_x_ir), ncol = num_x_ir) # irrelevant data

# prepare data for estimation
data <- data.frame(sample$y, sample$x, x_ir)
colnames(data) <- c(colnames(sample$y), colnames(sample$x), paste0("z", 1:num_x_ir))

# Use systemfit to estimate and analyse:
exp_names <- paste0(colnames(data)[(num_y + 1):(length(colnames((data))))], collapse = " + ")
fmla <- lapply(1:num_y, function(i) as.formula(paste0("Y", i, " ~ -1 + ", exp_names)))
fit <- systemfit::systemfit(fmla, data = data, method = "SUR")
summary(fit)

# You can also use this package estimation function:
fit <- estim.sur(data = get.data(data, endogenous = num_y, addIntercept = FALSE))
print(fit)

# Alternatively, You can define an SUR model set:
x_sizes = c(1:3) # assuming we know the number of relevant explanatory variables is less than 3
num_targets = 2
metric_options <- get.search.metrics(typesIn = c("sic")) # We use SIC for searching
search_res <- search.sur(data = get.data(data, endogenous = num_y, addIntercept = FALSE),

combinations = get.combinations(numTargets = num_targets,
sizes = x_sizes,

innerGroups = list(c(1), c(2))),
metrics = metric_options)
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print(search_res)

# Use summary function to estimate the best models:
search_sum <- summary(search_res)

# Print the best model:
print(search_sum$results[[2]]$value)
# see 'estim.sur' function

# Using a step-wise search to build a larger model set:
x_sizes_steps = list(c(1, 2, 3), c(4))
counts_steps = c(NA, 7)
search_step_res <- search.sur(data = get.data(data, endogenous = num_y, addIntercept = FALSE),

combinations = get.combinations(numTargets = num_targets,
sizes = x_sizes_steps,

stepsNumVariables = counts_steps,
innerGroups = list(c(1,2))),

metrics = metric_options)
# combinations argument is different

print(search_step_res)

search.varma Create Model Set for VARMA Models

Description

Use this function to create a Vector Autoregressive Moving Average model set and search for the
best models (and other information) based on in-sample and out-of-sample evaluation metrics.

Usage

search.varma(
data = get.data(),
combinations = get.combinations(),
metrics = get.search.metrics(),
modelChecks = get.search.modelchecks(),
items = get.search.items(),
options = get.search.options(),
maxParams = c(1, 0, 0, 0, 0, 0),
seasonsCount = 0,
maxHorizon = 1,
simUsePreviousEstim = FALSE,
olsStdMultiplier = 2,
lbfgsOptions = get.options.lbfgs()

)
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Arguments

data A list that determines data and other required information for the search process.
Use get.data() function to generate it from a matrix or a data.frame.

combinations A list that determines the combinations of endogenous and exogenous variables
in the search process. Use get.combinations() function to define it.

metrics A list of options for measuring performance. Use get.search.metrics function to
get them.

modelChecks A list of options for excluding a subset of the model set. Use get.search.modelchecks
function to get them.

items A list of options for specifying the purpose of the search. Use get.search.items
function to get them.

options A list of extra options for performing the search. Use get.search.options function
to get them.

maxParams An integer vector that determines the maximum values for the parameters of the
VARMA model: (p,d,q,P,D,Q). If NULL, c(2,0,0,0,0,0) is used.

seasonsCount An integer value representing the number of observations per unit of time.

maxHorizon An integer value representing the maximum value for the prediction horizon if
type1 is TRUE in the modelChecks argument. Also, it is used as the maximum
prediction horizon in checking predictions.

simUsePreviousEstim

If TRUE, parameters are initialized only in the first step of the simulation. The
initial values of the n-th simulation (with one more observation) are the estima-
tions from the previous step.

olsStdMultiplier

A number used as a multiplier for the standard deviation of OLS, used for re-
stricting maximum likelihood estimation.

lbfgsOptions A list containing L-BFGS optimization options. Use get.options.lbfgs function
for initialization.

Value

A nested list with the following members:

counts Information about the expected number of models, number of estimated models,
failed estimations, and some details about the failures.

results A data frame with requested information in items list.

info The arguments and some general information about the search process such as
the elapsed time.

Note that the output does not contain any estimation results, but minimum required data to estimate
the models (Use summary() function to get the estimation).

