--- title: "minimal_example" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{minimal_example} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The following is a minimal example of a simple model fit. ```{r setup} # Load libraries library(RColorBrewer) library(ggplot2) library(dplyr) library(reshape2) library(latex2exp) library(lddmm) theme_set(theme_bw(base_size = 14)) cols = brewer.pal(9, "Set1") ``` ```{r, eval = FALSE, results = 'hide', fig.show = 'hide', warning = FALSE, message = FALSE} # Load the data data('data') # Descriptive plots plot_accuracy(data) plot_RT(data) # Run the model hypers = NULL hypers$s_sigma_mu = hypers$s_sigma_b = 0.1 # Change the number of iterations when running the model # Here the number is small so that the code can run in less than 1 minute Niter = 25 burnin = 15 thin = 1 samp_size = (Niter - burnin) / thin set.seed(123) fit = LDDMM(data = data, hypers = hypers, Niter = Niter, burnin = burnin, thin = thin) # Plot the results plot_post_pars(data, fit, par = 'drift') plot_post_pars(data, fit, par = 'boundary') # Compute the WAIC to compare models compute_WAIC(fit) ``` To extract relevant posterior draws or posterior summaries instead of simply plotting them, one can use the functions `extract_post_mean` or `extract_post_draws`. The following auxiliary functions are available by selecting the corresponding argument in the `LDDMM()` function: * `boundaries = "constant"`: constant boundary parameters over time, $b_{d,s}^{(i)}(t) = b_{d,s} + u_{d,s}^{(i)}$ using the article notation * `boundaries = "fixed"`: fixed boundaries across input predictors, $b_{d,s}^{(i)}(t) = b_{d}(t) + u^{(i)}_{d}(t)$ using the article notation * `boundaries = "fixed-constant"`: fixed *and* constant boundaries, $b_{d,s}^{(i)}(t) = b_{d} + u_{d}^{(i)}$ using the article notation