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as.capacity-methods Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "set.func" Returns an object of class capacity.

object = "card.capacity" Returns an object of class capacity.

as.card.capacity-methods

Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "card.set.func" Returns an object of class card.capacity.

object = "capacity" Returns an object of class card.capacity.



4 as.game-methods

as.card.game-methods Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "card.set.func" Returns an object of class card.game.

object = "game" Returns an object of class card.game.

as.card.set.func-methods

Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "set.func" Returns an object of class card.set.func.

object = "Mobius.set.func" Returns an object of class card.set.func.

object = "Mobius.card.set.func" Returns an object of class card.set.func.

as.game-methods Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "set.func" Returns an object of class game.

object = "card.game" Returns an object of class game.
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as.Mobius.capacity-methods

Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "Mobius.set.func" Returns an object of class Mobius.capacity.

as.Mobius.card.set.func-methods

Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "Mobius.set.func" Returns an object of class Mobius.card.set.func.

object = "set.func" Returns an object of class Mobius.card.set.func.

object = "card.set.func" Returns an object of class Mobius.card.set.func.

as.Mobius.game-methods

Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "Mobius.set.func" Returns an object of class Mobius.game.
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as.Mobius.set.func-methods

Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "Mobius.card.set.func" Returns an object of class Mobius.set.func.

object = "set.func" Returns an object of class Mobius.set.func.

object = "card.set.func" Returns an object of class Mobius.set.func.

as.set.func-methods Coercion method

Description

Creates if possible a new object of the desired class from the old object.

Methods

object = "card.set.func" Returns an object of class set.func.

object = "Mobius.set.func" Returns an object of class set.func.

object = "Mobius.card.set.func" Returns an object of class set.func.

capacity-class Class "capacity"

Description

Class representing a capacity, i.e. a monotone set function vanishing at the empty set (also called
fuzzy measure, non-additive measure, monotone measure).

Objects from the Class

Objects can be mainly created by calls to the functions capacity and entropy.capa.ident.
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Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the
capacity is defined.

subsets: Object of class numeric of length 2^n containing the power set of the underlying set in
"natural" order. The subsets are coded as integers.

data: Object of class numeric of length 2^n containing the coefficients of the capacity in binary
order. We necessarily have data[1] = 0 plus some additional monotonicity constraints.

Extends

Class game, directly. Class superclass.capacity, directly. Class set.func, by class game. Class
superclass.set.func, by class game.

Methods

as.card.capacity signature(object = "capacity")

conjugate signature(object = "capacity")

entropy signature(object = "capacity")

favor signature(object = "capacity")

is.normalized signature(object = "capacity")

normalize signature(object = "capacity")

Mobius signature(object = "capacity")

orness signature(object = "capacity")

variance signature(object = "capacity")

veto signature(object = "capacity")

See Also

capacity,
entropy.capa.ident,
as.card.capacity-methods,
conjugate-methods,
entropy-methods,
favor-methods,
is.normalized-methods,
normalize-methods,
Mobius-methods,
orness-methods,
variance-methods,
veto-methods.
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Examples

## a capacity
mu <- capacity(c(0:13,13,13)/13)

## the attributes of the object
mu@n
mu@data
mu@subsets

## a test
is.normalized(mu)
normalize(mu)

## a conversion that should not work
## as.card.capacity(mu)

## some transformations
conjugate(mu)
Mobius(mu)
## let us check ...
zeta(Mobius(mu))

## some summary indices
orness(mu)
veto(mu)
favor(mu)
variance(mu)
entropy(mu)
## the same
summary(mu)

card.capacity-class Class "card.capacity"

Description

Class representing a cardinal capacity, i.e. a capacity whose values depend only on the cardinality
of subsets (also called symmetric capacity).

Objects from the Class

Objects can be created by calls to the functions card.capacity, lower.capacity, upper.capacity,
uniform.capacity.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the
cardinal game is defined.

data: Object of class numeric of length n+1 containing the coefficients of the cardinal capacity.
We necessarily have data[1]=0 and data[i+1]-data[i]>0.
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Extends

Class card.game, directly. Class superclass.capacity, directly. Class card.set.func, by class
card.game. Class superclass.set.func, by class card.game.

Methods

as.capacity signature(object = "card.capacity")

conjugate signature(object = "card.capacity")

entropy signature(object = "card.capacity")

favor signature(object = "card.capacity")

is.normalized signature(object = "card.capacity")

normalize signature(object = "card.capacity")

orness signature(object = "card.capacity")

variance signature(object = "card.capacity")

veto signature(object = "card.capacity")

See Also

capacity-class,
card.capacity,
as.capacity-methods,
conjugate-methods,
entropy-methods,
favor-methods,
is.normalized-methods,
orness-methods,
variance-methods,
veto-methods.

Examples

## a capacity
mu <- card.capacity(0:6/6)
## the same
mu <- uniform.capacity(6)

# the attributes of the object
mu@n
mu@data

## a test
is.normalized(mu)
normalize(mu)

## a transformation
conjugate(mu)

## some summary indices
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orness(mu)
veto(mu)
favor(mu)
variance(mu)
entropy(mu)
## the same
summary(mu)

card.game-class Class "card.game"

Description

Class representing a cardinal game, i.e. a game whose values depend only on the cardinality of
subsets.

Objects from the Class

Objects can be created by calls to the function card.game.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the
cardinal game is defined.

data: Object of class numeric of length n+1 containing the coefficients of the cardinal game. We
necessarily have data[1]=0.

Extends

Class card.set.func, directly. Class superclass.set.func, by class card.set.func.

Methods

as.game signature(object = "card.game")

Choquet.integral signature(object = "card.game", f = "numeric")

Sipos.integral signature(object = "card.game", f = "numeric")

Sugeno.integral signature(object = "card.game", f = "numeric")

See Also

game-class,
card.game,
as.game-methods,
Choquet.integral-methods,
Sipos.integral-methods,
Sugeno.integral-methods,
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Examples

## a cardinal game (which is a capacity)
mu <- card.game(c(0,rep(1,4)))

# the attributes of the object
mu@n
mu@data

## a conversion
as.game(mu)

## integral calculations
f <- c(0.2,0.3,0.1,0.7)
Choquet.integral(mu,f)
Sugeno.integral(mu,f)
f <- c(0.2,-0.3,0.1,-0.7)
Sipos.integral(mu,f)

card.set.func Create objects representing cardinal set functions.

Description

These functions create objects of class card.set.func, card.game, or card.capacity from an
object of class numeric.

Usage

card.set.func(object)
card.game(object)
card.capacity(object)
lower.capacity(n)
upper.capacity(n)
uniform.capacity(n)

Arguments

object An object of class numeric containing the coefficients of the cardinal set func-
tion. The coefficient at position k corresponds to the value of the cardinal set
function for subsets of size k.

n An object of class numeric of length 1 containing the cardinal of the set on
which the cardinal set function is defined.

Value

Return objects of class card.set.func, card.game, or card.capacity.
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See Also

card.capacity-class,
card.game-class,
card.set.func-class.

Examples

card.set.func(4:-2)
card.game(c(0,-2:2))
card.capacity(0:5)
lower.capacity(3)
upper.capacity(4)
uniform.capacity(5)

card.set.func-class Class "card.set.func"

Description

Class representing a cardinal set function, i.e. whose values depend only on the cardinality of
subsets.

Objects from the Class

Objects can be created by calls to the function card.set.func.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the
cardinal set function is defined.

data: Object of class numeric of length n+1 containing the coefficients of the cardinal set function.

Extends

Class superclass.set.func, directly.

Methods

as.card.game signature(object = "card.set.func")

as.card.capacity signature(object = "card.set.func")

as.set.func signature(object = "card.set.func")

as.Mobius.card.set.func signature(object = "card.set.func")

as.Mobius.set.func signature(object = "card.set.func")

conjugate signature(object = "card.set.func")

interaction.indices signature(object = "card.set.func")
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is.cardinal signature(object = "card.set.func")

is.kadditive signature(object = "card.set.func", k = "numeric")

is.monotone signature(object = "card.set.func")

Mobius signature(object = "card.set.func")

Shapley.value signature(object = "card.set.func")

to.data.frame signature(object = "card.set.func")

See Also

set.func-class,
card.set.func,
as.card.game-methods,
as.card.capacity-methods,
as.set.func-methods,
as.Mobius.set.func-methods,
as.Mobius.card.set.func-methods,
conjugate-methods,
interaction.indices-methods,
is.cardinal-methods,
is.kadditive-methods,
is.monotone-methods,
Mobius-methods,
Shapley.value-methods,
to.data.frame-methods.

Examples

## a cardinal set function
mu <- card.set.func(-3:2)

# the attributes of the object
mu@n
mu@data

## some conversions that cannot work
## Not run: as.card.game(mu)
## Not run: as.card.capacityfunc(mu)

## the following should work
as.set.func(mu)

## some tests
is.cardinal(mu)
is.kadditive(mu,2)
is.monotone(mu)

## some transformations
conjugate(mu)
Mobius(mu)
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## let us check ...
zeta(Mobius(mu))

## summary
Shapley.value(mu)
interaction.indices(mu)
# the same
summary(mu)

## save the set function to a file
d <- to.data.frame(mu)
## Not run: write.table(d,"my.card.set.func.csv",sep="\t")

# finally, some other conversions that should work
mu <- card.set.func(0:5)
as.card.game(mu)
as.card.capacity(mu)

Choquet.integral-methods

Choquet integral

Description

Computes the Choquet integral of a discrete function with respect to a game. The game can be
given either under the form of an object of class game, card.game or Mobius.game. If the integrand
is not positive, this function computes what is known as the asymmetric Choquet integral.

Methods

object = "Mobius.game", f = "numeric" The Choquet integral of f is computed from the Möbius
transform of a game.

object = "game", f = "numeric" The Choquet integral of f is computed from a game.

object = "card.game", f = "numeric" The Choquet integral of f is computed from a cardinal
game.

References

G. Choquet (1953), Theory of capacities, Annales de l’Institut Fourier 5, pages 131-295.

D. Denneberg (2000), Non-additive measure and integral, basic concepts and their role for appli-
cations, in: M. Grabisch, T. Murofushi, and M. Sugeno Eds, Fuzzy Measures and Integrals: Theory
and Applications, Physica-Verlag, pages 42-69.

M. Grabisch, T. Murofushi, M. Sugeno Eds (2000), Fuzzy Measures and Integrals: Theory and
Applications, Physica-Verlag.

M. Grabisch and Ch. Labreuche (2002), The symmetric and asymmetric Choquet integrals on finite
spaces for decision making, Statistical Papers 43, pages 37-52.
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M. Grabisch (2000), A graphical interpretation of the Choquet integral, IEEE Transactions on
Fuzzy Systems 8, pages 627-631.

J.-L. Marichal (2000), An axiomatic approach of the discrete Choquet integral as a tool to aggregate
interacting criteria, IEEE Transactions on Fuzzy Systems 8:6, pages 800-807.

Murofushi and M. Sugeno (1993), Some quantities represented by the Choquet integral, Fuzzy Sets
and Systems 56, pages 229-235.

Murofushi and M. Sugeno (2000), Fuzzy measures and fuzzy integrals, in: M. Grabisch, T. Muro-
fushi, and M. Sugeno Eds, Fuzzy Measures and Integrals: Theory and Applications, Physica-Verlag,
pages 3-41.

See Also

game-class,
Mobius.game-class,
card.game-class.

Examples

## a normalized capacity
mu <- capacity(c(0:13/13,1,1))

## and its Mobius transform
a <- Mobius(mu)

## a discrete positive function f
f <- c(0.1,0.9,0.3,0.8)

## the Choquet integral of f w.r.t mu
Choquet.integral(mu,f)
Choquet.integral(a,f)

## a similar example with a cardinal capacity
mu <- uniform.capacity(4)
Choquet.integral(mu,f)

conjugate-methods The conjugate (or dual) transform

Description

Computes the conjugate (also called the dual) of a set function. The conjugate of the conjugate of
a game gives the original game back.

Methods

object = "capacity" Returns an object of class capacity.
object = "card.capacity" Returns an object of class card.capacity.
object = "card.set.func" Returns an object of class card.game.
object = "set.func" Returns an object of class game.
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References

T. Murofushi and M. Sugeno (2000), Fuzzy measures and fuzzy integrals, in: M. Grabisch, T.
Murofushi, and M. Sugeno Eds, Fuzzy Measures and Integrals: Theory and Applications, Physica-
Verlag, pages 3-41.

See Also

capacity-class,
card.capacity-class,
set.func-class,
card.set.func-class.

Examples

## a game
mu <- game(c(0,-7:7))
mu

## its conjugate
conjugate(mu)
## and mu again
conjugate(conjugate(mu))

## a similar example with the upper capacity
mu <- capacity(c(0,rep(1,15)))
mu
conjugate(mu)
conjugate(conjugate(mu))

## a similar example with an object of class card.capacity
mu <- upper.capacity(6)
mu
conjugate(mu)
conjugate(conjugate(mu))

## the conjugate of a set function is a game
mu <- set.func(-7:8)
mu
conjugate(mu)
mu <- card.set.func(-2:5)
conjugate(mu)

entropy-methods Normalized entropy of a capacity

Description

Computes the normalized entropy of a capacity. The capacity can be given either under the form of
an object of class capacity, card.capacity or Mobius.capacity.
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Methods

object = "Mobius.capacity" The normalized entropy is computed from the Möbius transform of
a capacity.

object = "capacity" The normalized entropy is computed directly from a capacity.

object = "card.capacity" The normalized entropy is computed from a cardinal capacity.

References

J-L. Marichal (2002), Entropy of discrete Choquet capacities, European Journal of Operational
Research, 3:137, 2002, pages 612-624.