See Also

estim.varma
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Examples

# We simulate some data for this example:
set.seed(340)
n = 100
num_eq <- 3L
num_ar <- 2L
num_ma <- 1L
num_ma <- 1L
num_exo <- 2L
sample <- sim.varma(num_eq, arList = num_ar, maList = num_ma, exoCoef = num_exo, nObs = n)

# (relatively large) number of irrelevant explanatory variables:
num_y_ir <- 10
y_ir <- lapply(1:num_y_ir, function(x) rnorm(n))

# prepare data:
data <- data.frame(sample$y, y_ir, sample$x)
colnames(data) <- c(colnames(sample$y), paste0("w", 1:num_y_ir), colnames(sample$x))

# Create a VARMA model set:
y_sizes = 3 # assuming we know the number of relevant endogenous variables
metric_options <- get.search.metrics(typesIn = c("aic")) # We use SIC for searching
search_res <- search.varma(data = get.data(data, endogenous = num_eq + num_y_ir),

combinations = get.combinations(sizes = y_sizes,
numTargets = 3),

metrics = metric_options,
maxHorizon = 0)

print(search_res)

sim.bin Generate Random Sample from a DC Model

Description

This function generates a random sample from an discrete choice regression model.

Usage

sim.bin(
coef = 2L,
nObs = 100,
probit = FALSE,
maxWeight = 1,
pPos = 0.5,
sampleFactor = 4,
toNumeric = TRUE

)
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Arguments

coef Either a single integer specifying the number of variables in the model, or a
numeric vector of coefficients for the regression.

nObs The number of observations to generate.

probit Logical value indicating whether to generate data from a probit model (if TRUE)
or a logit model (if FALSE).

maxWeight Integer value indicating the maximum weight of the observations. If 1, obser-
vations are not weighted. If larger than 1, a vector of weights is generated and
included in the return list. The weights are drawn from a discrete uniform distri-
bution with a maximum value determined by maxWeight. If weighted, a larger
sample is created (nObs * sampleFactor * maxWeight) and a subset of them
is randomly selected, where the probability of selection is determined by the
weight.

pPos The percentage of positive observations (y=1) in the endogenous variable y.
Must be between 0 and 1. In the current implementation, this is independent
of the weights, if maxWeight is larger than 1.

sampleFactor The factor used to control the size of the initial sample. A larger value generates
a larger initial sample, which can increase the accuracy of the generated sample
but also takes more time and memory.

toNumeric If TRUE, y and w are transformed to have numeric vector. Otherwise, they contain
an integer vector.

Value

A list with the following items:

y The endogenous variable.

x The exogenous variables.

w The weights of the observations. It is NULL if weighted is FALSE.

p1 Prob(Y=1)

coef The coefficients of the regression.

probit Logical value indicating whether data was generated from a probit model.

pPos The percentage of negative observations in y.

See Also

estim.bin, search.bin

Examples

# Generate data from a logit model with 3 variables
sample <- sim.bin(3L, 100)

# see the examples in 'estim.bin' or 'search.bin' functions
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sim.sur Generate Random Sample from an SUR Model

Description

This function generates a random sample from an Seemingly Unrelated Regression model.

Usage

sim.sur(sigma = 1L, coef = 1L, nObs = 100, intercept = TRUE)

Arguments

sigma covariance matrix of the errors. If it is an integer value, it specifies the number
of equations in the SUR model and covariance matrix is generated randomly.

coef Coefficients of the model. If it is an integer value, it specifies the number of
exogenous variables in each equation of the SUR model and coefficient matrix
is generated randomly.

nObs Number of observations to generate.

intercept If TRUE, an intercept is included in the model as the first exogenous variable.

Value

A list with the following items:

y matrix, the generated endogenous variable(s).

x matrix, the generated exogenous variable(s).

e matrix, the generated errors.

sigma matrix, the covariance matrix of the disturbances.

coef matrix, the coefficients used in the model.

intercept logical, whether an intercept was included in the model.

See Also

sim.varma,estim.sur,search.sur

Examples

num_y <- 2L
num_x <- 3L
n_obs = 100
data <- sim.sur(sigma = num_y, coef = num_x, nObs = n_obs)

# see the examples in 'estim.sur' or 'search.sur' functions
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sim.varma Generate Random Sample from a VARMA Model

Description

This function generates a multivariate time series using a VARMA process.

