Package: kerSeg (via r-universe)

September 15, 2024

Type Package

Title New Kernel-Based Change-Point Detection

Version 1.1
Author Hoseung Song [aut, cre], Hao Chen [aut]
Maintainer Hoseung Song <hosong@ucdavis.edu></hosong@ucdavis.edu>
Description New kernel-based test and fast tests for detecting change-points or changed-intervals where the distributions abruptly change. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2022) <arxiv:2206.01853>.</arxiv:2206.01853>
License GPL (>= 2)
Imports Rcpp (>= 1.0.7)
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-08-22 20:40:04 UTC
Contents
gaussiankernel 2 kerSeg 2 kerseg1 4 kerseg2 6 skew 7 statint 8
Index 9

2 kerSeg

gaussiankernel

Compute the Gaussian kernel matrix

Description

This function provides the Gaussian kernel matrix computed with the median heuristic bandwidth.

Usage

```
gaussiankernel(X)
```

Arguments

Χ

The samples in the sequence.

Value

Returns a numeric matrix, the Gaussian kernel matrix computed with the specified bandwidth.

See Also

kerSeg-package,kerseg1,kerseg2

Examples

```
## Sequence : change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 50
n = 100
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
```

kerSeg

New kernel-based change-point detection

Description

This package can be used to detect change-points where the distributions abruptly change. The Gaussian kernel with the median heuristic, which is the median of all pairwise distances among observations, is used.

kerSeg 3

Details

To compute the Gaussian kernel matrix with the median heuristic bandwidth, the function gaussiankernel should be used. The main functions are kerseg1 for the single change-point alternative and kerseg2 for the changed-interval alternative.

Author(s)

Hoseung Song and Hao Chen

Maintainer: Hoseung Song (hosong@ucdavis.edu)

References

Song, H. and Chen, H. (2022). New kernel-based change-point detection. arXiv:2206.01853

See Also

kerseg1, kerseg2, gaussiankernel

Examples

```
## Sequence 1: change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 15
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
# output results based on the permutation and the asymptotic results.
# the scan statistics can be found in a$scanZ.
# the approximated p-values can be found in a$appr.
# the permutation p-values can be found in a$perm.
## Sequence 2: change in both the mean and variance away from the middle of the sequence.
d = 50
mu = 2
sigma = 0.7
tau = 35
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau), tau), matrix(rnorm(d*(n-tau), mu/sqrt(d), sigma), n-tau))
K = gaussiankernel(y)
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
## Sequence 3: change in both the mean and variance happens on an interval.
d = 50
mu = 2
sigma = 0.5
tau1 = 25
tau2 = 35
```

4 kerseg1

```
n = 50
set.seed(1)
y1 = matrix(rnorm(d*tau1),tau1)
y2 = matrix(rnorm(d*(tau2-tau1),mu/sqrt(d),sigma), tau2-tau1)
y3 = matrix(rnorm(d*(n-tau2)), n-tau2)
y = rbind(y1, y2, y3)
K = gaussiankernel(y)
a = kerseg2(n, K, pval.perm=TRUE, B=1000)
```

kerseg1

Kernel-based change-point detection for single change-point alternatives

Description

This function finds a break point in the sequence where the underlying distribution changes.

Usage

```
kerseg1(n, K, r1=1.2, r2=0.8, n0=0.05*n, n1=0.95*n, pval.appr=TRUE, skew.corr=TRUE, pval.perm=FALSE, B=100)
```

Arguments

n	The number of observations in the sequence.
K	The kernel matrix of observations in the sequence.
r1	The constant in the test statistics $Z_{W,r1}(t)$.
r2	The constant in the test statistics $Z_{W,r2}(t)$.
n0	The starting index to be considered as a candidate for the change-point.
n1	The ending index to be considered as a candidate for the change-point.
pval.appr	If it is TRUE, the function outputs the p-value approximation based on asymptotic properties.
skew.corr	This argument is useful only when pval.appr=TRUE. If skew.corr is TRUE, the p-value approximation would incorporate skewness correction.
pval.perm	If it is TRUE, the function outputs the p-value from doing B permutations, where B is another argument that you can specify. Doing permutation could be time consuming, so use this argument with caution as it may take a long time to finish the permutation.
В	This argument is useful only when pval.perm=TRUE. The default value for B is 100.

kerseg1 5

Value

Returns a list stat containing the each scan statistic, tauhat containing the estimated location of change-point, appr containing the approximated p-values of the fast tests when argument 'pval.appr' is TRUE, and perm containing the permutation p-values of the fast tests and GKCP when argument 'pval.perm' is TRUE. See below for more details.

seq	A vector of each scan statistic (standardized counts).
Zmax	The test statistics (maximum of the scan statistics).
tauhat	An estimate of the location of the change-point.
fGKCP1_bon	The p-value of fGKCP ₁ obtained by the Bonferroni procedure.
fGKCP1_sim	The p-value of fGKCP ₁ obtained by the Simes procedure.
fGKCP2_bon	The p-value of fGKCP2 obtained by the Bonferroni procedure.
fGKCP2_sim	The p-value of fGKCP ₂ obtained by the Simes procedure.
GKCP	The p-value of GKCP obtained by the random permutation.