I. Kojadinovic, J-L. Marichal and M. Roubens (2005), An axiomatic approach to the definition of
the entropy of a discrete Choquet capacity, Information Sciences 172, pages 131-153.

See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class,
Mobius-methods.

Examples

## a capacity
mu <- capacity(c(0,0,0:13))

## its Mobius transform
a <- Mobius(mu)

## their normalized entropy
entropy(mu)
entropy(a)

## similar examples with card.capacity objects
mu <- lower.capacity(4)
entropy(mu)
mu <- uniform.capacity(4)
entropy(mu)

entropy.capa.ident Unsupervised identification of a capacity from profiles

Description

This function estimates a capacity using as argument a set of data under the form: datum=(score
on attribute 1, ..., score on attribute n). The approach roughly consists in replacing the subjective
notion of importance of a subset of attributes by that of information content of a subset of attributes,
which is estimated from the data by means of a parametric entropy measure. For more details, see
the references hereafter.
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Usage

entropy.capa.ident(d, entropy = "renyi", parameter = 1)

Arguments

d An object of class data.frame containing the discretized data. Each column of
the data.frame must be a factor. Each line corresponds to a datum.

entropy An object of class character containg the name of the parametric entropy
measure to be used for the estimation. The allowed values are "renyi" and
"havrda.charvat".

parameter An object of class numeric containing he value of the parameter of the choosen
entropy. The parameter value must be a positive real number. If equal to 1, the
Shannon entropy is used.

Value

Returns an object of class capacity.

References

I. Kojadinovic (2004), Estimation of the weights of interacting criteria from the set of profiles by
means of information-theoretic functionals, European Journal of Operational Research 155:3, pages
741-751.

I. Kojadinovic (2005), Unusupervised aggregation of commensurate correlated attributes by means
of the Choquet integral and entropy functionals, International Journal of Intelligent Systems, in
press.

See Also

capacity-class,
lin.prog.capa.ident,
mini.var.capa.ident,
mini.dist.capa.ident,
least.squares.capa.ident,
heuristic.ls.capa.ident,
ls.sorting.capa.ident,
ls.ranking.capa.ident.

Examples

## a set of randomly generated data
## for instance, marks on a [0,20] scale
p <- data.frame(matrix(runif(500,0,20),100,5))
names(p) <- c("Stat","Prob","Alg","Cal","Eng")

## discretization
p[p <= 5] <- 1
p[p > 5 & p <= 10] <- 2
p[p > 10 & p <= 15] <- 3
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p[p > 15] <- 4

d <- data.frame(factor(p[[1]]),
factor(p[[2]]),
factor(p[[3]]),
factor(p[[4]]),
factor(p[[5]]))

## associated unsupervised capacity
mu <- entropy.capa.ident(d)
mu

expect.Choquet.unif-methods

Expectation and standard deviation of the Choquet integral in the uni-
form and normal cases

Description

Methods for computing the expectation and standard deviation of the Choquet integral in the stan-
dard uniform and standard normal cases.

Methods

object = "game" Returns the expectation or the standard deviation of the Choquet integral.

References

J-L. Marichal and I. Kojadinovic (2007), The distribution of linear combinations of lattice polyno-
mials from the uniform distribution, submitted.

See Also

game-class, Mobius.game-class.

Examples

## a capacity
mu <- capacity(c(0,0.1,0.6,rep(0.9,4),1))

## the expectation and the standard deviation
## of the Choquet integral in the uniform case
expect.Choquet.unif(mu)
sd.Choquet.unif(mu)

## the same but empirically
m <- 10000
ch <- numeric(m)
for (i in 1:m) {
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f <- runif(3)
ch[i] <- Choquet.integral(mu,f)

}
mean(ch)
sd(ch)

## the expectation and the standard deviation
## of the Choquet integral in the normal case
expect.Choquet.norm(mu)
sd.Choquet.norm(mu)
expect.Choquet.norm(Mobius(mu))

## the same but empirically
for (i in 1:m) {

f <- rnorm(3)
ch[i] <- Choquet.integral(mu,f)

}
mean(ch)
sd(ch)

favor-methods Favor indices

Description

Computes the favor indices of a Choquet integral from the underlying normalized capacity. The
capacity can be given either under the form of an object of class capacity, card.capacity or
Mobius.capacity.

Methods

object = "Mobius.capacity" The favor indices are computed from the Möbius transform of a
capacity.

object = "capacity" The favor indices are computed directly from a capacity.

object = "card.capacity" The favor indices are computed from a cardinal capacity.

References

J.-L. Marichal (2000), Behavioral analysis of aggregation in multicriteria decision aid, in: Pref-
erences and Decisions under Incomplete Knowledge, J. Fodor and B. De Baets and P. Perny Eds,
Physica-Verlag, pages 153-178.

J.-L. Marichal (2004), Tolerant or intolerant character of interacting criteria in aggregation by the
Choquet integral, European Journal of Operational Research 155:3, pages 771-791.
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See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class,
Mobius-methods.

Examples

## a capacity
mu <- capacity(c(0:13,13,13))

## its Mobius transform
a <- Mobius(mu)

## their favor indices
favor(mu)
favor(a)

## the same with a card.capacity object
mu <- lower.capacity(4)
favor(mu)

game-class Class "game"

Description

Class representing a game, i.e. a set function vanishing at the empty set (also called non monotonic
fuzzy measure).

Objects from the Class

Objects can be created by calls to the function game.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the
game is defined.

subsets: Object of class numeric of length 2^n containing the power set of the underlying set in
"natural" order. The subsets are coded as integers.

data: Object of class numeric of length 2^n containing the coefficients of the game in binary order.
We necessarily have data[1] = 0.

Extends

Class set.func, directly. Class superclass.set.func, by class set.func.
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Methods

as.card.game signature(object = "game")

Choquet.integral signature(object = "game", f = "numeric")

Mobius signature(object = "game")

Sipos.integral signature(object = "game", f = "numeric")

Sugeno.integral signature(object = "game", f = "numeric")

pdf.Choquet.unif signature(object = "game", f = "numeric")

cdf.Choquet.unif signature(object = "game", f = "numeric")

expect.Choquet.unif signature(object = "game")

sd.Choquet.unif signature(object = "game")

expect.Choquet.norm signature(object = "game")

sd.Choquet.norm signature(object = "game")

See Also

game,
as.card.game-methods,
Choquet.integral-methods,
Mobius-methods,
Sipos.integral-methods,
Sugeno.integral-methods,
pdf.Choquet.unif-methods,
cdf.Choquet.unif-methods,
expect.Choquet.unif-methods,
sd.Choquet.unif-methods,
expect.Choquet.norm-methods,
sd.Choquet.norm-methods.

Examples

## a game (which is a capacity)
mu <- game(c(0,rep(1,15)))

## the attributes of the object
mu@n
mu@data
mu@subsets

## a conversion
as.card.game(mu)

## a transformation
Mobius(mu)
## let us check ...
zeta(Mobius(mu))

## integral calculations
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f <- c(0.2,0.3,0.1,0.7)
Choquet.integral(mu,f)
Sugeno.integral(mu,f)
f <- c(0.2,-0.3,0.1,-0.7)
Sipos.integral(mu,f)

heuristic.ls.capa.ident

Heuristic least squares capacity identification

Description

Creates an object of class capacity or game by means of the heuristic algorithm proposed by
Grabisch (1995). More precisely, given a set of data under the form: datum=(score on criterion 1,
..., score on criterion n, overall score), this function heuristically determines a capacity that should
be close to minimizing the sum of squared errors between overall scores as given by the data and
the output of the Choquet integral for those data. See reference hereafter for more details.

Usage

heuristic.ls.capa.ident(n, mu, C, g, Integral="Choquet", maxiter = 500,
alpha = 0.01, epsilon = 1e-6)

Arguments

n Object of class numeric containing the number of elements of the set on which
the object of class Mobius.capacity is to be defined.

mu Object of class capacity containing the initial capacity. It should be initialized
to the equidistributed capacity.

C Object of class matrix containing the n-column criteria matrix. Each line of
this matrix corresponds to a vector of the form: (score on criterion 1, ..., score
on criterion n).

g Object of class numeric containg the global scores associated with the vectors
given in the criteria matrix.

Integral Object of class character indicating whether the model is based on the asym-
metric Choquet integral (Integral = "Choquet") or the symmetric Choquet in-
tegral (Integral = "Sipos").

maxiter Maximum number of iterations.
alpha Object of class numeric containing the coefficient of the gradient (multiplicative

coefficient of the partial derivative). Its value lies in [0,1]. The higher the value,
the larger the move of the capacity at each iteration.

epsilon Object of class numeric used for defining a stopping criterion. Iterations are
stopped if one of the following cases happen: 1) itmax iterations have been per-
formed 2) the error criterion is growing up 3) normax < epsilon, where normax is
the maximum absolute normalized model error, i.e., the maximum over all data
of the quantity |e|/outmax, where e=desired output - model output, and outmax
is the highest value of the absolute value of the model output
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Details

The algorithm is explained in details in the reference hereafter.

Value

The function returns a list structured as follows:

solution Object of class capacity if the solution is montone or of class game otherwise.

n.iter Number of iterations taken by the algorithm.

residuals Differences between the provided global evaluations and those returned by the
obtained model.

mse Mean square error between the provided global evaluations and those returned
by the obtained model.

References

M. Grabisch (1995), A new algorithm for identifying fuzzy measures and its application to pattern
recognition, Int. Joint Conf. of the 4th IEEE Int. Conf. on Fuzzy Systems and the 2nd Int. Fuzzy
Engineering Symposium, Yokohama, Japan, 145-150.

See Also

capacity-class,
least.squares.capa.ident,
lin.prog.capa.ident,
mini.var.capa.ident,
mini.dist.capa.ident,
ls.sorting.capa.ident,
ls.ranking.capa.ident,
entropy.capa.ident.

Examples

## number of criteria
n <- 4

## the number of alternatives
n.a <- 1000

## a randomly generated 5-criteria matrix
C <- matrix(rnorm(n*n.a,10,2),n.a,n)

## the corresponding global scores
g <- numeric(n.a)

## generate a random capacity
x <- runif(2^n-1)
for (i in 2:(2^n-1))

x[i] <- x[i] + x[i-1]
mu <- normalize(capacity(c(0,x)))
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for (i in 1:n.a)
g[i] <- Choquet.integral(mu,C[i,])

## the initial capacity
## here the uniform capacity
mu.in <- as.capacity(uniform.capacity(n))

## the solution
hlsc <- heuristic.ls.capa.ident(n,mu.in,C,g)
mu.sol <- hlsc$solution

## the difference between mu and mu.sol
mu@data - mu.sol@data

hlsc

interaction.indices-methods

The Shapley interaction indices

Description

Computes the Shapley interaction index for pairs of elements with respect to a set function. The
set function can be given either under the form of an object of class set.func, card.set.func or
Mobius.set.func .

Methods

object = "Mobius.set.func" The Shapley interaction indices are computed from the Möbius trans-
form of a set function.

object = "card.set.func" The Shapley interaction indices are computed from a cardinal set func-
tion.

object = "set.func" The Shapley interaction indices are computed from a general set function.

References

G. Owen (1971/72), Multilinear extensions of games, Management Sci. 18, pages 64–79.

T. Murofushi and S. Soneda (1993), Techniques for reading fuzzy measures (III): interaction index,
9th Fuzzy System Symposium, pages 693–696, Saporo, Japan.

M. Grabisch, J-L. Marichal and M. Roubens (2000), Equivalent representations of set functions,
Mathematics of Operations Research 25(2), pages 157–178.

See Also

Mobius.set.func-class,
card.set.func-class,
set.func-class,
Mobius-methods.
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Examples

## a set function
mu <- set.func(c(-7:6,6,6))

## the associated interaction indices
interaction.indices(mu)

## a similar example using a Mobius.set.func object
a <- Mobius(mu)
interaction.indices(a)

## a similar example using a card.set.func object
mu <- upper.capacity(6)
interaction.indices(mu)

is.cardinal-methods Test method

Description

Tests whether a set function is cardinal, i.e., if its values depend only on the cardinality of subsets.
The set function can be given either under the form of an object of class set.func, card.set.func
or Mobius.set.func.

Methods

object = "Mobius.set.func" Returns an object of class logical.

object = "card.set.func" Returns an object of class logical.

object = "set.func" Returns an object of class logical.

Examples

is.cardinal(set.func(-7:8))
is.cardinal(uniform.capacity(8))
is.cardinal(Mobius.game(0:10,4,2))

is.kadditive-methods Test method

Description

Tests whether a set function is k-additive, i.e., if its Möbius function vanishes for subsets of more
than k elements. The set function can be given either under the form of an object of class set.func,
card.set.func or Mobius.set.func.
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Details

In order to test whether a coefficient is equal to zero, its absolute value is compared with epsilon
whose default value is 1e-9.

Methods

object = "Mobius.set.func", k = "numeric", epsilon = "numeric", epsilon = "numeric" Returns
an object of class logical.

object = "card.set.func", k = "numeric", epsilon = "numeric" Returns an object of class logical.

object = "set.func", k = "numeric", epsilon = "numeric" Returns an object of class logical.

References

M. Grabisch (1997), k-order additive discrete fuzzy measures and their representation, Fuzzy Sets
and Systems 92(2), pages 167–189.

M. Grabisch (2000), The interaction and Möbius representations of fuzzy measures on finites spaces,
k-additive measures: a survey, in: Fuzzy Measures and Integrals: Theory and Applications, M.
Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 70-93.

See Also

Mobius.set.func-class,
card.set.func-class,
set.func-class,
Mobius-methods,

k.truncate.Mobius-methods.