Usage

sim.varma(
sigma = 2L,
arList = 1L,
maList = 0L,
exoCoef = 0L,
nObs = 100,
nBurn = 10,
intercept = TRUE,
d = 0,
startFrequency = NULL,
seasonalCoefs = NULL

)

Arguments

sigma A positive definite matrix representing the covariance matrix of the white noise
series or an integer representing the dimension of a random covariance matrix
to generate.

arList A list of matrices representing the AR coefficients of the VARMA model or an
integer representing the number of random AR coefficients to generate.

maList A list of matrices representing the MA coefficients of the VARMA model or
an integer representing the number of random MA coefficients to generate. For
identification purposes, it generates diagonal matrices.

exoCoef A matrix representing the coefficients of the exogenous variables or an integer
representing the number of random exogenous coefficients to generate.

nObs An integer representing the number of observations to generate.
nBurn An integer representing the number of burn-in observations to remove from the

generated time series.
intercept A numeric vector representing the intercept of the VARMA model or a logical

value indicating whether to generate a random intercept.
d An integer representing the order of integration.
startFrequency The frequency of the first observation in the data.
seasonalCoefs An integer vector of size 4: (P,D,Q,s) where P is the number of random sea-

sonal AR coefficients to generate, Q is the number of random seasonal MA co-
efficients to generate, D is the order of seasonal integration, and s is the number
of seasons. These are effective if arList and maList are randomly generated
within the function.
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Value

A list with the following items:

y The simulated endogenous data.

x The simulated exogenous data.

e The simulated white noise series.

sigma The covariance matrix of the white noise series.

arList The list of autoregressive coefficients.

maList The list of moving average coefficients.

exoCoef The matrix of exogenous coefficients.

intercept The intercept vector.

d The order of the integration.

seasonalCoefs The argument seasonalCoefs

nObs The number of observations generated.

nBurn The number of burn-in observations removed.

Examples

sample1 <- sim.varma(2L, 3L, 2L)

ar1 <- matrix(c(0.7,0.2,-0.4,0.3),2,2)
ar2 <- matrix(c(-0.4,0.1,0.2,-0.3),2,2)
ma1 <- matrix(c(0.5,-0.1,0.3,0.4),2,2)
Sigma <- matrix(c(1,0.3,0.3,1),2,2)
B <- matrix(c(0.5,-0.3),2)

sample2 <- sim.varma(Sigma, list(ar1, ar2), list(ma1), exoCoef = B ,
nObs =100, nBurn =10 , intercept = c(1,-1))

# Plot the y series
matplot(sample2$y,type = "l")

# see the examples in 'estim.varma' or 'search.varma' functions

summary.ldt.search Summary for an ldt.search object

Description

Use this function to get the full estimation of the models reported in the output of a search process.

Usage

## S3 method for class 'ldt.search'
summary(object, test = FALSE, ...)
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Arguments

object An ldt.search object.

test If TRUE and applicable (e.g., in model estimation), it checks the metrics and
throws error for any inconsistencies between the current estimation and the one
calculated in the search process (Provided that negative seed is used).

... Additional arguments.

Details

An ldt.search object is an output from one of the search.? functions (see search.sur, search.varma,
or search.bin).

Value

The output replaces the value of object$results with the summary from summary.ldt.search.item.

summary.ldt.search.item

Summary for an ldt.search.item object

Description

While you can get a summary of an item in a search result, this function is mainly designed to be
called from print.ldt.search function. Its main job is to estimate the full model using the reported
indices from the search process.

Usage

## S3 method for class 'ldt.search.item'
summary(object, searchResult = NULL, test = FALSE, ...)

Arguments

object An ldt.search.item object.

searchResult Parent list of object, which is an ldt.search object.

test If TRUE and applicable (e.g., in model estimation), it checks the metrics and
throws error for any inconsistencies between the current estimation and the one
calculated in the search process.

... Additional arguments.

Details

An ldt.search.item object is a member of ldt.search object. An ldt.search object is an
output from one of the search.? functions (see search.sur, search.varma, or search.bin).
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Value

If the object contains the indices of endogenous variables of an estimated model, it returns the
estimation output. Otherwise, it returns object.
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