Title: | Fast Multidimensional Entropy Estimation by k-d Partitioning |
---|---|
Description: | Estimate entropy of multidimensional data set. |
Authors: | Olaf Mersmann [aut, cre] , Dan Stowell [aut, cph], Queen Mary University of London [cph] |
Maintainer: | Olaf Mersmann <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.0 |
Built: | 2024-12-08 06:48:57 UTC |
Source: | CRAN |
Non-parametric estimator for the differential entropy of a multidimensional distribution, given a limited set of data points, by a recursive rectilinear partitioning.
kdpee(X, ci = 0.95, lower = apply(X, 2, min), upper = apply(X, 2, max))
kdpee(X, ci = 0.95, lower = apply(X, 2, min), upper = apply(X, 2, max))
X |
[ |
ci |
[ |
lower |
[ |
upper |
[ |
Differential entropy estimate.
D. Stowell and M. D. Plumbley Fast multidimensional entropy estimation by k-d partitioning. IEEE Signal Processing Letters 16 (6), 537–540, June 2009. http://dx.doi.org/10.1109/LSP.2009.2017346
Xu <- matrix(runif(1000 * 100), ncol=100) kdpee(Xu) Xn <- matrix(rnorm(1000 * 100), ncol=100) kdpee(Xn)
Xu <- matrix(runif(1000 * 100), ncol=100) kdpee(Xu) Xn <- matrix(rnorm(1000 * 100), ncol=100) kdpee(Xn)