Examples

## a set function
mu <- set.func(c(0,1,1,1,2,2,2,3))
mu
is.kadditive(mu,2)
is.kadditive(mu,1)

## the Mobius representation of a set function, 2-additive by construction
a <- Mobius.set.func(c(0,1,2,1,3,1,2,1,2,3,1),4,2)
is.kadditive(a,2)
is.kadditive(a,1)
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is.monotone-methods Test method

Description

Tests whether a set function is monotone with respect to set inclusion. The set function can be given
either under the form of an object of class set.func, card.set.func or Mobius.set.func.

Details

For objects of class set.func or card.set.func, the monotonicity constraints are considered to
be satisfied (cf. references hereafter) if the following inequalities are satisfied

µ(S ∪ i)− µ(S) ≥ −epsilon

for all S and all i. For objects of class Mobius.set.func, it is required that a similar condition with
respect to the Möbius representation be satisfied (cf. references hereafter).

Methods

object = "Mobius.set.func", verbose = "logical", epsilon = "numeric" Returns an object of class
logical. If verbose=TRUE, displays the violated monotonicity constraints, if any.

object = "card.set.func", verbose = "logical", epsilon = "numeric" Returns an object of class
logical. If verbose=TRUE, displays the violated monotonicity constraints, if any.

object = "set.func", verbose = "logical", epsilon = "numeric" Returns an object of class logical.
If verbose=TRUE, displays the violated monotonicity constraints, if any.

References

A. Chateauneuf and J-Y. Jaffray (1989), Some characterizations of lower probabilities and other
monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17:3, pages
263–283.

M. Grabisch (2000), The interaction and Möbius representations of fuzzy measures on finites spaces,
k-additive measures: a survey, in: Fuzzy Measures and Integrals: Theory and Applications, M.
Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 70-93.

See Also

Mobius.set.func-class,
card.set.func-class,
set.func-class.
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Examples

## a monotone set function
mu <- set.func(c(0,1,1,1,2,2,2,3))
mu
is.monotone(mu)

## the Mobius representation of a monotone set function
a <- Mobius.set.func(c(0,1,2,1,3,1,2,1,2,3,1),4,2)
is.monotone(a)

## non-monotone examples
mu <- set.func(c(0,-7:7))
is.monotone(mu,verbose=TRUE)
a <- Mobius(mu)
is.monotone(a,verbose=TRUE)

is.normalized-methods Test method

Description

Tests whether a capacity is normalized, i.e., if its value on the universal set is 1. The capacity can be
given either under the form of an object of class capacity, card.capacity or Mobius.capacity.

Methods

object = "Mobius.capacity" Returns a logical.

object = "capacity" Returns a logical.

object = "card.capacity" Returns a logical.

See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class.

Examples

## a capacity
mu <- capacity(0:15)
is.normalized(mu)
normalize(mu)

## its Mobius transform
a <- Mobius(mu)
is.normalized(a)
normalize(a)
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## a cardinal capacity
mu <- uniform.capacity(7)
is.normalized(mu)

k.truncate.Mobius-methods

k-order truncation of the Möbius representation of a set function.

Description

Truncates the Möbius representation of a set function by considering that the values of subsets
whose cardinal is superior to k are zero. The result is at most k-additive.

Methods

object = "set.func", k = "numeric" Returns an object of class Mobius.set.func. The Möbius
representation of the set function is first computed and then k-truncated.

object = "Mobius.set.func", k = "numeric" Returns an object of class Mobius.set.func.

References

M. Grabisch (1997), k-order additive discrete fuzzy measures and their representation, Fuzzy Sets
and Systems 92(2), pages 167-189.

M. Grabisch (2000), The interaction and Möbius representations of fuzzy measures on finites spaces,
k-additive measures: a survey, in: Fuzzy Measures and Integrals: Theory and Applications, M.
Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 70-93.

See Also

Mobius.set.func-class,
set.func-class,
Mobius-methods.

Examples

## a set function
mu <- set.func(c(0,1,1,1,2,2,2,3))
mu

## 2-truncate it
k.truncate.Mobius(mu,2)
## 2-truncate it
k.truncate.Mobius(Mobius(mu),2)
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least.squares.capa.ident

Least squares capacity identification

Description

Creates an object of class Mobius.capacity by means of an approach grounded on least squares
optimization. More precisely, given a set of data under the form: datum=(score on criterion 1, ...,
score on criterion n, overall score), and possibly additional linear constraints expressing preferences,
importance of criteria, etc., this function determines, if it exists, a capacity minimizing the sum of
squared errors between overall scores as given by the data and the output of the Choquet integral
for those data, and compatible with the additional linear constraints. The existence is ensured if no
additional constraint is given. The problem is solved using quadratic programming.

Usage

least.squares.capa.ident(n, k, C, g, Integral="Choquet",
A.Shapley.preorder = NULL, A.Shapley.interval = NULL,
A.interaction.preorder = NULL, A.interaction.interval = NULL,
A.inter.additive.partition = NULL, sigf = 7, maxiter = 40,
epsilon = 1e-6)

Arguments

n Object of class numeric containing the number of elements of the set on which
the object of class Mobius.capacity is to be defined.

k Object of class numeric imposing that the solution is at most a k-additive capac-
ity (the Möbius transform of subsets whose cardinal is superior to k vanishes).

C Object of class matrix containing the n-column criteria matrix. Each line of
this matrix corresponds to a vector of the form: (score on criterion 1, ..., score
on criterion n).

g Object of class numeric containg the global scores associated with the vectors
given in the criteria matrix.

Integral Object of class character indicating whether the model is based on the asym-
metric Choquet integral (Integral = "Choquet") or the symmetric Choquet in-
tegral (Integral = "Sipos").

A.Shapley.preorder

Object of class matrix containing the constraints relative to the preorder of the
criteria. Each line of this 3-column matrix corresponds to one constraint of the
type "the Shapley importance index of criterion i is greater than the Shapley
importance index of criterion j with preference threshold delta.S". A line is
structured as follows: the first element encodes i, the second j, and the third
element contains the preference threshold delta.S.
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A.Shapley.interval

Object of class matrix containing the constraints relative to the quantitative
importance of the criteria. Each line of this 3-column matrix corresponds to one
constraint of the type "the Shapley importance index of criterion i lies in the
interval [a,b]". The interval [a,b] has to be included in [0,1]. A line of the
matrix is structured as follows: the first element encodes i, the second a, and
the third b.

A.interaction.preorder

Object of class matrix containing the constraints relative to the preorder of the
pairs of criteria in terms of the Shapley interaction index. Each line of this 5-
column matrix corresponds to one constraint of the type "the Shapley interaction
index of the pair ij of criteria is greater than the Shapley interaction index of
the pair kl of criteria with preference threshold delta.I". A line is structured
as follows: the first two elements encode ij, the second two kl, and the fifth
element contains the preference threshold delta.I.

A.interaction.interval

Object of class matrix containing the constraints relative to the type and the
magnitude of the Shapley interaction index for pairs of criteria. Each line of
this 4-column matrix corresponds to one constraint of the type "the Shapley
interaction index of the pair ij of criteria lies in the interval [a,b]". The interval
[a,b] has to be included in [-1,1]. A line is structured as follows: the first two
elements encode ij, the third element encodes a, and the fourth element encodes
b.

A.inter.additive.partition

Object of class numeric encoding a partition of the set of criteria imposing
that there be no interactions among criteria belonging to different classes of the
partition. The partition is to be given under the form of a vector of integers from
{1,...,n} of length n such that two criteria belonging to the same class are
"marked" by the same integer. For instance, the partition {{1,3},{2,4},{5}}
can be encoded as c(1,2,1,2,3). See Fujimoto and Murofushi (2000) for more
details on the concept of mu-inter-additive partition.

sigf Precision (default: 7 significant figures). Parameter to be passed to the ipop
function (quadratic programming) of the kernlab package.

maxiter Maximum number of iterations. Parameter to be passed to the ipop function
(quadratic programming) of the kernlab package.

epsilon Object of class numeric containing the threshold value for the monotonicity
constraints, i.e. the difference between the "weights" of two subsets whose car-
dinals differ exactly by 1 must be greater than epsilon.

Details

The quadratic program is solved using the ipop function of the kernlab package.

Value

The function returns a list structured as follows:

solution Object of class Mobius.capacity containing the Möbius transform of the k-
additive solution, if any.
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dual The dual solution of the problem.

how Character string describing the type of convergence.

residuals Differences between the provided global evaluations and those returned by the
obtained model.

References

K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy
Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds,
Physica Verlag, pages 95-103.

M. Grabisch, H.T. Nguyen and E.A. Walker (1995), Fundamentals of uncertainty calculi with ap-
plications to fuzzy inference, Kluwer Academic, Dordrecht.

M. Grabisch and M. Roubens (2000), Application of the Choquet Integral in Multicriteria Decision
Making, in: Fuzzy Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi,
and M. Sugeno Eds, Physica Verlag, pages 415-434.

P. Miranda and M. Grabisch (1999), Optimization issues for fuzzy measures, International Journal
of Fuzziness and Knowledge-based Systems 7:6, pages 545-560.

See Also

Mobius.capacity-class,
heuristic.ls.capa.ident,
lin.prog.capa.ident,
mini.var.capa.ident,
mini.dist.capa.ident,
ls.sorting.capa.ident,
entropy.capa.ident.

Examples

## the number of data
n.d <- 20

## a randomly generated 5-criteria matrix
C <- matrix(rnorm(5*n.d,10,2),n.d,5)

## the corresponding global scores
g <- numeric(n.d)
mu <- capacity(c(0:29,29,29)/29)
for (i in 1:n.d)

g[i] <- Choquet.integral(mu,C[i,])

## Not run:
## the full solution
lsc <- least.squares.capa.ident(5,5,C,g)
a <- lsc$solution
a
mu.sol <- zeta(a)
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## the difference between mu and mu.sol
mu@data - mu.sol@data

## the residuals
lsc$residuals

## the mean square error
mean(lsc$residuals^2)

## a 3-additive solution
lsc <- least.squares.capa.ident(5,3,C,g)
a <- lsc$solution
mu.sol <- zeta(a)
mu@data - mu.sol@data
lsc$residuals

## End(Not run)

## a similar example based on the Sipos integral

## a randomly generated 5-criteria matrix
C <- matrix(rnorm(5*n.d,0,2),n.d,5)

## the corresponding global scores
g <- numeric(n.d)
mu <- capacity(c(0:29,29,29)/29)
for (i in 1:n.d)

g[i] <- Sipos.integral(mu,C[i,])

## Not run:
## the full solution
lsc <- least.squares.capa.ident(5,5,C,g,Integral = "Sipos")
a <- lsc$solution
mu.sol <- zeta(a)
mu@data - mu.sol@data
lsc$residuals

## a 3-additive solution
lsc <- least.squares.capa.ident(5,3,C,g,Integral = "Sipos")
a <- lsc$solution
mu.sol <- zeta(a)
mu@data - mu.sol@data
lsc$residuals

## End(Not run)

## additional constraints
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## a Shapley preorder constraint matrix
## Sh(1) - Sh(2) >= -delta.S
## Sh(2) - Sh(1) >= -delta.S
## Sh(3) - Sh(4) >= -delta.S
## Sh(4) - Sh(3) >= -delta.S
## i.e. criteria 1,2 and criteria 3,4
## should have the same global importances
delta.S <- 0.01
Asp <- rbind(c(1,2,-delta.S),

c(2,1,-delta.S),
c(3,4,-delta.S),
c(4,3,-delta.S)
)

## a Shapley interval constraint matrix
## 0.3 <= Sh(1) <= 0.9
Asi <- rbind(c(1,0.3,0.9))

## an interaction preorder constraint matrix
## such that I(12) = I(45)
delta.I <- 0.01
Aip <- rbind(c(1,2,4,5,-delta.I),

c(4,5,1,2,-delta.I))

## an interaction interval constraint matrix
## i.e. -0.20 <= I(12) <= -0.15
delta.I <- 0.01
Aii <- rbind(c(1,2,-0.2,-0.15))

## an inter-additive partition constraint
## criteria 1,2,3 and criteria 4,5 are independent
Aiap <- c(1,1,1,2,2)

## a more constrained solution

lsc <- least.squares.capa.ident(5,5,C,g,Integral = "Sipos",
A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii,
A.inter.additive.partition = Aiap,
sigf = 5)

a <- lsc$solution
mu.sol <- zeta(a)
mu@data - mu.sol@data
lsc$residuals
summary(a)
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lin.prog.capa.ident Capacity identification based on linear programming

Description

Creates an object of class Mobius.capacity using the linear programming approach proposed by
Marichal and Roubens (see reference hereafter). Roughly speaking, this function determines, if it
exists, the capacity compatible with a set of linear constraints that "separates" the most the provided
alternatives. The problem is solved using the lpSolve package.

Usage

lin.prog.capa.ident(n, k, A.Choquet.preorder = NULL,
A.Shapley.preorder = NULL, A.Shapley.interval = NULL,
A.interaction.preorder = NULL, A.interaction.interval = NULL,
A.inter.additive.partition = NULL, epsilon = 1e-6)

Arguments

n Object of class numeric containing the number of elements of the set on which
the object of class Mobius.capacity is to be defined.

k Object of class numeric imposing that the solution is at most a k-additive capac-
ity (the Möbius transform of subsets whose cardinal is superior to k vanishes).

A.Choquet.preorder

Object of class matrix containing the constraints relative to the preorder of the
alternatives. Each line of the matrix corresponds to one constraint of the type
"alternative a is preferred to alternative b with preference threshold delta.C".
A line is structured as follows: the first n elements encode alternative a, the next
n elements encode alternative b, and the last element contains the preference
threshold delta.C.

A.Shapley.preorder

Object of class matrix containing the constraints relative to the preorder of the
criteria. Each line of this 3-column matrix corresponds to one constraint of the
type "the Shapley importance index of criterion i is greater than the Shapley
importance index of criterion j with preference threshold delta.S". A line is
structured as follows: the first element encodes i, the second j, and the third
element contains the preference threshold delta.S.

