Title: | Kalman Filter |
---|---|
Description: | 'Rcpp' implementation of the multivariate Kalman filter for state space models that can handle missing values and exogenous data in the observation and state equations. There is also a function to handle time varying parameters. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>. |
Authors: | Alex Hubbard [aut, cre] |
Maintainer: | Alex Hubbard <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.1.1 |
Built: | 2024-12-04 07:07:04 UTC |
Source: | CRAN |
Check if list contains a name
contains(s, L)
contains(s, L)
s |
a string name |
L |
a list object |
boolean
Generalized matrix inverse
gen_inv(m)
gen_inv(m)
m |
matrix |
matrix inverse of m
Kalman Filter
kalman_filter(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
kalman_filter(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
ssm |
list describing the state space model, must include names B0 - N_b x 1 matrix (or array of length yt), initial guess for the unobserved components P0 - N_b x N_b matrix (or array of length yt), initial guess for the covariance matrix of the unobserved components Dm - N_b x 1 matrix (or array of length yt), constant matrix for the state equation Am - N_y x 1 matrix (or array of length yt), constant matrix for the observation equation Fm - N_b X p matrix (or array of length yt), state transition matrix Hm - N_y x N_b matrix (or array of length yt), observation matrix Qm - N_b x N_b matrix (or array of length yt), state error covariance matrix Rm - N_y x N_y matrix (or array of length yt), state error covariance matrix betaO - N_y x N_o matrix (or array of length yt), coefficient matrix for the observation exogenous data betaS - N_b x N_s matrix (or array of length yt), coefficient matrix for the state exogenous data |
yt |
N x T matrix of data |
Xo |
N_o x T matrix of exogenous observation data |
Xs |
N_s x T matrix of exogenous state |
weight |
column matrix of weights, T x 1 |
smooth |
boolean indication whether to run the backwards smoother |
list of cubes and matrices output by the Kalman filter
## Not run: #Stock and Watson Markov switching dynamic common factor library(kalmanfilter) library(data.table) data(sw_dcf) data = sw_dcf[, colnames(sw_dcf) != "dcoinc", with = FALSE] vars = colnames(data)[colnames(data) != "date"] #Set up the state space model ssm = list() ssm[["Fm"]] = rbind(c(0.8760, -0.2171, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0.0364, -0.0008, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, -0.2965, -0.0657, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, -0.3959, -0.1903, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.2436, 0.1281), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)) ssm[["Fm"]] = array(ssm[["Fm"]], dim = c(dim(ssm[["Fm"]]), 2)) ssm[["Dm"]] = matrix(c(-1.5700, rep(0, 11)), nrow = nrow(ssm[["Fm"]]), ncol = 1) ssm[["Dm"]] = array(ssm[["Dm"]], dim = c(dim(ssm[["Dm"]]), 2)) ssm[["Dm"]][1,, 2] = 0.2802 ssm[["Qm"]] = diag(c(1, 0, 0, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0)) ssm[["Qm"]] = array(ssm[["Qm"]], dim = c(dim(ssm[["Qm"]]), 2)) ssm[["Hm"]] = rbind(c(0.0058, -0.0033, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), c(0.0011, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), c(0.0051, -0.0033, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), c(0.0012, -0.0005, 0.0001, 0.0002, 0, 0, 0, 0, 0, 0, 1, 0)) ssm[["Hm"]] = array(ssm[["Hm"]], dim = c(dim(ssm[["Hm"]]), 2)) ssm[["Am"]] = matrix(0, nrow = nrow(ssm[["Hm"]]), ncol = 1) ssm[["Am"]] = array(ssm[["Am"]], dim = c(dim(ssm[["Am"]]), 2)) ssm[["Rm"]] = matrix(0, nrow = nrow(ssm[["Am"]]), ncol = nrow(ssm[["Am"]])) ssm[["Rm"]] = array(ssm[["Rm"]], dim = c(dim(ssm[["Rm"]]), 2)) ssm[["B0"]] = matrix(c(rep(-4.60278, 