Title: | Bayesian Joint Latent Class and Regression Models |
---|---|
Description: | For fitting Bayesian joint latent class and regression models using Gibbs sampling. See the documentation for the model. The technical details of the model implemented here are described in Elliott, Michael R., Zhao, Zhangchen, Mukherjee, Bhramar, Kanaya, Alka, Needham, Belinda L., "Methods to account for uncertainty in latent class assignments when using latent classes as predictors in regression models, with application to acculturation strategy measures" (2020) In press at Epidemiology <doi:10.1097/EDE.0000000000001139>. |
Authors: | Michael Elliot [aut], Zhangchen Zhao [aut], Michael Kleinsasser [aut, cre] |
Maintainer: | Michael Kleinsasser <[email protected]> |
License: | GPL-2 |
Version: | 1.1.5 |
Built: | 2024-11-04 06:23:03 UTC |
Source: | CRAN |
Simulated data set with continuous regression outcome. The data set contains 150 observations of 8 variables, which include 5 manifest variables, and two regressors.
express
express
An object of class data.frame
with 150 rows and 8 columns.
Discrete regression outcome of interest
Categorical manifest variable 1
Categorical manifest variable 2
Categorical manifest variable 3
Categorical manifest variable 4
Categorical manifest variable 5
Continuous predictor variable
Continuous predictor variable
Simulated data set with continuous regression outcome. The data set contains 350 observations of 16 variables, which include 12 manifest variables, and four regressors.
latent3
latent3
An object of class data.frame
with 350 rows and 17 columns.
Discrete regression outcome of interest
Categorical manifest variable 1
Categorical manifest variable 2
Categorical manifest variable 3
Categorical manifest variable 4
Categorical manifest variable 5
Categorical manifest variable 6
Categorical manifest variable 7
Categorical manifest variable 8
Categorical manifest variable 9
Categorical manifest variable 10
Categorical manifest variable 11
Categorical manifest variable 12
Continuous predictor variable
Continuous predictor variable
Continuous predictor variable
Continuous predictor variable
Simulated data set with discrete regression outcome. The data set contains 350 observations of 16 variables, which include 12 manifest variables, and four regressors.
latent3_binary
latent3_binary
An object of class data.frame
with 350 rows and 17 columns.
Discrete regression outcome of interest
Categorical manifest variable 1
Categorical manifest variable 2
Categorical manifest variable 3
Categorical manifest variable 4
Categorical manifest variable 5
Categorical manifest variable 6
Categorical manifest variable 7
Categorical manifest variable 8
Categorical manifest variable 9
Categorical manifest variable 10
Categorical manifest variable 11
Categorical manifest variable 12
Continuous predictor variable
Continuous predictor variable
Continuous predictor variable
Continuous predictor variable
Given a set of categorical manifest outcomes, identify unmeasured class membership among subjects, and use latent class membership to predict regression outcome jointly with a set of regressors.
lcra( formula, data, family, nclasses, manifest, sampler = "JAGS", inits = NULL, dir, n.chains = 3, n.iter = 2000, n.burnin = n.iter/2, n.thin = 1, n.adapt = 1000, useWINE = FALSE, WINE, debug = FALSE, ... )
lcra( formula, data, family, nclasses, manifest, sampler = "JAGS", inits = NULL, dir, n.chains = 3, n.iter = 2000, n.burnin = n.iter/2, n.thin = 1, n.adapt = 1000, useWINE = FALSE, WINE, debug = FALSE, ... )
formula |
If formula = NULL, LCA without regression model is fitted. If a regression model is to be fitted, specify a formula using R standard syntax, e.g., Y ~ age + sex + trt. Do not include manifest variables in the regression model specification. These will be appended internally as latent classes. |
data |
data.frame with the column names specified in the regression formula and the manifest argument. The columns used in the regression formula can be of any type and will be dealt with using normal R behaviour. The manifest variable columns, however, must be coded as numeric using positive integers. For example, if one of the manifest outcomes takes on values 'Dislike', 'Neutral', and 'like', then code them as 1, 2, and 3. |