A.Shapley.interval

Object of class matrix containing the constraints relative to the quantitative
importance of the criteria. Each line of this 3-column matrix corresponds to one
constraint of the type "the Shapley importance index of criterion i lies in the
interval [a,b]". The interval [a,b] has to be included in [0,1]. A line of the
matrix is structured as follows: the first element encodes i, the second a, and
the third b.
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A.interaction.preorder

Object of class matrix containing the constraints relative to the preorder of the
pairs of criteria in terms of the Shapley interaction index. Each line of this 5-
column matrix corresponds to one constraint of the type "the Shapley interaction
index of the pair ij of criteria is greater than the Shapley interaction index of
the pair kl of criteria with preference threshold delta.I". A line is structured
as follows: the first two elements encode ij, the second two kl, and the fifth
element contains the preference threshold delta.I.

A.interaction.interval

Object of class matrix containing the constraints relative to the type and the
magnitude of the Shapley interaction index for pairs of criteria. Each line of
this 4-column matrix corresponds to one constraint of the type "the Shapley
interaction index of the pair ij of criteria lies in the interval [a,b]". The interval
[a,b] has to be included in [-1,1]. A line is structured as follows: the first two
elements encode ij, the third element encodes a, and the fourth element encodes
b.

A.inter.additive.partition

Object of class numeric encoding a partition of the set of criteria imposing
that there be no interactions among criteria belonging to different classes of the
partition. The partition is to be given under the form of a vector of integers from
{1,...,n} of length n such that two criteria belonging to the same class are
"marked" by the same integer. For instance, the partition {{1,3},{2,4},{5}}
can be encoded as c(1,2,1,2,3). See Fujimoto and Murofushi (2000) for more
details on the concept of mu-inter-additive partition.

epsilon Object of class numeric containing the thresold value for the monotonicity con-
straints, i.e. the difference between the "weights" of two subsets whose cardinals
differ exactly by 1 must be greater than epsilon.

Details

The linear program is solved using the lp function of the lpSolve.

Value

The function returns a list structured as follows:

solution Object of class Mobius.capacity containing the Möbius transform of the k-
additive solution, if any.

value Value of the objective function.

lp.object Object of class lp.object returned by lpSolve.

References

K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy
Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds,
Physica Verlag, pages 95-103.

J-L. Marichal and M. Roubens (2000), Determination of weights of interacting criteria from a
reference set, European Journal of Operational Research 124, pages 641-650.
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See Also

Mobius.capacity-class,
mini.var.capa.ident,
mini.dist.capa.ident,
least.squares.capa.ident,
heuristic.ls.capa.ident,
ls.sorting.capa.ident,
entropy.capa.ident.

Examples

## some alternatives
a <- c(18,11,18,11,11)
b <- c(18,18,11,11,11)
c <- c(11,11,18,18,11)
d <- c(18,11,11,11,18)
e <- c(11,11,18,11,18)

## preference threshold relative
## to the preorder of the alternatives
delta.C <- 1

## corresponding Choquet preorder constraint matrix
Acp <- rbind(c(d,a,delta.C),

c(a,e,delta.C),
c(e,b,delta.C),
c(b,c,delta.C)
)

## a Shapley preorder constraint matrix
## Sh(1) - Sh(2) >= -delta.S
## Sh(2) - Sh(1) >= -delta.S
## Sh(3) - Sh(4) >= -delta.S
## Sh(4) - Sh(3) >= -delta.S
## i.e. criteria 1,2 and criteria 3,4
## should have the same global importances
delta.S <- 0.01
Asp <- rbind(c(1,2,-delta.S),

c(2,1,-delta.S),
c(3,4,-delta.S),
c(4,3,-delta.S)
)

## a Shapley interval constraint matrix
## 0.3 <= Sh(1) <= 0.9
Asi <- rbind(c(1,0.3,0.9))

## an interaction preorder constraint matrix
## such that I(12) = I(34)
delta.I <- 0.01
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Aip <- rbind(c(1,2,3,4,-delta.I),
c(3,4,1,2,-delta.I))

## an interaction interval constraint matrix
## i.e. -0.20 <= I(12) <= -0.15
Aii <- rbind(c(1,2,-0.2,-0.15))

## Not run:
## a LP 2-additive solution
lin.prog <- lin.prog.capa.ident(5,2,A.Choquet.preorder = Acp)
m <- lin.prog$solution
m

## the resulting global evaluations
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

## the Shapley value
Shapley.value(m)

## a LP 3-additive more constrained solution
lin.prog2 <- lin.prog.capa.ident(5,3,

A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp)

m <- lin.prog2$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

Shapley.value(m)

## a LP 5-additive more constrained solution
lin.prog3 <- lin.prog.capa.ident(5,5,

A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii)

m <- lin.prog3$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

summary(m)
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## End(Not run)

ls.ranking.capa.ident Least squares capacity identification in the framework of a ranking
procedure

Description

Ranking alternatives means ordering them from the best to the worst alternative. The aim of the
implemented method is to model a given ranking by means of a Choquet integral. The result of
the function is an object of class Mobius.capacity. This function is an implementation of the
TOMASO method (see Meyer and Roubens (2005)) in the particular ranking framework. The input
data are given under the form of a set of alternatives and a partial weak order, each alternative being
described according to a set of criteria. These well-known alternatives are called "prototypes". They
represent alternatives for which the decision maker has an a priori knowledge and for which he/she
is able to build a ranking. If the provided ranking (partial weak order) of the prototypes cannot be
described by a Choquet integral, an approximative solution, which minimizes the "gap" between the
given ranking and the one derived from the Choquet integral, is proposed. The problem is solved
by quadratic programming.

Usage

ls.ranking.capa.ident(n, k, C, rk, d, A.Shapley.preorder = NULL,
A.Shapley.interval = NULL, A.interaction.preorder = NULL,
A.interaction.interval = NULL, A.inter.additive.partition = NULL,
sigf = 5, maxiter = 20, epsilon = 1e-6)

Arguments

n Object of class numeric containing the number of elements of the set on which
the object of class Mobius.capacity is to be defined (in short, the number of
criteria).

k Object of class numeric imposing that the solution is at most a k-additive capac-
ity (the Moebius transform of subsets whose cardinal is superior to k vanishes).

C Object of class matrix containing the n-column criteria matrix. Each line of
this matrix corresponds to a prototype.

rk Object of class matrix containing the constraints relative to the preorder of the
prototypes. Each line of this 2-column matrix corresponds to one constraint of
the type "the alternative i is prefered to the alternative j". A line is structured
as follows: the first element encodes i, the second j.

d Object of class numeric containing the threshold value, i.e. the minimal "dis-
tance" between two neighbor alternatives in the given ranking (e.g. the dif-
ference in terms of the Choquet integral of the a prototype with rank 3 and a
prototype with rank 4 should be at least d).
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A.Shapley.preorder

Object of class matrix containing the constraints relative to the preorder of the
criteria. Each line of this 3-column matrix corresponds to one constraint of the
type "the Shapley importance index of criterion i is greater than the Shapley
importance index of criterion j with preference threshold delta.S". A line is
structured as follows: the first element encodes i, the second j, and the third
element contains the preference threshold delta.S.

A.Shapley.interval

Object of class matrix containing the constraints relative to the quantitative
importance of the criteria. Each line of this 3-column matrix corresponds to one
constraint of the type "the Shapley importance index of criterion i lies in the
interval [a,b]". The interval [a,b] has to be included in [0,1]. A line of the
matrix is structured as follows: the first element encodes i, the second a, and
the third b.

A.interaction.preorder

Object of class matrix containing the constraints relative to the preorder of the
pairs of criteria in terms of the Shapley interaction index. Each line of this 5-
column matrix corresponds to one constraint of the type "the Shapley interaction
index of the pair ij of criteria is greater than the Shapley interaction index of
the pair kl of criteria with preference threshold delta.I". A line is structured
as follows: the first two elements encode ij, the second two kl, and the fifth
element contains the preference threshold delta.I.

A.interaction.interval

Object of class matrix containing the constraints relative to the type and the
magnitude of the Shapley interaction index for pairs of criteria. Each line of
this 4-column matrix corresponds to one constraint of the type "the Shapley
interaction index of the pair ij of criteria lies in the interval [a,b]". The interval
[a,b] has to be included in [-1,1]. A line is structured as follows: the first two
elements encode ij, the third element encodes a, and the fourth element encodes
b.

A.inter.additive.partition

Object of class numeric encoding a partition of the set of criteria imposing
that there be no interactions among criteria belonging to different classes of the
partition. The partition is to be given under the form of a vector of integers from
{1,...,n} of length n such that two criteria belonging to the same class are
"marked" by the same integer. For instance, the partition {{1,3},{2,4},{5}}
can be encoded as c(1,2,1,2,3). See Fujimoto and Murofushi (2000) for more
details on the concept of mu-inter-additive partition.

sigf Precision (default: 5 significant figures). Parameter to be passed to the ipop
function (quadratic programming) of the kernlab package.

maxiter Maximum number of iterations. Parameter to be passed to the ipop function
(quadratic programming) of the kernlab package.

epsilon Object of class numeric containing the threshold value for the monotonicity
constraints, i.e. the difference between the "weights" of two subsets whose car-
dinals differ exactly by 1 must be greater than epsilon.
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Details

The quadratic program is solved using the ipop function of the kernlab package.

Value

The function returns a list structured as follows:

solution Object of class Mobius.capacity containing the Moebius transform of the k-
additive solution.

glob.eval The global evaluations satisfying the given ranking.

how Information returned by ipop (cf. kernlab) on the convergence of the solver.

rk.C The ranks of the prototypes

Choquet.C The Choquet integral of the prototypes

References

K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy
Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds,
Physica Verlag, pages 95-103.

P. Meyer, M. Roubens (2005), Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision
Aid, in: J. Figueira, S. Greco, and M. Ehrgott, Eds, Multiple Criteria Decision Analysis: State
of the Art Surveys, volume 78 of International Series in Operations Research and Management
Science, chapter 12, pages 471-506. Springer Science + Business Media, Inc., New York.

See Also

Mobius.capacity-class,
lin.prog.capa.ident,
mini.var.capa.ident,
mini.dist.capa.ident,
least.squares.capa.ident,
heuristic.ls.capa.ident,
entropy.capa.ident.

Examples

arthur <- c(1, 1, 0.75, 0.25)
lancelot <- c(0.75, 0.75, 0.75, 0.75)
yvain <- c(1, 0.625, 0.5, 1)
perceval <- c(0.25, 0.5, 0.75, 0.75)
erec <- c(0.375, 1, 0.5 , 0.75)

P <- rbind(arthur, lancelot, yvain, perceval, erec)

# lancelot > erec; yvain > erec, erec > perceval, erec > arthur
rk.proto <- rbind(c("lancelot","erec"), c("yvain","erec"), c("erec","perceval"), c("erec","arthur"))

n<-4
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k<-2
d<-0.1

## search for a capacity which satisfies the constraints
lrc <- ls.ranking.capa.ident(n ,k, P, rk.proto, d)

lrc

ls.sorting.capa.ident Least squares capacity identification in the framework of a sorting
procedure

Description

Sorting alternatives means assigning each alternative to a predefined ordered class. The aim of
the implemented method is to model a given classification (sorting) of the alternatives by means
of a Choquet integral. The result of the function is an object of class Mobius.capacity. This
function (in combination with ls.sorting.treatment) is an implementation of the TOMASO
method; see Meyer and Roubens (2005). The input data are given under the form of a set of
alternatives and associated classes, each alternative being described according to a set of criteria.
These well-known alternatives are called "prototypes". They represent alternatives for which the
decision maker has an a priori knowledge and that he/she is able to assign to one of the ordered
classes. If the provided classification of the prototypes cannot be described by a Choquet integral,
an approximative solution, which minimizes the "gap" between the given classification and the one
derived from the Choquet integral, is proposed. The problem is solved by quadratic programming.
This function should be used in combination with ls.sorting.treatment which allows to evaluate
the model which has been built and to assign other alternatives to the ordered classes.

Usage

ls.sorting.capa.ident(n, k, C, cl, d, A.Shapley.preorder = NULL,
A.Shapley.interval = NULL, A.interaction.preorder = NULL,
A.interaction.interval = NULL, A.inter.additive.partition = NULL,
sigf = 5, maxiter = 20, epsilon = 1e-6)

Arguments

n Object of class numeric containing the number of elements of the set on which
the object of class Mobius.capacity is to be defined (in short, the number of
criteria).

k Object of class numeric imposing that the solution is at most a k-additive capac-
ity (the Möbius transform of subsets whose cardinal is superior to k vanishes).

C Object of class matrix containing the n-column criteria matrix. Each line of
this matrix corresponds to a prototype.
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cl Object of class numeric containing the indexes of the classes the alternatives are
belonging to (the greater the class index, the better the prototype is considered
by the decision maker). Each class index between min(cl) and max(cl) must be
present.

d Object of class numeric containing the threshold value for the classes, i.e. the
minimal "distance" between two neighbor classes (e.g. the difference in terms
of the Choquet integral of the worst prototype of class 3 and the best prototype
of class 2 should be at least d).

A.Shapley.preorder

Object of class matrix containing the constraints relative to the preorder of the
criteria. Each line of this 3-column matrix corresponds to one constraint of the
type "the Shapley importance index of criterion i is greater than the Shapley
importance index of criterion j with preference threshold delta.S". A line is
structured as follows: the first element encodes i, the second j, and the third
element contains the preference threshold delta.S.

A.Shapley.interval

Object of class matrix containing the constraints relative to the quantitative
importance of the criteria. Each line of this 3-column matrix corresponds to one
constraint of the type "the Shapley importance index of criterion i lies in the
interval [a,b]". The interval [a,b] has to be included in [0,1]. A line of the
matrix is structured as follows: the first element encodes i, the second a, and
the third b.