4), 0, 0, 0, 0, 0, 0, 0, 0)) ssm[["B0"]] = array(ssm[["B0"]], dim = c(dim(ssm[["B0"]]), 2)) ssm[["B0"]][1:4,, 2] = rep(0.82146, 4) ssm[["P0"]] = rbind(c(2.1775, 1.5672, 0.9002, 0.4483, 0, 0, 0, 0, 0, 0, 0, 0), c(1.5672, 2.1775, 1.5672, 0.9002, 0, 0, 0, 0, 0, 0, 0, 0), c(0.9002, 1.5672, 2.1775, 1.5672, 0, 0, 0, 0, 0, 0, 0, 0), c(0.4483, 0.9002, 1.5672, 2.1775, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001)) ssm[["P0"]] = array(ssm[["P0"]], dim = c(dim(ssm[["P0"]]), 2)) #Log, difference and standardize the data data[, c(vars) := lapply(.SD, log), .SDcols = c(vars)] data[, c(vars) := lapply(.SD, function(x){ x - shift(x, type = "lag", n = 1) }), .SDcols = c(vars)] data[, c(vars) := lapply(.SD, scale), .SDcols = c(vars)] #Convert the data to an NxT matrix yt = t(data[, c(vars), with = FALSE]) kf = kalman_filter(ssm, yt, smooth = TRUE) ## End(Not run)
## Not run: #Stock and Watson Markov switching dynamic common factor library(kalmanfilter) library(data.table) data(sw_dcf) data = sw_dcf[, colnames(sw_dcf) != "dcoinc", with = FALSE] vars = colnames(data)[colnames(data) != "date"] #Set up the state space model ssm = list() ssm[["Fm"]] = rbind(c(0.8760, -0.2171, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0.0364, -0.0008, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, -0.2965, -0.0657, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, -0.3959, -0.1903, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.2436, 0.1281), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)) ssm[["Fm"]] = array(ssm[["Fm"]], dim = c(dim(ssm[["Fm"]]), 2)) ssm[["Dm"]] = matrix(c(-1.5700, rep(0, 11)), nrow = nrow(ssm[["Fm"]]), ncol = 1) ssm[["Dm"]] = array(ssm[["Dm"]], dim = c(dim(ssm[["Dm"]]), 2)) ssm[["Dm"]][1,, 2] = 0.2802 ssm[["Qm"]] = diag(c(1, 0, 0, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0)) ssm[["Qm"]] = array(ssm[["Qm"]], dim = c(dim(ssm[["Qm"]]), 2)) ssm[["Hm"]] = rbind(c(0.0058, -0.0033, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), c(0.0011, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), c(0.0051, -0.0033, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), c(0.0012, -0.0005, 0.0001, 0.0002, 0, 0, 0, 0, 0, 0, 1, 0)) ssm[["Hm"]] = array(ssm[["Hm"]], dim = c(dim(ssm[["Hm"]]), 2)) ssm[["Am"]] = matrix(0, nrow = nrow(ssm[["Hm"]]), ncol = 1) ssm[["Am"]] = array(ssm[["Am"]], dim = c(dim(ssm[["Am"]]), 2)) ssm[["Rm"]] = matrix(0, nrow = nrow(ssm[["Am"]]), ncol = nrow(ssm[["Am"]])) ssm[["Rm"]] = array(ssm[["Rm"]], dim = c(dim(ssm[["Rm"]]), 2)) ssm[["B0"]] = matrix(c(rep(-4.60278, 4), 0, 0, 0, 0, 0, 0, 0, 0)) ssm[["B0"]] = array(ssm[["B0"]], dim = c(dim(ssm[["B0"]]), 2)) ssm[["B0"]][1:4,, 2] = rep(0.82146, 4) ssm[["P0"]] = rbind(c(2.1775, 1.5672, 0.9002, 0.4483, 0, 0, 0, 0, 0, 0, 0, 0), c(1.5672, 2.1775, 1.5672, 0.9002, 0, 0, 0, 0, 0, 0, 0, 0), c(0.9002, 1.5672, 2.1775, 1.5672, 0, 0, 0, 0, 0, 0, 0, 0), c(0.4483, 0.9002, 1.5672, 2.1775, 0, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001)) ssm[["P0"]] = array(ssm[["P0"]], dim = c(dim(ssm[["P0"]]), 2)) #Log, difference and standardize the data data[, c(vars) := lapply(.SD, log), .SDcols = c(vars)] data[, c(vars) := lapply(.SD, function(x){ x - shift(x, type = "lag", n = 1) }), .SDcols = c(vars)] data[, c(vars) := lapply(.SD, scale), .SDcols = c(vars)] #Convert the data to an NxT matrix yt = t(data[, c(vars), with = FALSE]) kf = kalman_filter(ssm, yt, smooth = TRUE) ## End(Not run)
Kalman Filter
kalman_filter_cpp(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
kalman_filter_cpp(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
ssm |