family |
a description of the error distribution to be used in the model. Currently the options are c("gaussian") with identity link and c("binomial") which uses a logit link. |
nclasses |
numeric, number of latent classes |
manifest |
character vector containing the names of each manifest variable, e.g., manifest = c("Z1", "med_3", "X5"). The values of the manifest columns must be numerically coded with levels 1 through n_levels, where n_levels is the number of levels for the ith manifest variable. The function will throw an error message if they are not coded properly. |
sampler |
which MCMC sampler to use? lcra relies on Gibbs sampling, where the options are "WinBUGS" or "JAGS". sampler = "JAGS" is the default, and is recommended |
inits |
list of initial values. Defaults will be set if nothing is specified. Inits must be a list with n.chains elements; each element of the list is itself a list of starting values for the model. |
dir |
Specify full path to the directory where you want to store the model file. |
n.chains |
number of Markov chains. |
n.iter |
number of total iterations per chain including burn-in. |
n.burnin |
length of burn-in, i.e., number of iterations to discard at the beginning. Default is n.iter/2. |
n.thin |
thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computing time if n.iter is large. |
n.adapt |
number of adaptive samples to take when using JAGS. See the JAGS documentation for more information. |
useWINE |
logical, attempt to use the Wine emulator to run WinBUGS, defaults to FALSE on Windows and TRUE otherwise. |
WINE |
character, path to WINE binary file. If not provided, the program will attempt to find the WINE installation on your machine. |
debug |
logical, keep WinBUGS open debug, inspect chains and summary. |
... |
other arguments to bugs(). Run ?bugs to see list of possible arguments to pass into bugs. |
lcra allows for two different Gibbs samplers to be used. The options are WinBUGS or JAGS. If you are not on a Windows system, WinBUGS can be very difficult to get working. For this reason, JAGS is the default.
For further instructions on using WinBUGS, read this:
Microsoft Windows: no problems or additional set-up required
Linux, Mac OS X, Unix: possible with the Wine emulator via useWine = TRUE. Wine is a standalone program needed to emulate a Windows system on non-Windows machines.
The manifest variable columns in data must be coded as numeric with positive numbers. For example, if one of the manifest outcomes takes on values 'Dislike', 'Neutral', and 'like', then code them as 1, 2, and 3.
Model Definition
The LCRA model is as follows:
The following priors are the default and cannot be altered by the user:
Please note also that the reference category for latent classes in the outcome model output is always the Jth latent class in the output, and the bugs output is defined by the Latin equivalent of the model parameters (beta, alpha, tau, pi, theta). Also, the bugs output includes the variable true, which corresponds to the MCMC draws of C_i, i = 1,...,n, as well as the MCMC draws of the deviance (DIC) statistic. Finally the bugs output for pi is stored in a three dimensional array corresponding to (class, variable, category), where category is indexed by 1 through maximum K_l; for variables where the number of categories is less than maximum K_l, these cells will be set to NA. The parameters outputted by the lcra function currently are not user definable.
Return type depends on the sampler chosen.
If sampler = "WinBUGS", then the return object is: WinBUGS object and lists of draws and summaries. Use fit$ to browse options.
If sampler = "JAGS", then the return object is: An MCMC list of class mcmc.list, which can be analyzed with the coda package. Each column is a parameter and each row is a draw. You can extract a parameter by name, e.g., fit[,"beta[1]"]. For a list of all parameter names from the fit, call colnames(as.matrix(fit)), which returns a character vector with the names.