A.interaction.preorder

Object of class matrix containing the constraints relative to the preorder of the
pairs of criteria in terms of the Shapley interaction index. Each line of this 5-
column matrix corresponds to one constraint of the type "the Shapley interaction
index of the pair ij of criteria is greater than the Shapley interaction index of
the pair kl of criteria with preference threshold delta.I". A line is structured
as follows: the first two elements encode ij, the second two kl, and the fifth
element contains the preference threshold delta.I.

A.interaction.interval

Object of class matrix containing the constraints relative to the type and the
magnitude of the Shapley interaction index for pairs of criteria. Each line of
this 4-column matrix corresponds to one constraint of the type "the Shapley
interaction index of the pair ij of criteria lies in the interval [a,b]". The interval
[a,b] has to be included in [-1,1]. A line is structured as follows: the first two
elements encode ij, the third element encodes a, and the fourth element encodes
b.

A.inter.additive.partition

Object of class numeric encoding a partition of the set of criteria imposing
that there be no interactions among criteria belonging to different classes of the
partition. The partition is to be given under the form of a vector of integers from
{1,...,n} of length n such that two criteria belonging to the same class are
"marked" by the same integer. For instance, the partition {{1,3},{2,4},{5}}
can be encoded as c(1,2,1,2,3). See Fujimoto and Murofushi (2000) for more
details on the concept of mu-inter-additive partition.

sigf Precision (default: 5 significant figures). Parameter to be passed to the ipop
function (quadratic programming) of the kernlab package.
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maxiter Maximum number of iterations. Parameter to be passed to the ipop function
(quadratic programming) of the kernlab package.

epsilon Object of class numeric containing the threshold value for the monotonicity
constraints, i.e. the difference between the "weights" of two subsets whose car-
dinals differ exactly by 1 must be greater than epsilon.

Details

The quadratic program is solved using the ipop function of the kernlab package.

Value

The function returns a list structured as follows:

solution Object of class Mobius.capacity containing the Möbius transform of the k-
additive solution.

glob.eval The global evaluations satisfying the given classification.

how Information returned by ipop (cf. kernlab) on the convergence of the solver.

References

K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy
Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds,
Physica Verlag, pages 95-103.

P. Meyer, M. Roubens (2005), Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision
Aid, in: J. Figueira, S. Greco, and M. Ehrgott, Eds, Multiple Criteria Decision Analysis: State
of the Art Surveys, volume 78 of International Series in Operations Research and Management
Science, chapter 12, pages 471-506. Springer Science + Business Media, Inc., New York.

See Also

Mobius.capacity-class,
lin.prog.capa.ident,
mini.var.capa.ident,
mini.dist.capa.ident,
least.squares.capa.ident,
heuristic.ls.capa.ident,
ls.sorting.treatment,
entropy.capa.ident.

Examples

## generate a random problem with 10 prototypes and 4 criteria
n.proto <- 10 ## prototypes
n <- 4 ## criteria
k <- 4
d <- 0.1

## generating random data for the prototypes
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C <- matrix(runif(n.proto*n,0,1),n.proto,n)
cl <- numeric(n.proto)

## the corresponding global evaluations
glob.eval <- numeric(n.proto)
a <- capacity(c(0:(2^n-3),(2^n-3),(2^n-3))/(2^n-3))
for (i in 1:n.proto)

glob.eval[i] <- Choquet.integral(a,C[i,])

## and the classes for the prototypes
cl[glob.eval <= 0.33] <- 1
cl[glob.eval > 0.33 & glob.eval <= 0.66] <-2
cl[glob.eval > 0.66] <- 3

cl

## Not run:
# starting the calculations
# search for a capacity which satisfies the constraints
lsc <- ls.sorting.capa.ident(n ,k, C, cl, d)

## output of the quadratic program (ipop, package kernlab)
lsc$how

## the capacity satisfying the constraints
lsc$solution
summary(lsc$solution)
## the global evaluations satisfying the constraints
lsc$glob.eval

## End(Not run)

## let us now add some constraints

## a Shapley preorder constraint matrix
## Sh(1) > Sh(2)
## Sh(3) > Sh(4)
delta.S <-0.01
Asp <- rbind(c(1,2,delta.S), c(3,4,delta.S))

## a Shapley interval constraint matrix
## 0.1 <= Sh(1) <= 0.2
Asi <- rbind(c(1,0.1,0.2))

## an interaction preorder constraint matrix
## such that I(12) > I(34)
delta.I <- 0.01
Aip <- rbind(c(1,2,3,4,delta.I))

## an interaction interval constraint matrix
## i.e. 0.2 <= I(12) <= 0.4
## and 0 < I(34) <= 1
Aii <- rbind(c(1,2,0.2,0.4), c(3,4,delta.I,1))
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## an inter-additive partition constraint
## criteria 1,2 and criteria 3,4 are independent
Aiap <- c(1,1,2,2)

## starting the calculations
## search for a capacity which satisfies the constraints
lsc <- ls.sorting.capa.ident(n ,k, C, cl, d,

A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii,
A.inter.additive.partition = Aiap)

## output of ipop
lsc$how
## the capacity satisfying the constraints
lsc$solution
summary(lsc$solution)
## the global evaluations satisfying the constraints
lsc$glob.eval

ls.sorting.treatment Least squares capacity identification in the framework of a sorting
procedure: evaluation of the determined capacity

Description

This function assigns alternatives to classes and optionally compares the obtained classification to a
given one. The classes are described by a set of prototypes (well-known alternatives for the decision
maker) and a capacity (which can, for instance, be determined by ls.sorting.capa.ident). This
function (in combination with ls.sorting.capa.ident) is an implementation of the TOMASO
method; see Meyer and Roubens (2005).

Usage

ls.sorting.treatment(P, cl.proto, a, A, cl.orig.A = NULL)

Arguments

P Object of class matrix containing the n-column criteria matrix. Each line of
this matrix corresponds to a prototype. A prototype is an alternative for which
the class is known beforehand.

cl.proto Object of class numeric containing the indexes of the classes the prototypes P
are belonging to (the greater the class index, the better the prototype is consid-
ered by the decision maker).
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a Object of class Mobius.capacity used to model the classes determined by P by
a Choquet integral.

A Object of class matrix containing the n-column criteria matrix representing the
alternatives which have to be classified.

cl.orig.A Object of class numeric containing the "true" classes of the alternatives of A.
This can be used for the evaluation of the quality of the model.

Value

The function returns a list structured as follows:

correct.A Object of class matrix which contains the different types of assignments of the
elements of A. In columns the alternatives. First line: correct assignment to a
single class (assignment of degree 0). Second line: correct ambiguous assign-
ment to two classes (assignment of degree 1), etc. Last line: bad assignment. In
case no orig.class.A is given, correct.A is NULL.

class.A Object of class matrix which contains the assignments of the elements of A. In
columns, the alternatives. First line, lower class. Second line, upper class.

eval.correct Object of class numeric which contains the ratio assignments over number of
elements of A(for each type of assignment; the first element is the ratio of correct
assignments). In case no orig.class.A is given, eval.correct is NULL.

minmax.P Object of class matrix which contains the min and the max of each class, ac-
cording to the prototypes. In columns, the classes, first line: the minimum,
second line: the maximum.

Choquet.A Object of class numeric which contains the Choquet integral of the evaluations
of the alternatives of A.

References

P. Meyer, M. Roubens (2005), Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision
Aid, in: J. Figueira, S. Greco, and M. Ehrgott, Eds, Multiple Criteria Decision Analysis: State
of the Art Surveys, volume 78 of International Series in Operations Research and Management
Science, chapter 12, pages 471-506. Springer Science + Business Media, Inc., New York.

See Also

Mobius.capacity-class,
mini.var.capa.ident,
mini.dist.capa.ident,
ls.sorting.capa.ident,
least.squares.capa.ident,
heuristic.ls.capa.ident,
entropy.capa.ident.
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Examples

## generate a random problem with 10 prototypes and 4 criteria
n.proto <- 10 ## prototypes
n <- 4 ## criteria
P <- matrix(runif(n.proto*n,0,1),n.proto,n)

## the corresponding global scores, based on a randomly generated
## capacity a
glob.eval <- numeric(n.proto)
a <- capacity(c(0:(2^n-3),(2^n-3),(2^n-3))/(2^n-3))
for (i in 1:n.proto)

glob.eval[i] <- Choquet.integral(a,P[i,])

## based on these global scores, let us create a classification (3 classes)
cl.proto<-numeric(n.proto)
cl.proto[glob.eval <= 0.33] <- 1
cl.proto[glob.eval > 0.33 & glob.eval<=0.66] <-2
cl.proto[glob.eval > 0.66] <- 3

## search for a capacity which satisfies the constraints
lsc <- ls.sorting.capa.ident(n ,4, P, cl.proto, 0.1)

## output of the QP
lsc$how

## analyse the quality of the model (classify the prototypes by the
## model and compare both assignments)
lst <- ls.sorting.treatment(P,cl.proto,lsc$solution,P,cl.proto)

## assignments of the prototypes
lst$class.A
## assignment types
lst$correct.A
## evaluation
lst$eval.correct

## generate a second set of random alternatives (A)
## their "correct" class is determined as beforehand with the
## randomly generated capacity a
## the goal is to see if we can reproduce this classification
## by the capacity learnt from the prototypes

## a randomly generated criteria matrix of 10 alternatives
A <- matrix(runif(10*n,0,1),10,n)
cl.orig.A <-numeric(10)

## the corresponding global scores
glob.eval.A <- numeric(10)
for (i in 1:10)

glob.eval.A[i] <- Choquet.integral(a,A[i,])

## based on these global scores, let us determine a classification
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cl.orig.A[glob.eval.A <= 0.33] <- 1
cl.orig.A[glob.eval.A>0.33 & glob.eval.A<=0.66] <-2
cl.orig.A[glob.eval.A > 0.66] <- 3

## let us now classify the alternatives of A according to the model
## built on P

lst <- ls.sorting.treatment(P,cl.proto,lsc$solution,A,cl.orig.A)

## assignment of the alternatives of A
lst$class.A
## type of assignments
lst$correct.A
## evaluation
lst$eval.correct

## show the learnt capacity
## x11()
## barplot(Shapley.value(lsc$solution), main="Learnt capacity", sub="Shapley")
## summary of the learnt capacity
lsc$solution
summary(lsc$solution)

mini.dist.capa.ident Minimum distance capacity identification

Description

Creates an object of class Mobius.capacity using a minimum distance principle. More precisely,
this function determines, if it exists, the closest capacity to a user-given game compatible with a
set of linear constraints. The distance can be chosen among three quadratic distances (see help and
references hereafter). The problem is solved using strictly convex quadratic programming.

Usage

mini.dist.capa.ident(a, k, distance = "Choquet.coefficients",
A.Choquet.preorder = NULL, A.Shapley.preorder = NULL,
A.Shapley.interval = NULL, A.interaction.preorder = NULL,
A.interaction.interval = NULL, A.inter.additive.partition = NULL,
epsilon = 1e-6)

Arguments

a Object of class Mobius.game containing the Möbius transform of the game to
be approached.

k Object of class numeric imposing that the solution is at most a k-additive capac-
ity (the Möbius transform of subsets whose cardinal is superior to k vanishes).
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distance Object of class character indicating which quadratic distance is to be used
in the objective function. The choice distance = "Choquet.coefficients"
will result in the minimization of the average distance between Choquet integral
coefficients, the choice distance = "binary.alternatives" will result in the
minimization of the average distance between binary alternatives, and the choice
distance = "global.scores" will result in the minimization of the average
distance between global scores.

A.Choquet.preorder

Object of class matrix containing the constraints relative to the preorder of the
alternatives. Each line of the matrix corresponds to one constraint of the type
"alternative a is preferred to alternative b with preference threshold delta.C".
A line is structured as follows: the first n elements encode alternative a, the next
n elements encode alternative b, and the last element contains the preference
threshold delta.C.

A.Shapley.preorder

Object of class matrix containing the constraints relative to the preorder of the
criteria. Each line of this 3-column matrix corresponds to one constraint of the
type "the Shapley importance index of criterion i is greater than the Shapley
importance index of criterion j with preference threshold delta.S". A line is
structured as follows: the first element encodes i, the second j, and the third
element contains the preference threshold delta.S.

A.Shapley.interval

Object of class matrix containing the constraints relative to the quantitative
importance of the criteria. Each line of this 3-column matrix corresponds to one
constraint of the type "the Shapley importance index of criterion i lies in the
interval [a,b]". The interval [a,b] has to be included in [0,1]. A line of the
matrix is structured as follows: the first element encodes i, the second a, and
the third b.

A.interaction.preorder

Object of class matrix containing the constraints relative to the preorder of the
pairs of criteria in terms of the Shapley interaction index. Each line of this 5-
column matrix corresponds to one constraint of the type "the Shapley interaction
index of the pair ij of criteria is greater than the Shapley interaction index of
the pair kl of criteria with preference threshold delta.I". A line is structured
as follows: the first two elements encode ij, the second two kl, and the fifth
element contains the preference threshold delta.I.

A.interaction.interval

Object of class matrix containing the constraints relative to the type and the
magnitude of the Shapley interaction index for pairs of criteria. Each line of
this 4-column matrix corresponds to one constraint of the type "the Shapley
interaction index of the pair ij of criteria lies in the interval [a,b]". The interval
[a,b] has to be included in [-1,1]. A line is structured as follows: the first two
elements encode ij, the third element encodes a, and the fourth element encodes
b.