list describing the state space model, must include names B0 - N_b x 1 matrix, initial guess for the unobserved components P0 - N_b x N_b matrix, initial guess for the covariance matrix of the unobserved components Dm - N_b x 1 matrix, constant matrix for the state equation Am - N_y x 1 matrix, constant matrix for the observation equation Fm - N_b X p matrix, state transition matrix Hm - N_y x N_b matrix, observation matrix Qm - N_b x N_b matrix, state error covariance matrix Rm - N_y x N_y matrix, state error covariance matrix betaO - N_y x N_o matrix, coefficient matrix for the observation exogenous data betaS - N_b x N_s matrix, coefficient matrix for the state exogenous data |
yt |
N x T matrix of data |
Xo |
N_o x T matrix of exogenous observation data |
Xs |
N_s x T matrix of exogenous state |
weight |
column matrix of weights, T x 1 |
smooth |
boolean indication whether to run the backwards smoother |
list of matrices and cubes output by the Kalman filter
#Nelson-Siegel dynamic factor yield curve library(kalmanfilter) library(data.table) data(treasuries) tau = unique(treasuries$maturity) #Set up the state space model ssm = list() ssm[["Fm"]] = rbind(c(0.9720, -0.0209, -0.0061), c(0.1009 , 0.8189, -0.1446), c(-0.1226, 0.0192, 0.8808)) ssm[["Dm"]] = matrix(c(0.1234, -0.2285, 0.2020), nrow = nrow(ssm[["Fm"]]), ncol = 1) ssm[["Qm"]] = rbind(c(0.1017, 0.0937, 0.0303), c(0.0937, 0.2267, 0.0351), c(0.0303, 0.0351, 0.7964)) ssm[["Hm"]] = cbind(rep(1, 11), -(1 - exp(-tau*0.0423))/(tau*0.0423), (1 - exp(-tau*0.0423))/(tau*0.0423) - exp(-tau*0.0423)) ssm[["Am"]] = matrix(0, nrow = length(tau), ncol = 1) ssm[["Rm"]] = diag(c(0.0087, 0, 0.0145, 0.0233, 0.0176, 0.0073, 0, 0.0016, 0.0035, 0.0207, 0.0210)) ssm[["B0"]] = matrix(c(5.9030, -0.7090, 0.8690), nrow = nrow(ssm[["Fm"]]), ncol = 1) ssm[["P0"]] = diag(rep(0.0001, nrow(ssm[["Fm"]]))) #Convert to an NxT matrix yt = dcast(treasuries, "date ~ maturity", value.var = "value") yt = t(yt[, 2:ncol(yt)]) kf = kalman_filter(ssm, yt, smooth = TRUE)
#Nelson-Siegel dynamic factor yield curve library(kalmanfilter) library(data.table) data(treasuries) tau = unique(treasuries$maturity) #Set up the state space model ssm = list() ssm[["Fm"]] = rbind(c(0.9720, -0.0209, -0.0061), c(0.1009 , 0.8189, -0.1446), c(-0.1226, 0.0192, 0.8808)) ssm[["Dm"]] = matrix(c(0.1234, -0.2285, 0.2020), nrow = nrow(ssm[["Fm"]]), ncol = 1) ssm[["Qm"]] = rbind(c(0.1017, 0.0937, 0.0303), c(0.0937, 0.2267, 0.0351), c(0.0303, 0.0351, 0.7964)) ssm[["Hm"]] = cbind(rep(1, 11), -(1 - exp(-tau*0.0423))/(tau*0.0423), (1 - exp(-tau*0.0423))/(tau*0.0423) - exp(-tau*0.0423)) ssm[["Am"]] = matrix(0, nrow = length(tau), ncol = 1) ssm[["Rm"]] = diag(c(0.0087, 0, 0.0145, 0.0233, 0.0176, 0.0073, 0, 0.0016, 0.0035, 0.0207, 0.0210)) ssm[["B0"]] = matrix(c(5.9030, -0.7090, 0.8690), nrow = nrow(ssm[["Fm"]]), ncol = 1) ssm[["P0"]] = diag(rep(0.0001, nrow(ssm[["Fm"]]))) #Convert to an NxT matrix yt = dcast(treasuries, "date ~ maturity", value.var = "value") yt = t(yt[, 2:ncol(yt)]) kf = kalman_filter(ssm, yt, smooth = TRUE)
R's implementation of the Moore-Penrose pseudo matrix inverse
Rginv(m)
Rginv(m)
m |
matrix |
matrix inverse of m
Stock and Watson Dynamic Common Factor Data Set
data(sw_dcf)
data(sw_dcf)
data.table with columns DATE, VARIABLE, VALUE, and MATURITY The data is monthly frequency with variables ip (industrial production), gmyxpg (total personal income less transfer payments in 1987 dollars), mtq (total manufacturing and trade sales in 1987 dollars), lpnag (employees on non-agricultural payrolls), and dcoinc (the coincident economic indicator)
Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Treasuries
data(treasuries)
data(treasuries)
data.table with columns DATE, VARIABLE, VALUE, and MATURITY The data is quarterly frequency with variables DGS1MO, DGS3MO, DGS6MO, DGS1, DGS2, DGS3, DGS5, DGS7, DGS10, DGS20, and DGS30
FRED