"Methods to account for uncertainty in latent class assignments when using latent classes as predictors in regression models, with application to acculturation strategy measures" (2020) In press at Epidemiology. doi:10.1097/EDE.0000000000001139
if(requireNamespace("rjags")){ # quick example inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = nrow(express)))) fit = lcra(formula = y ~ x1 + x2, family = "gaussian", data = express, nclasses = 3, inits = inits, manifest = paste0("Z", 1:5), n.chains = 1, n.iter = 50) data('paper_sim') # Set initial values inits = list( list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)), list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)), list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)) ) # Fit model 1 fit.gaus_paper = lcra(formula = Y ~ X1 + X2, family = "gaussian", data = paper_sim, nclasses = 3, manifest = paste0("Z", 1:10), inits = inits, n.chains = 3, n.iter = 5000) # Model 1 results library(coda) summary(fit.gaus_paper) plot(fit.gaus_paper) # simulated examples library(gtools) # for Dirichel distribution # with binary response n <- 500 X1 <- runif(n, 2, 8) X2 <- rbinom(n, 1, .5) Cstar <- rnorm(n, .25 * X1 - .75 * X2, 1) C <- 1 * (Cstar <= .8) + 2 * ((Cstar > .8) & (Cstar <= 1.6)) + 3 * (Cstar > 1.6) pi1 <- rdirichlet(10, c(5, 4, 3, 2, 1)) pi2 <- rdirichlet(10, c(1, 3, 5, 3, 1)) pi3 <- rdirichlet(10, c(1, 2, 3, 4, 5)) Z1<-(C==1)*t(rmultinom(n,1,pi1[1,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[1,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[1,]))%*%c(1:5) Z2<-(C==1)*t(rmultinom(n,1,pi1[2,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[2,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[2,]))%*%c(1:5) Z3<-(C==1)*t(rmultinom(n,1,pi1[3,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[3,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[3,]))%*%c(1:5) Z4<-(C==1)*t(rmultinom(n,1,pi1[4,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[4,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[4,]))%*%c(1:5) Z5<-(C==1)*t(rmultinom(n,1,pi1[5,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[5,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[5,]))%*%c(1:5) Z6<-(C==1)*t(rmultinom(n,1,pi1[6,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[6,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[6,]))%*%c(1:5) Z7<-(C==1)*t(rmultinom(n,1,pi1[7,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[7,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[7,]))%*%c(1:5) Z8<-(C==1)*t(rmultinom(n,1,pi1[8,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[8,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[8,]))%*%c(1:5) Z9<-(C==1)*t(rmultinom(n,1,pi1[9,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[9,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[9,]))%*%c(1:5) Z10<-(C==1)*t(rmultinom(n,1,pi1[10,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[10,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[10,]))%*%c(1:5) Z <- cbind(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) Y <- rbinom(n, 1, exp(-1 - .1*X1 + X2 + 2*(C == 1) + 1*(C == 2)) / (1 + exp(1 - .1*X1 + X2 + 2*(C == 1) + 1*(C == 2)))) mydata = data.frame(Y, X1, X2, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), true = rep(1, length = nrow(mydata)))) fit = lcra(formula = Y ~ X1 + X2, family = "binomial", data = mydata, nclasses = 3, inits = inits, manifest = paste0("Z", 1:10), n.chains = 1, n.iter = 1000) summary(fit) plot(fit) # with continuous response n <- 500 X1 <- runif(n, 2, 8) X2 <- rbinom(n, 1, .5) Cstar <- rnorm(n, .25*X1 - .75*X2, 1) C <- 1 * (Cstar <= .8) + 2*((Cstar > .8) & (Cstar <= 1.6)) + 3*(Cstar > 1.6) pi1 <- rdirichlet(10, c(5, 4, 3, 2, 1)) pi2 <- rdirichlet(10, c(1, 3, 5, 3, 1)) pi3 <- rdirichlet(10, c(1, 2, 3, 4, 5)) pi4 <- rdirichlet(10, c(1, 1, 1, 1, 1)) Z1<-(C==1)*t(rmultinom(n,1,pi1[1,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[1,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[1,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[1,]))%*%c(1:5) Z2<-(C==1)*t(rmultinom(n,1,pi1[2,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[2,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[2,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[2,]))%*%c(1:5) Z3<-(C==1)*t(rmultinom(n,1,pi1[3,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[3,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[3,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[3,]))%*%c(1:5) Z4<-(C==1)*t(rmultinom(n,1,pi1[4,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[4,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[4,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[4,]))%*%c(1:5) Z5<-(C==1)*t(rmultinom(n,1,pi1[5,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[5,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[5,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[5,]))%*%c(1:5) Z6<-(C==1)*t(rmultinom(n,1,pi1[6,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[6,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[6,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[6,]))%*%c(1:5) Z7<-(C==1)*t(rmultinom(n,1,pi1[7,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[7,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[7,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[7,]))%*%c(1:5) Z8<-(C==1)*t(rmultinom(n,1,pi1[8,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[8,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[8,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[8,]))%*%c(1:5) Z9<-(C==1)*t(rmultinom(n,1,pi1[9,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[9,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[9,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[9,]))%*%c(1:5) Z10<-(C==1)*t(rmultinom(n,1,pi1[10,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[10,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[10,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[10,]))%*%c(1:5) Z <- cbind(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) Y <- rnorm(n, 10 - .5*X1 + 2*X2 + 2*(C == 1) + 1*(C == 2), 1) mydata = data.frame(Y, X1, X2, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), true = rep(1, length = nrow(mydata)), tau = 0.5)) fit = lcra(formula = Y ~ X1 + X2, family = "gaussian", data = mydata, nclasses = 3, inits = inits, manifest = paste0("Z", 1:10), n.chains = 1, n.iter = 1000) summary(fit) plot(fit) }
if(requireNamespace("rjags")){ # quick example inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = nrow(express)))) fit = lcra(formula = y ~ x1 + x2, family = "gaussian", data = express, nclasses = 3, inits = inits, manifest = paste0("Z", 1:5), n.chains = 1, n.iter = 50) data('paper_sim') # Set initial values inits = list( list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)), list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)), list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), tau = 0.5, true = rep(1, length = 100)) ) # Fit model 1 fit.gaus_paper = lcra(formula = Y ~ X1 + X2, family = "gaussian", data = paper_sim, nclasses = 3, manifest = paste0("Z", 1:10), inits = inits, n.chains = 3, n.iter = 5000) # Model 1 results library(coda) summary(fit.gaus_paper) plot(fit.gaus_paper) # simulated examples library(gtools) # for Dirichel distribution # with binary response n <- 500 X1 <- runif(n, 2, 8) X2 <- rbinom(n, 1, .5) Cstar <- rnorm(n, .25 * X1 - .75 * X2, 1) C <- 1 * (Cstar <= .8) + 2 * ((Cstar > .8) & (Cstar <= 1.6)) + 3 * (Cstar > 1.6) pi1 <- rdirichlet(10, c(5, 4, 3, 2, 1)) pi2 <- rdirichlet(10, c(1, 3, 5, 3, 1)) pi3 <- rdirichlet(10, c(1, 2, 3, 4, 5)) Z1<-(C==1)*t(rmultinom(n,1,pi1[1,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[1,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[1,]))%*%c(1:5) Z2<-(C==1)*t(rmultinom(n,1,pi1[2,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[2,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[2,]))%*%c(1:5) Z3<-(C==1)*t(rmultinom(n,1,pi1[3,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[3,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[3,]))%*%c(1:5) Z4<-(C==1)*t(rmultinom(n,1,pi1[4,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[4,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[4,]))%*%c(1:5) Z5<-(C==1)*t(rmultinom(n,1,pi1[5,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[5,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[5,]))%*%c(1:5) Z6<-(C==1)*t(rmultinom(n,1,pi1[6,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[6,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[6,]))%*%c(1:5) Z7<-(C==1)*t(rmultinom(n,1,pi1[7,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[7,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[7,]))%*%c(1:5) Z8<-(C==1)*t(rmultinom(n,1,pi1[8,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[8,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[8,]))%*%c(1:5) Z9<-(C==1)*t(rmultinom(n,1,pi1[9,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[9,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[9,]))%*%c(1:5) Z10<-(C==1)*t(rmultinom(n,1,pi1[10,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[10,]))%*%c(1:5)+(C==3)*t(rmultinom(n,1,pi3[10,]))%*%c(1:5) Z <- cbind(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) Y <- rbinom(n, 1, exp(-1 - .1*X1 + X2 + 2*(C == 1) + 1*(C == 2)) / (1 + exp(1 - .1*X1 + X2 + 2*(C == 1) + 1*(C == 2)))) mydata = data.frame(Y, X1, X2, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), true = rep(1, length = nrow(mydata)))) fit = lcra(formula = Y ~ X1 + X2, family = "binomial", data = mydata, nclasses = 3, inits = inits, manifest = paste0("Z", 1:10), n.chains = 1, n.iter = 1000) summary(fit) plot(fit) # with continuous response n <- 500 X1 <- runif(n, 2, 8) X2 <- rbinom(n, 1, .5) Cstar <- rnorm(n, .25*X1 - .75*X2, 1) C <- 1 * (Cstar <= .8) + 2*((Cstar > .8) & (Cstar <= 1.6)) + 3*(Cstar > 1.6) pi1 <- rdirichlet(10, c(5, 4, 3, 2, 1)) pi2 <- rdirichlet(10, c(1, 3, 5, 3, 1)) pi3 <- rdirichlet(10, c(1, 2, 3, 4, 5)) pi4 <- rdirichlet(10, c(1, 1, 1, 1, 1)) Z1<-(C==1)*t(rmultinom(n,1,pi1[1,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[1,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[1,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[1,]))%*%c(1:5) Z2<-(C==1)*t(rmultinom(n,1,pi1[2,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[2,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[2,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[2,]))%*%c(1:5) Z3<-(C==1)*t(rmultinom(n,1,pi1[3,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[3,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[3,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[3,]))%*%c(1:5) Z4<-(C==1)*t(rmultinom(n,1,pi1[4,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[4,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[4,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[4,]))%*%c(1:5) Z5<-(C==1)*t(rmultinom(n,1,pi1[5,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[5,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[5,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[5,]))%*%c(1:5) Z6<-(C==1)*t(rmultinom(n,1,pi1[6,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[6,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[6,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[6,]))%*%c(1:5) Z7<-(C==1)*t(rmultinom(n,1,pi1[7,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[7,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[7,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[7,]))%*%c(1:5) Z8<-(C==1)*t(rmultinom(n,1,pi1[8,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[8,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[8,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[8,]))%*%c(1:5) Z9<-(C==1)*t(rmultinom(n,1,pi1[9,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[9,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[9,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[9,]))%*%c(1:5) Z10<-(C==1)*t(rmultinom(n,1,pi1[10,]))%*%c(1:5)+(C==2)* t(rmultinom(n,1,pi2[10,]))%*%c(1:5)+(C==3)* t(rmultinom(n,1,pi3[10,]))%*%c(1:5)+(C==4)*t(rmultinom(n,1,pi4[10,]))%*%c(1:5) Z <- cbind(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) Y <- rnorm(n, 10 - .5*X1 + 2*X2 + 2*(C == 1) + 1*(C == 2), 1) mydata = data.frame(Y, X1, X2, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10) inits = list(list(theta = c(0.33, 0.33, 0.34), beta = rep(0, length = 3), alpha = rep(0, length = 2), true = rep(1, length = nrow(mydata)), tau = 0.5)) fit = lcra(formula = Y ~ X1 + X2, family = "gaussian", data = mydata, nclasses = 3, inits = inits, manifest = paste0("Z", 1:10), n.chains = 1, n.iter = 1000) summary(fit) plot(fit) }
Simulated data set with continuous regression outcome. The data set contains 100 observations of 13 variables, which include 10 manifest variables, and two regressors - one continuous and one dummy.
paper_sim
paper_sim
An object of class data.frame
with 100 rows and 13 columns.
Continuous regression outcome of interest
Categorical manifest variable 1
Categorical manifest variable 2
Categorical manifest variable 3
Categorical manifest variable 4
Categorical manifest variable 5
Categorical manifest variable 6
Categorical manifest variable 7
Categorical manifest variable 8
Categorical manifest variable 9
Categorical manifest variable 10
Continuous predictor variable
Categorical variable with values 1, 0
Simulated data set with discrete regression outcome. The data set contains 100 observations of 13 variables, which include 10 manifest variables, and two regressors - one continuous and one dummy.
paper_sim_binary
paper_sim_binary
An object of class data.frame
with 100 rows and 13 columns.
Discrete regression outcome of interest
Categorical manifest variable 1
Categorical manifest variable 2
Categorical manifest variable 3
Categorical manifest variable 4
Categorical manifest variable 5
Categorical manifest variable 6
Categorical manifest variable 7
Categorical manifest variable 8
Categorical manifest variable 9
Categorical manifest variable 10
Continuous predictor variable
Categorical variable with values 1, 0