A.inter.additive.partition

Object of class numeric encoding a partition of the set of criteria imposing
that there be no interactions among criteria belonging to different classes of the
partition. The partition is to be given under the form of a vector of integers from
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{1,...,n} of length n such that two criteria belonging to the same class are
"marked" by the same integer. For instance, the partition {{1,3},{2,4},{5}}
can be encoded as c(1,2,1,2,3). See Fujimoto and Murofushi (2000) for more
details on the concept of mu-inter-additive partition.

epsilon Object of class numeric containing the thresold value for the monotonicity con-
straints, i.e. the difference between the "weights" of two subsets whose cardinals
differ exactly by 1 must be greater than epsilon.

Details

The quadratic program is solved using the solve.QP function of the quadprog package.

Value

The function returns a list structured as follows:

solution Object of class Mobius.capacity containing the Möbius transform of the k-
additive solution, if any.

value Value of the objective function.

iterations Information returned by solve.QP.

iact Information returned by solve.QP.

References

K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy
Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds,
Physica Verlag, pages 95-103.

I. Kojadinovic (2006), Quadratic objective functions for capacity and bi-capacity identification and
approximation, A Quarterly Journal of Operations Research (40R), in press.

See Also

Mobius.capacity-class,
lin.prog.capa.ident,
mini.var.capa.ident,
least.squares.capa.ident,
heuristic.ls.capa.ident,
ls.sorting.capa.ident,
entropy.capa.ident.

Examples

## some alternatives
a <- c(18,11,18,11,11)
b <- c(18,18,11,11,11)
c <- c(11,11,18,18,11)
d <- c(18,11,11,11,18)
e <- c(11,11,18,11,18)
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## preference threshold relative
## to the preorder of the alternatives
delta.C <- 1

## corresponding Choquet preorder constraint matrix
Acp <- rbind(c(d,a,delta.C),

c(a,e,delta.C),
c(e,b,delta.C),
c(b,c,delta.C)
)

## a Shapley preorder constraint matrix
## Sh(1) - Sh(2) >= -delta.S
## Sh(2) - Sh(1) >= -delta.S
## Sh(3) - Sh(4) >= -delta.S
## Sh(4) - Sh(3) >= -delta.S
## i.e. criteria 1,2 and criteria 3,4
## should have the same global importances
delta.S <- 0.01
Asp <- rbind(c(1,2,-delta.S),

c(2,1,-delta.S),
c(3,4,-delta.S),
c(4,3,-delta.S)
)

## a Shapley interval constraint matrix
## 0.3 <= Sh(1) <= 0.9
Asi <- rbind(c(1,0.3,0.9))

## an interaction preorder constraint matrix
## such that I(12) = I(34)
delta.I <- 0.01
Aip <- rbind(c(1,2,3,4,-delta.I),

c(3,4,1,2,-delta.I))

## an interaction interval constraint matrix
## i.e. -0.20 <= I(12) <= -0.15
Aii <- rbind(c(1,2,-0.2,-0.15))

## the capacity that we want to approach
x <- runif(31)
for (i in 2:31)

x[i] <- x[i] + x[i-1]
mu <- normalize(capacity(c(0,x)))
## and its Mobius transform
a.mu <- Mobius(mu)

## some basic checks
## Not run:
mini.dist.capa.ident(a.mu,5)
mini.dist.capa.ident(a.mu,5,"binary.alternatives")
mini.dist.capa.ident(a.mu,5,"global.scores")
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mini.dist.capa.ident(a.mu,3)
mini.dist.capa.ident(a.mu,3,"binary.alternatives")
mini.dist.capa.ident(a.mu,3,"global.scores")

## End(Not run)

## a minimum distance 2-additive solution
min.dist <- mini.dist.capa.ident(a.mu,2,"binary.alternatives",

A.Choquet.preorder = Acp)
m <- min.dist$solution
m

## a minimum distance 3-additive more constrained solution
min.dist2 <- mini.dist.capa.ident(a.mu,3,"global.scores",

A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp)

m <- min.dist2$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

Shapley.value(m)

## Not run:
## a minimum distance 5-additive more constrained solution
min.dist3 <- mini.dist.capa.ident(a.mu,5,

A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii)

m <- min.dist3$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

summary(m)

## End(Not run)

mini.var.capa.ident Minimum variance capacity identification
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Description

Creates an object of class Mobius.capacity using a maximum like quadratic entropy principle,
which is equivalent to the minimization of the variance. More precisely, this function determines,
if it exists, the minimum variance capacity compatible with a set of linear constraints. The problem
is solved using strictly convex quadratic programming.

Usage

mini.var.capa.ident(n, k, A.Choquet.preorder = NULL,
A.Shapley.preorder = NULL, A.Shapley.interval = NULL,
A.interaction.preorder = NULL, A.interaction.interval = NULL,
A.inter.additive.partition = NULL, epsilon = 1e-6)

Arguments

n Object of class numeric containing the number of elements of the set on which
the object of class Mobius.capacity is to be defined.

k Object of class numeric imposing that the solution is at most a k-additive capac-
ity (the Möbius transform of subsets whose cardinal is superior to k vanishes).

A.Choquet.preorder

Object of class matrix containing the constraints relative to the preorder of the
alternatives. Each line of the matrix corresponds to one constraint of the type
"alternative a is preferred to alternative b with preference threshold delta.C".
A line is structured as follows: the first n elements encode alternative a, the next
n elements encode alternative b, and the last element contains the preference
threshold delta.C.

A.Shapley.preorder

Object of class matrix containing the constraints relative to the preorder of the
criteria. Each line of this 3-column matrix corresponds to one constraint of the
type "the Shapley importance index of criterion i is greater than the Shapley
importance index of criterion j with preference threshold delta.S". A line is
structured as follows: the first element encodes i, the second j, and the third
element contains the preference threshold delta.S.

A.Shapley.interval

Object of class matrix containing the constraints relative to the quantitative
importance of the criteria. Each line of this 3-column matrix corresponds to one
constraint of the type "the Shapley importance index of criterion i lies in the
interval [a,b]". The interval [a,b] has to be included in [0,1]. A line of the
matrix is structured as follows: the first element encodes i, the second a, and
the third b.

A.interaction.preorder

Object of class matrix containing the constraints relative to the preorder of the
pairs of criteria in terms of the Shapley interaction index. Each line of this 5-
column matrix corresponds to one constraint of the type "the Shapley interaction
index of the pair ij of criteria is greater than the Shapley interaction index of
the pair kl of criteria with preference threshold delta.I". A line is structured
as follows: the first two elements encode ij, the second two kl, and the fifth
element contains the preference threshold delta.I.
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A.interaction.interval

Object of class matrix containing the constraints relative to the type and the
magnitude of the Shapley interaction index for pairs of criteria. Each line of
this 4-column matrix corresponds to one constraint of the type "the Shapley
interaction index of the pair ij of criteria lies in the interval [a,b]". The interval
[a,b] has to be included in [-1,1]. A line is structured as follows: the first two
elements encode ij, the third element encodes a, and the fourth element encodes
b.

A.inter.additive.partition

Object of class numeric encoding a partition of the set of criteria imposing
that there be no interactions among criteria belonging to different classes of the
partition. The partition is to be given under the form of a vector of integers from
{1,...,n} of length n such that two criteria belonging to the same class are
"marked" by the same integer. For instance, the partition {{1,3},{2,4},{5}}
can be encoded as c(1,2,1,2,3). See Fujimoto and Murofushi (2000) for more
details on the concept of mu-inter-additive partition.

epsilon Object of class numeric containing the thresold value for the monotonicity con-
straints, i.e. the difference between the "weights" of two subsets whose cardinals
differ exactly by 1 must be greater than epsilon.

Details

The quadratic program is solved using the solve.QP function of the quadprog package.

Value

The function returns a list structured as follows:

solution Object of class Mobius.capacity containing the Möbius transform of the k-
additive solution, if any.

value Value of the objective function.

iterations Information returned by solve.QP.

iact Information returned by solve.QP.

References

K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy
Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds,
Physica Verlag, pages 95-103.

I. Kojadinovic (2005), Minimum variance capacity identification, European Journal of Operational
Research, in press.

See Also

Mobius.capacity-class,
lin.prog.capa.ident,
mini.dist.capa.ident,
least.squares.capa.ident,
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heuristic.ls.capa.ident,
ls.sorting.capa.ident,
entropy.capa.ident.

Examples

## some alternatives
a <- c(18,11,18,11,11)
b <- c(18,18,11,11,11)
c <- c(11,11,18,18,11)
d <- c(18,11,11,11,18)
e <- c(11,11,18,11,18)

## preference threshold relative
## to the preorder of the alternatives
delta.C <- 1

## corresponding Choquet preorder constraint matrix
Acp <- rbind(c(d,a,delta.C),

c(a,e,delta.C),
c(e,b,delta.C),
c(b,c,delta.C)
)

## a Shapley preorder constraint matrix
## Sh(1) - Sh(2) >= -delta.S
## Sh(2) - Sh(1) >= -delta.S
## Sh(3) - Sh(4) >= -delta.S
## Sh(4) - Sh(3) >= -delta.S
## i.e. criteria 1,2 and criteria 3,4
## should have the same global importances
delta.S <- 0.01
Asp <- rbind(c(1,2,-delta.S),

c(2,1,-delta.S),
c(3,4,-delta.S),
c(4,3,-delta.S)
)

## a Shapley interval constraint matrix
## 0.3 <= Sh(1) <= 0.9
Asi <- rbind(c(1,0.3,0.9))

## an interaction preorder constraint matrix
## such that I(12) = I(34)
delta.I <- 0.01
Aip <- rbind(c(1,2,3,4,-delta.I),

c(3,4,1,2,-delta.I))

## an interaction interval constraint matrix
## i.e. -0.20 <= I(12) <= -0.15
Aii <- rbind(c(1,2,-0.2,-0.15))
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## a minimum variance 2-additive solution
min.var <- mini.var.capa.ident(5,2,A.Choquet.preorder = Acp)
m <- min.var$solution
m

## the resulting global evaluations
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

## the Shapley value
Shapley.value(m)

## a minimum variance 3-additive more constrained solution
min.var2 <- mini.var.capa.ident(5,3,

A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp)

m <- min.var2$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

Shapley.value(m)

## a minimum variance 5-additive more constrained solution
min.var3 <- mini.var.capa.ident(5,5,

A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii)

m <- min.var3$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),

c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))

summary(m)

Mobius-methods The Möbius transform
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Description

Computes the Möbius transform of a set function. The Möbius transform is the inverse of the zeta
transform.

Methods

object = "capacity" Returns an object of class Mobius.capacity.

object = "card.set.func" Returns an object of class Mobius.card.set.func.

object = "game" Returns an object of class Mobius.game.

object = "set.func" Returns an object of class Mobius.set.func.

References

G-C. Rota (1964), On the foundations of combinatorial theory. I. Theory of Möbius functions, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pages 340-368.

A. Chateauneuf and J-Y. Jaffray (1989), Some characterizations of lower probabilities and other
monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17, pages
263-283.

M. Grabisch, J-L. Marichal and M. Roubens (2000), Equivalent representations of set functions,
Mathematics of Operations Research 25:2, pages 157-178.

See Also

Mobius.capacity-class,
Mobius.card.set.func-class,
Mobius.game-class,
Mobius.set.func-class,
capacity-class,
card.set.func-class,
game-class,
set.func-class,
zeta-methods.

Examples

## a capacity
mu <- capacity(0:15)
mu

## its Mobius transform
a <- Mobius(mu)
a

## its zeta transform
zeta(a)

## a similar example with a game object
mu <- game(c(0,-2:12))
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mu
Mobius(mu)
zeta(Mobius(mu))

## a similar example with a set.func object
mu <- set.func(-7:8)
mu
Mobius(mu)
zeta(Mobius(mu))

## a similar example with a card.set.func object
mu <- card.set.func(-3:4)
mu
Mobius(mu)
zeta(Mobius(mu))

Mobius.capacity-class Class "Mobius.capacity"

Description

Class representing the Möbius transform of a capacity.

Objects from the Class

Objects can be mainly created by calls to the functions Mobius.capacity,
mini.var.capa.ident, ls.sorting.capa.ident, and least.squares.capa.ident.

Slots

n: Object of class numeric of length 1 containing the number of elements of the set on which the
Möbius transform is defined.

k: Object of class numeric of length 1 containg the order of truncation of the Möbius transform:
the value of subsets whose cardinal is superior to k is put to zero.

subsets: Object of class numeric containing the "k power set" of the underlying set in "natural"
order . The subsets are encoded as integers.

data: Object of class numeric of length choose(n,0) + ... + choose(n,k) representing the co-
efficients of a truncated Möbius transform of a capacity in "natural" order.

Extends

Class Mobius.game, directly. Class superclass.capacity, directly.
Class Mobius.set.func, by class Mobius.game. Class superclass.set.func, by class Mobius.game.



Mobius.capacity-class 61

Methods

entropy signature(object = "Mobius.capacity")

favor signature(object = "Mobius.capacity")

is.normalized signature(object = "Mobius.capacity")

normalize signature(object = "Mobius.capacity")

orness signature(object = "Mobius.capacity")

variance signature(object = "Mobius.capacity")

veto signature(object = "Mobius.capacity")

zeta signature(object = "Mobius.capacity")

See Also

capacity-class,
entropy-methods,
favor-methods,
is.normalized-methods,
orness-methods,
variance-methods,
veto-methods,
zeta-methods,
mini.var.capa.ident,
least.squares.capa.ident,
ls.sorting.capa.ident.

Examples

## a capacity
mu <- capacity(c(0,0,0:13))
## and its Mobius representation
a <- Mobius(mu)
a

# the attributes of object a
a@n
a@k
a@data
a@subsets

## a test
is.normalized(a)
## normalize it
normalize(a)

## a transformation
zeta(a)
## Let us check ...
Mobius(zeta(a))
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## some summary indices
orness(a)
veto(a)
favor(a)
variance(a)
entropy(a)
## the same
summary(a)

Mobius.card.set.func Creates an object representing the Möbius transform of a cardinal set
function.