See Also

kerSeg-package, kerseg1, gaussiankernel, kerseg2

Examples

```
## Sequence 1: change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 25
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
# output results based on the permutation and the asymptotic results.
# the scan statistics can be found in a$scanZ.
# the approximated p-values can be found in a$appr.
# the permutation p-values can be found in a$perm.
## Sequence 2: change in both the mean and variance away from the middle of the sequence.
d = 50
mu = 2
sigma = 0.7
tau = 35
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d),sigma), n-tau))
K = gaussiankernel(y)
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
```

6 kerseg2

kerseg2	Kernel-based change-point detection for changed-interval alternatives

Description

This function finds an interval in the sequence where their underlying distribution differs from the rest of the sequence.

Usage

```
kerseg2(n, K, r1=1.2, r2=0.8, l0=0.05*n, l1=0.95*n, pval.appr=TRUE, skew.corr=TRUE, pval.perm=FALSE, B=100)
```

Arguments

n	The number of observations in the sequence.
K	The kernel matrix of observations in the sequence.
r1	The constant in the test statistics $Z_{W,r1}(t_1,t_2)$.
r2	The constant in the test statistics $Z_{W,r2}(t_1,t_2)$.
10	The minimum length of the interval to be considered as a changed interval.
11	The maximum length of the interval to be considered as a changed interval.
pval.appr	If it is TRUE, the function outputs the p-value approximation based on asymptotic properties.
skew.corr	This argument is useful only when pval.appr=TRUE. If skew.corr is TRUE, the p-value approximation would incorporate skewness correction.
pval.perm	If it is TRUE, the function outputs the p-value from doing B permutations, where B is another argument that you can specify. Doing permutation could be time consuming, so use this argument with caution as it may take a long time to finish the permutation.
В	This argument is useful only when pval.perm=TRUE. The default value for B is 100.

Value

Returns a list stat containing the each scan statistic, tauhat containing the estimated changed-interval, appr containing the approximated p-values of the fast tests when argument 'pval.appr' is TRUE, and perm containing the permutation p-values of the fast tests and GKCP when argument 'pval.perm' is TRUE. See below for more details.

seq	A matrix of each scan statistic (standardized counts).
Zmax	The test statistics (maximum of the scan statistics).
tauhat	An estimate of the two ends of the changed-interval.
fGKCP1_bon	The p-value of fGKCP ₁ obtained by the Bonferroni procedure.

skew 7

fGKCP1_sim	The p-value of fGKCP ₁ obtained by the Simes procedure.
fGKCP2_bon	The p-value of fGKCP ₂ obtained by the Bonferroni procedure.
fGKCP2_sim	The p-value of fGKCP ₂ obtained by the Simes procedure.
GKCP	The p-value of GKCP obtained by the random permutation.

See Also

```
kerSeg-package, kerseg2, gaussiankernel, kerseg1
```

Examples

```
## Sequence 3: change in both the mean and variance happens on an interval.
d = 50
mu = 2
sigma = 0.5
tau1 = 25
tau2 = 35
n = 50
set.seed(1)
y1 = matrix(rnorm(d*tau1),tau1)
y2 = matrix(rnorm(d*(tau2-tau1),mu/sqrt(d),sigma), tau2-tau1)
y3 = matrix(rnorm(d*(n-tau2)), n-tau2)
y = rbind(y1, y2, y3)
K = gaussiankernel(y)
a = kerseg2(n, K, pval.perm=TRUE, B=1000)
```

skew

Compute some components utilized in the third moment fomulas.

Description

This function provides some components used in the third moment fomulas.

Usage

```
skew(K, Rtemp, Rtemp2, R0, R2)
```

Arguments

K	A kernel matrix of observations in the sequence.
Rtemp	A numeric vector of k_{i} , the sum of kernel values for each row i.
Rtemp2	A numeric vector, the sum of squared kernel values for each row i.
RØ	The term R_0 , defined in the paper.
R2	The term R_2 , defined in the paper.

Value

Returns a list of components used in the third moment fomulas.

8 statint

statint	Compute the test statistics, D and W, for the changed-interval alternatives.
---------	--

Description

This function provides the test statistics, $D(t_1, t_2)$, $W(t_1, t_2)$, and the weighted $W(t_1, t_2)$ for the changed-interval alternatives.

Usage

```
statint(K, Rtemp, R0, r1, r2)
```

Arguments

K	A kernel matrix of observations in the sequence.
Rtemp	A numeric vector of k_i , the sum of kernel values for each row i.
R0	The term R_0 , defined in the paper.
r1	The constant in the test statistics $Z_{W,r1}(t_1,t_2)$.
r2	The constant in the test statistics $Z_{W,r2}(t_1,t_2)$.

Value

Returns a list of test statistics, $D(t_1, t_2)$, $W(t_1, t_2)$, $W_{r1}(t_1, t_2)$, and $W_{r2}(t_1, t_2)$.

Examples

```
## Sequence : change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 50
n = 100
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
R_temp = rowSums(K)
R0 = sum(K)
a = statint(K, R_temp, R0, r1=1.2, r2=0.8)
```

Index

```
gaussiankernel, 2, 3, 5, 7

kerSeg, 2

kerSeg-package (kerSeg), 2

kerseg1, 2, 3, 4, 5, 7

kerseg2, 2, 3, 5, 6, 7

skew, 7

statint, 8
```