Description

Creates objects of class Mobius.card.set.func: from an object of class numeric.

Usage

Mobius.card.set.func(object)

Arguments

object An object of class numeric containing the coefficients of the cardinal Möbius
representation. The coefficient at position k corresponds to the value of the
cardinal Möbius representation for subsets of size k.

Value

Returns an object of class Mobius.card.set.func.

See Also

Mobius.card.set.func-class.

Examples

Mobius.card.set.func(4:-2)
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Mobius.card.set.func-class

Class "Mobius.card.set.func"

Description

Class representing the Möbius transform of a cardinal set function.

Objects from the Class

Objects can be created by calls to the function Mobius.card.set.func.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the
Möbius representation of a cardinal set function is defined.

data: Object of class numeric of length n+1 containing the coefficients of the Möbius representa-
tion of a cardinal set function.

Extends

Class superclass.set.func, directly.

Methods

as.Mobius.set.func signature(object = "Mobius.card.set.func")

as.set.func signature(object = "Mobius.card.set.func")

as.card.set.func signature(object = "Mobius.card.set.func")

to.data.frame signature(object = "Mobius.card.set.func")

zeta signature(object = "Mobius.card.set.func")

See Also

Mobius.set.func-class,
Mobius.card.set.func,
as.Mobius.set.func-methods,
as.card.set.func-methods,
as.set.func-methods,
zeta-methods,
to.data.frame-methods.
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Examples

## the Mobius representation of a cardinal set function
a <- Mobius.card.set.func(-3:2)

# the attributes of the object
a@n
a@data

## some transformations
as.set.func(a)
zeta(a)
## let us check ...
Mobius(zeta(a))

Mobius.game-class Class "Mobius.game"

Description

Class representing the Möbius transform of a game.

Objects from the Class

Objects can be created by calls to the function Mobius.game.

Slots

n: Object of class numeric of length 1 containing the number of elements of the set on which the
Möbius transform is defined.

k: Object of class numeric of length 1 containg the order of truncation of the Möbius transform:
subsets whose cardinal is superior to k are considered to be zero.

subsets: Object of class numeric containing the "k power set" of the underlying set in "natural"
order . The subsets are encoded as integers.

data: Object of class numeric of length choose(n,0) + ... + choose(n,k) representing the co-
efficients of a truncated Möbius transform of a game in "natural" order.

Extends

Class Mobius.set.func, directly. Class superclass.set.func, by class Mobius.set.func.

Methods

Choquet.integral signature(object = "Mobius.game", f = "numeric")

Sipos.integral signature(object = "Mobius.game", f = "numeric")

Sugeno.integral signature(object = "Mobius.game", f = "numeric")

zeta signature(object = "Mobius.game")
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See Also

game-class,
Mobius.game,
Choquet.integral-methods,
Sipos.integral-methods,
Sugeno.integral-methods,
zeta-methods,
expect.Choquet.norm-methods.

Examples

## a game (which is a capacity)
mu <- game(c(0,rep(1,15)))
## and its Mobius representation
a <- Mobius(mu)

# the attributes of object a
a@n
a@k
a@data
a@subsets

## a transformation
zeta(a)
## let us check ...
Mobius(zeta(a))

## integral calculations
f <- c(0.2,0.3,0.1,0.7)
Choquet.integral(a,f)
Sugeno.integral(a,f)
f <- c(0.2,-0.3,0.1,-0.7)
Sipos.integral(a,f)

Mobius.set.func Create objects representing the Möbius transform of a set function.

Description

These functions create objects of class Mobius.set.func, Mobius.game, or
Mobius.capacity from an object of class numeric.

Usage

Mobius.set.func(object, n, k)
Mobius.game(object, n, k)
Mobius.capacity(object, n, k)
additive.capacity(v)
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Arguments

n An object of class numeric of length 1 equal to the cardinal of the set on which
the Möbius representation is defined.

k An object of class numeric of length 1 equal to the order of truncation of the
Möbius representation. Coefficients whose cardinal is superior to k are consid-
ered to be zero.

object Object of class numeric of length choose(n,0) + ... + choose(n,k) repre-
senting the coefficients of the truncated Möbius transform in "natural" order.

v An object of class numeric containing the coefficients of the capacity on single-
tons.

Value

Return objects of class Mobius.set.func, Mobius.game, or Mobius.capacity.

See Also

Mobius.capacity-class,
Mobius.game-class,
Mobius.set.func-class,
k.truncate.Mobius-methods.

Examples

Mobius.set.func(c(0,1,1,2,1,2,1,2,2,3,2),4,2)
Mobius.game(c(0,1,1,2,1,2,1,2,2,3,2),4,2)
Mobius.capacity(c(0,1,1,2,1,2,1,2,2,3,2),4,2)
additive.capacity(c(1,2,3,4))

Mobius.set.func-class Class "Mobius.set.func"

Description

Class representing the Möbius transform of a set function.

Objects from the Class

Objects can be created by calls to the function Mobius.set.func.

Slots

n: Object of class numeric of length 1 containing the number of elements of the set on which the
Möbius transform is defined.

k: Object of class numeric of length 1 containg the order of truncation of the Möbius transform:
subsets whose cardinal is superior to k are considered to be zero.
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subsets: Object of class numeric containing the "k power set" of the underlying set in "natural"
order . The subsets are encoded as integers.

data: Object of class numeric of length choose(n,0) + ... + choose(n,k) representing the co-
efficients of a truncated Möbius transform of a set function in "natural" order.

Extends

Class superclass.set.func, directly.

Methods

show signature(object = "Mobius.set.func")

as.Mobius.card.set.func signature(object = "Mobius.set.func")

as.card.set.func signature(object = "Mobius.set.func")

as.set.func signature(object = "Mobius.set.func")

as.Mobius.game signature(object = "Mobius.set.func")

as.Mobius.capacity signature(object = "Mobius.set.func")

interaction.indices signature(object = "Mobius.set.func")

is.cardinal signature(object = "Mobius.set.func")

is.kadditive signature(object = "Mobius.set.func", k = "numeric")

is.monotone signature(object = "Mobius.set.func")

k.truncate.Mobius signature(object = "Mobius.set.func",k = "numeric")

Shapley.value signature(object = "Mobius.set.func")

to.data.frame signature(object = "Mobius.set.func")

zeta signature(object = "Mobius.set.func")

See Also

set.func-class,
Mobius.set.func,
as.Mobius.card.set.func-methods,
as.card.set.func-methods,
as.set.func-methods,
as.Mobius.game-methods,
as.Mobius.capacity-methods,
interaction.indices-methods,
is.cardinal-methods,
is.kadditive-methods,
is.monotone-methods,
k.truncate.Mobius-methods,
Shapley.value-methods,
to.data.frame-methods,
zeta-methods.
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Examples

## the Mobius transform of a set function directly
a <- Mobius.set.func(1:16,4,4)

## the attributes of the object
a@n
a@k
a@data
a@subsets

## a set function
mu <- set.func(7:-8)
## and its Mobius transform
a <- Mobius(mu)

## some conversions that cannot work
## as.game(a)
## as.capacity(a)
## as.card.set.func(a)

## some tests
is.cardinal(a)
is.kadditive(a,2)
is.monotone(a)

## some transformations
zeta(a)
k.truncate.Mobius(a,2)

## summary
Shapley.value(a)
interaction.indices(a)
# the same
summary(a)

## save the Mobius transform to a file
d <- to.data.frame(a)
## Not run: write.table(d,"my.Mobius.set.func.csv",sep="\t")

# finally, some conversions that should work
mu <- set.func(c(0,1,1,1,2,2,2,3))
a <- Mobius(mu)
as.Mobius.game(a)
as.Mobius.capacity(a)
as.Mobius.card.set.func(a)

normalize-methods Normalizes a capacity.
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Description

Returns the normalized version of a capacity. The capacity can be given either under the form
of an object of class capacity, card.capacity or Mobius.capacity. In the case of objects
of class capacity and card.capacity, the normalization is performed by dividing each coef-
ficient of the capacity by the value of the capacity on the universe. In the case of objects of class
Mobius.capacity, the normalization is performed by dividing each coefficient of the Möbius trans-
form by the sum of all the coefficients.

Methods

object = "Mobius.capacity" Returns an object of class Mobius.capacity.

object = "capacity" Returns an object of class capacity.

object = "card.capacity" Returns an object of class card.capacity.

See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class,
Mobius-methods,
is.normalized-methods.

Examples

## a capacity
mu <- capacity(0:15)

## normalize it
is.normalized(mu)
normalize(mu)

## a similar example with a Mobius.capacity object
a <- Mobius(mu)
is.normalized(a)
normalize(a)
zeta(normalize(a))

## a similar example with a card.capacity object
mu <- card.capacity(0:6)
is.normalized(mu)
normalize(mu)
Mobius(normalize(mu))
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orness-methods Orness degree

Description

Computes the orness degree of a Choquet integral from the underlying normalized capacity. The
capacity can be given either under the form of an object of class capacity, card.capacity or
Mobius.capacity.

Methods

object = "Mobius.capacity" The orness degree is computed from the Möbius transform of a ca-
pacity.

object = "capacity" The orness degree is computed directly from a capacity.

object = "card.capacity" The orness degree is computed from a cardinal capacity.

References

J.-L. Marichal (2000), Behavioral analysis of aggregation in multicriteria decision aid, in Prefer-
ences and Decisions under Incomplete Knowledge, J. Fodor and B. De Baets and P. Perny Eds,
Physica-Verlag, pages 153-178, 2000.

See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class,
Mobius-methods.

Examples

## the upper capacity
mu <- capacity(c(0,rep(1,15)))

## the Choquet integral w.r.t mu behaves like the maximum operator
f <- c(0.1,0.1,0,0.9)
Choquet.integral(mu,f)

## its orness is 1
orness(mu)

## the same example with a Mobius.capacity object
a <- Mobius(mu)
Choquet.integral(a,f)
orness(a)

## the same example with a card.capacity object
mu <- upper.capacity(4)
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Choquet.integral(mu,f)
orness(mu)

pdf.Choquet.unif-methods

Distribution of the Choquet integral for evaluations uniformly dis-
tributed on the unit hypercube

Description

Methods for computing the probability density and cumulative distribution functions of the Choquet
integral with respect to a game for evaluations uniformly distributed on the unit hypercube.

Methods

object = "game", y = "numeric" Returns the value of the p.d.f. or the c.d.f. at y.

References

J-L. Marichal and I. Kojadinovic (2007), The distribution of linear combinations of lattice polyno-
mials from the uniform distribution, submitted.

See Also

game-class.

Examples

## a capacity
mu <- capacity(c(0,0.1,0.6,rep(0.9,4),1))
## the cdf of the Choquet integral at 0.7
cdf.Choquet.unif(mu,0.7)

## the same but empirically
m <- 10000
ch <- numeric(m)
for (i in 1:m) {

f <- runif(3)
ch[i] <- Choquet.integral(mu,f)

}
sum(ifelse(ch<=0.7,1,0))/m
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rnd-methods Rounding of set function coefficients

Description

Rounds the coefficients of a set function to the specified number of decimal places (default 0).

Methods

x = "superclass.set.func", digits = "numeric" Returns an object of the same class as x whose
data attribute is rounded.

Examples

## a capacity
mu <- capacity(0:15/15)
mu
rnd(mu,2)

## a similar example with a Mobius.capacity object
a <- Mobius(mu)
a
rnd(a,1)

## a similar example with a card.capacity object
mu <- uniform.capacity(6)
mu
rnd(mu)

set.func Create objects of class "set.func", "game", or "capacity".

Description

These functions create objects of class set.func, game, or capacity from objects of class numeric.

Usage

set.func(object)
game(object)
capacity(object)

Arguments

object An object of class numeric containing the coefficients of the set function in
"natural" order. Its length has to be a power of 2.
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Value

Return objects of class set.func, game, or capacity.

See Also

capacity-class,
game-class,
set.func-class.

Examples

set.func(-12:3)
game(c(0,rep(-1,15)))
capacity(0:15)

set.func-class Class "set.func"

Description

Class representing a set function.

Objects from the Class

Objects can be created by calls to the function set.func.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the set
function is defined.

subsets: Object of class numeric of length 2^n containing the power set of the underlying set in
"natural" order. The subsets are coded as integers.

data: Object of class numeric of length 2^n containing the coefficients of the set function in binary
order.

Extends

Class superclass.set.func, directly.

Methods

show signature(object = "set.func")

as.game signature(object = "set.func")

as.capacity signature(object = "set.func")

as.card.set.func signature(object = "set.func")

as.Mobius.set.func signature(object = "set.func")
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as.Mobius.card.set.func signature(object = "set.func")

conjugate signature(object = "set.func")

interaction.indices signature(object = "set.func")

is.cardinal signature(object = "set.func")

is.kadditive signature(object = "set.func", k = "numeric")

is.monotone signature(object = "set.func")

k.truncate.Mobius signature(object = "set.func", k = "numeric")

Mobius signature(object = "set.func")

Shapley.value signature(object = "set.func")

to.data.frame signature(object = "set.func")

See Also

set.func,
as.game-methods,
as.capacity-methods,
as.card.set.func-methods,
as.Mobius.set.func-methods,
as.Mobius.card.set.func-methods,
conjugate-methods,
interaction.indices-methods,
is.cardinal-methods,
is.kadditive-methods,
is.monotone-methods,
k.truncate.Mobius-methods,
Mobius-methods,
Shapley.value-methods,
to.data.frame-methods.

Examples

## a set function
mu <- set.func(c(1:8,8:1)/8)

## the attributes of the object
mu@n
mu@data
mu@subsets

## some conversions that cannot work
## Not run: as.game(mu)
## Not run: as.capacity(mu)
## Not run: as.card.set.func(mu)

## some tests
is.cardinal(mu)
is.kadditive(mu,2)
is.monotone(mu)
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## some transformations
conjugate(mu)
Mobius(mu)
k.truncate.Mobius(mu,2)

## summary
Shapley.value(mu)
interaction.indices(mu)
# the same
summary(mu)

## save the set function to a file
d <- to.data.frame(mu)
## Not run: write.table(d,"my.set.func.csv",sep="\t")

# finally, some conversions that should work
mu <- set.func(c(0,1,1,1,2,2,2,3))
as.game(mu)
as.capacity(mu)
as.card.set.func(mu)

Shapley.value-methods The Shapley value

Description

Computes the Shapley value (n indices) of a set function. The set function can be given either under
the form of an object of class set.func, card.set.func or Mobius.set.func.

Methods

object = "Mobius.set.func" The Shapley value is computed from the Möbius transform of a set
function.

object = "card.set.func" The Shapley value is computed from a cardinal set function.

object = "set.func" The Shapley value is computed from a general set function.

References

L.S. Shapley (1953), A value for n-person games, Contributions to the theory of games, vol. 2,
Annals of Mathematics Studies, no. 28, pages 307-317, Princeton University Press, Princeton, N.
J. .

See Also

Mobius.set.func-class,
card.set.func-class,
set.func-class,
Mobius-methods.
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Examples

## a set function
mu <- set.func(c(0:13/13,1,1))

## the Shapley value
Shapley.value(mu)

## the efficiency property should be satisfied
sum(Shapley.value(mu))

## a similar example using a Mobius.set.func object
a <- Mobius(mu)
Shapley.value(a)

## a similar example using a card.set.func object
mu <- upper.capacity(6)
Shapley.value(mu)
## the efficiency property should be satisfied
Shapley.value(mu)*6

show-methods Methods for Function show in Package ‘kappalab’

Description

Displays the contents of an object.

Methods

object = "superclass.set.func" Generic show method for superclass.set.func.

object = "set.func" Displays a set.func object.

object = "Mobius.set.func" Displays a Mobius.set.func object.

object = "summary.superclass.set.func" Displays a summary.superclass.set.func object.

object = "summary.superclass.capacity" Displays a summary.superclass.capacity object.

See Also

superclass.set.func-class,
set.func-class,
Mobius.set.func-class,
summary.superclass.set.func-class,
summary.superclass.capacity-class.
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Examples

## a set function
mu <- set.func(0:15/15)
show(mu)
## the same
mu

## a Mobius transform
a <- Mobius.set.func(0:10,4,2)
show(a)
a

## a cardinal capacity
mu <- lower.capacity(5)
show(mu)
mu

Sipos.integral-methods

Sipos integral

Description

Computes the Sipos integral (also called symmetric Choquet integral) of a real-valued function
with respect to a game. The game can be given either under the form of an object of class game,
card.game or Mobius.game.

Methods

object = "game", f = "numeric" The Sipos or symmetric Choquet integral of f is computed from
a game.

object = "Mobius.game", f = "numeric" The Sipos or symmetric Choquet integral of f is com-
puted from the Möbius transform of a game.

object = "card.game", f = "numeric" The Sipos or symmetric Choquet integral of f is computed
from a cardinal game.

References

M. Grabisch and Ch. Labreuche (2002), The symmetric and asymmetric Choquet integrals on finite
spaces for decision making, Statistical Papers 43, pages 37-52.

See Also

game-class,
Mobius.game-class,
card.game-class.
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Examples

## a normalized capacity
mu <- capacity(c(0:13/13,1,1))

## and its Mobius transform
a <- Mobius(mu)

## a discrete function f
f <- c(0.1,-0.9,-0.3,0.8)

## the Sugeno integral of f w.r.t mu
Sipos.integral(mu,f)
Sipos.integral(a,f)

## a similar example with a cardinal capacity
mu <- uniform.capacity(4)
Sipos.integral(mu,f)

Sugeno.integral-methods

Sugeno integral

Description

Computes the Sugeno integral of a non negative function with respect to a game. Moreover, if the
game is a capacity, the range of the function must be contained into the range of the capacity. The
game can be given either under the form of an object of class game, card.game or Mobius.game.

Methods

object = "Mobius.game", f = "numeric" The Sugeno integral of f is computed from the Möbius
transform of a game.

object = "game", f = "numeric" The Sugeno integral of f is computed from a game.
object = "card.game", f = "numeric" The Sugeno integral of f is computed from a cardinal

game.

References

M. Sugeno (1974), Theory of fuzzy integrals and its applications, Tokyo Institute of Technology,
Tokyo, Japan.

J-L. Marichal (2000), On Sugeno integral as an aggregation function, Fuzzy Sets and Systems 114,
pages 347-365.

J-L. Marichal (2001), An axiomatic approach of the discrete Sugeno integral as a tool to aggregate
interacting criteria in a qualitative framework, IEEE Transactions on Fuzzy Systems 9:1, pages
164-172.

T. Murofushi and M. Sugeno (2000), Fuzzy measures and fuzzy integrals, in: M. Grabisch, T.
Murofushi, and M. Sugeno Eds, Fuzzy Measures and Integrals: Theory and Applications, Physica-
Verlag, pages 3-41.
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See Also

game-class,
Mobius.game-class,
card.game-class.

Examples

## a normalized capacity
mu <- capacity(c(0:13/13,1,1))

## and its Mobius transform
a <- Mobius(mu)

## a discrete function f
f <- c(0.1,0.9,0.3,0.8)

## the Sugeno integral of f w.r.t mu
Sugeno.integral(mu,f)
Sugeno.integral(a,f)

## a similar example with a cardinal capacity
mu <- uniform.capacity(4)
Sugeno.integral(mu,f)

summary-methods Summary method

Description

Computes indices that can be used to summarize a set function.

Methods

object = "superclass.capacity" Returns an object of class summary.superclass.capacity.

object = "superclass.set.func" Returns an object of class summary.superclass.set.func.

See Also

summary.superclass.capacity-class,
summary.superclass.set.func-class.
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summary.superclass.capacity-class

Class "summary.superclass.capacity"

Description

Class containing most of the indices that can be used to summarize an object of class superclass.capacity.

Objects from the Class

Objects are created by calls of the form summary(...) on objects of class superclass.capacity.

Slots

Shapley.value: Object of class numeric containing the Shapley value of a set function.

interaction.indices: Object of class matrix containing the Shapley interaction indices of a set
function.

orness: Object of class numeric containg the orness degree of the Choquet integral corresponding
to the underlying capacity.

veto: Object of class numeric containing the veto indices of the Choquet integral corresponding
to the underlying capacity.

favor: Object of class numeric containing the favor indices of the Choquet integral corresponding
to the underlying capacity.

variance: Object of class numeric containing the variance of the underlying capacity.

entropy: Object of class numeric containing the variance of the underlying capacity.

Methods

show signature(object = "summary.superclass.capacity"): ...

See Also

superclass.capacity-class,
summary-methods,
Shapley.value-methods,
interaction.indices-methods,
orness-methods,
veto-methods,
favor-methods,
variance-methods,
entropy-methods.
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Examples

## a capacity
mu <- capacity(c(0:13,13,13)/13)
a <- Mobius(mu)

## its summary
summary(mu)
summary(a)

summary.superclass.set.func-class

Class "summary.superclass.set.func"

Description

Class containing most of the indices that can be used to summarize an object of class superclass.set.func
and not of class superclass.capacity.

Objects from the Class

Objects are created by calls of the form summary(...) on objects of class superclass.set.func
and not of class superclass.capacity.

Slots

Shapley.value: Object of class numeric containing the Shapley value of a set function.

interaction.indices: Object of class matrix containing the Shapley interaction indices of a set
function.

Methods

show signature(object = "summary.superclass.set.func")

See Also

superclass.set.func-class,
superclass.capacity-class,
summary-methods,
show-methods,
Shapley.value-methods,
interaction.indices-methods.
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Examples

## a capacity
mu <- set.func(c(0:13,13,13)/13)
a <- Mobius(mu)

## its summary
summary(mu)
summary(a)

superclass.capacity-class

Class "superclass.capacity"

Description

Virtual class, superclass of all *.capacity classes. Used to define a common summary method for
*.capacity classes. Contains no slots.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

summary signature(object = "superclass.capacity")

See Also

summary-methods,
capacity-class,
Mobius.capacity-class,
card.capacity-class.

Examples

## three capacities
mu1 <- uniform.capacity(5)
mu2 <- capacity(c(0,0,0:13))
a <- Mobius(mu2)

## compute indices to summarize them
summary(mu1)
summary(mu2)
summary(a)
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superclass.set.func-class

Class "superclass.set.func"

Description

Virtual class, superclass of all *.set.func classes. Used to define common show and summary
methods for *.set.func classes.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

n: Object of class numeric of length 1 equal to the number of elements of the set on which the set
function is defined.

data: Object of class numeric containing the coefficients of the set function.

Methods

show signature(object = "superclass.set.func")

rnd signature(x = "superclass.set.func", digits = "numeric")

summary signature(object = "superclass.set.func")

See Also

show-methods,
rnd-methods,
summary-methods,
set.func-class,
Mobius.set.func-class,
card.set.func-class,
Mobius.card.set.func-class.

Examples

## three set functions
mu1 <- card.set.func(-2:4)
mu2 <- set.func(c(-2,-2,-2:11/11))
mu3 <- Mobius.set.func(c(-7:6,6,6),4,4)

## print mu1
show(mu1)
## the same
mu1
## the others
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mu2
mu3

## round mu2
rnd(mu2,2)

## compute indices to summarize them
summary(mu1)
summary(mu2)
summary(mu3)

to.data.frame-methods Puts a set function under the form of a data.frame

Description

Puts a set function under the form of a data.frame. This function can be used to write a set function
to a file.

Methods

object = "Mobius.card.set.func" Returns a data.frame.

object = "Mobius.set.func" Returns a data.frame.

object = "card.set.func" Returns a data.frame.

object = "set.func" Returns a data.frame.

Examples

## the Mobius representation of set function
a <- Mobius.set.func(-1:-16,4,4)

## to data.frame
d <- to.data.frame(a)
## Not run: write.table(d,"my.set.func.csv",sep="\t")

variance-methods Normalized variance of a capacity

Description

Computes the normalized variance of a capacity. The capacity can be given either under the form
of an object of class capacity, a card.capacity or Mobius.capacity.
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Methods

object = "Mobius.capacity" The normalized variance is computed from the Möbius transform of
a capacity.

object = "capacity" The normalized variance is computed directly from a capacity.

object = "card.capacity" The normalized variance is computed from a cardinal capacity.

References

I. Kojadinovic (2005), Minimum variance capacity identification, European Journal of Operational
Research, in press.

See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class,
Mobius-methods.

Examples

## a capacity
mu <- capacity(c(0,0,0,0:12)/12)

## its Mobius transform
a <- Mobius(mu)

## their normalized variance
variance(mu)
variance(a)

## similar examples with card.capacity objects
mu <- lower.capacity(4)
variance(mu)
mu <- uniform.capacity(4)
variance(mu)

veto-methods Veto indices

Description

Computes the veto indices of a Choquet integral from the underlying normalized capacity. The
capacity can be given either under the form of an object of class capacity, card.capacity or
Mobius.capacity.
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Methods

object = "Mobius.capacity" The veto indices are computed from the Möbius transform of a ca-
pacity.

object = "capacity" The veto indices are computed directly from a capacity.

object = "card.capacity" The veto indices are computed from a cardinal capacity.

References

J.-L. Marichal (2000), Behavioral analysis of aggregation in multicriteria decision aid, in: Pref-
erences and Decisions under Incomplete Knowledge, J. Fodor and B. De Baets and P. Perny Eds,
Physica-Verlag, pages 153-178.

J.-L. Marichal (2004), Tolerant or intolerant character of interacting criteria in aggregation by the
Choquet integral, European Journal of Operational Research 155:3, pages 771-791.

See Also

capacity-class,
Mobius.capacity-class,
card.capacity-class,
Mobius-methods.

Examples

## a capacity
mu <- capacity(c(0:13,13,13)/13)

## its Mobius transform
a <- Mobius(mu)

## their veto indices
veto(mu)
veto(a)

## the same with a card.capacity object
mu <- lower.capacity(4)
veto(mu)

zeta-methods The zeta transform

Description

Computes the zeta transform of a set function given under the form of its Möbius transform. The
zeta transform is the inverse of the Möbius transform.
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Methods

object = "Mobius.capacity" Returns an object of class capacity.

object = "Mobius.card.set.func" Returns an object of class card.set.func.

object = "Mobius.game" Returns an object of class game.

object = "Mobius.set.func" Returns an object of class set.func.

References

G-C. Rota (1964), On the foundations of combinatorial theory. I. Theory of Möbius functions, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pages 340-368.

A. Chateauneuf and J-Y. Jaffray (1989), Some characterizations of lower probabilities and other
monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17, pages
263-283.

M. Grabisch, J-L. Marichal and M. Roubens (2000), Equivalent representations of set functions,
Mathematics of Operations Research 25:2, pages 157-178.

See Also

capacity-class,
card.set.func-class,
game-class,
set.func-class,
Mobius.capacity-class,
Mobius.card.set.func-class,
Mobius.game-class,
Mobius.set.func-class,
Mobius-methods.

Examples

## the Mobius transform of a capacity
a <- Mobius.capacity(c(rep(0,15),1),4,4)
a

## its zeta transform
zeta(a)

## let us check
Mobius(zeta(a))

## a similar example with a Mobius.card.set.func object
mu <- card.set.func(-3:4)
a <- Mobius(mu)
zeta(a)
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