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Abstract

This vignette presents the R package interp and focuses on triangulation of irregular
spaced data.

This is the second of planned three vignettes for this package (not yet finished).
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1. Note
Notice: This is a preliminary and not yet complete version of this vignette. Finally three
vignettes will be available for this package:

1. a first one related to partial derivatives estimation,

2. a next one describing interpolation related stuff

3. and this one dealing with triangulations and Voronoi mosaics.

2. Introduction
The functions described here where formerly (and still are) available in the R package tripack
which is based on algorithms described in (Renka 1996). This code was also used by Akima
in (Akima 1996) for his improved spline interpolator. Both these algorithms are under ACM
licene and so the need to reimplement all related functions under a free license arose.
This package now re-implements the functions from the package tripack with a different but
free triangulation algorithm operating in the background. This algorithm is a sweep hull
algorithm introduced in (Sinclair 2016).

3. Delaunay Triangulation
In the next section we will use the notion of Delaunay triangulations, so lets start with this
definition.

Definition 3.1. Given a set of points P = {pi|pi = (xi, yi)⊺, xi ∈ R, yi ∈ R, i = 1, . . . , n}
the set of all triangles with vertices in P which fulfill the condition that none of the points



2 Triangulation of irregular spaced data in R Package interp

from P is contained in the interior of the circumcircle of any such triangle is called Delaunay
triangulation.

Algorithms to determine Delaunay triangulations can be split into two steps:

1. An initial step to generate a triangulation which itself is a disjoint partition of the
convex hull of P built with non-overlapping triangles out of the given vertices.

2. In a second step pairs of neighbouring triangles (p1, p2, p3) and (p3, p2, p4) which share
a common edge (p2, p3) and do not fulfill the circumcircle condition in definition 3.1
are selected. Now these triangles are swapped, the new triangles beeing (p1, p2, p4) and
(p4, p2, p3). They will now fulfil the condition.

Step 2 is repeated until no such pair of triangles to swap can be found anymore.
Sinclairs sweep hull algorithm (Sinclair 2016) specifies step 1 as follows:

1. Take a random triangle which contains none of the remaining points. This forms a
initial triangulation with a known convex hull (the triangle itself).

2. Sort the remaining points in ascending distance to this triangle (its center).

3. Repeat until all points are exhausted:

(a) Take the next nearest point pnext.
(b) Determine that part of the convex hull of the current triangulation which is “visi-

ble” from pnext.
(c) Form all non overlapping triangles with pnext and the “visible” part of the current

convex hull.
(d) Add the new triangles to the current triangulation, correct the convex hull to the

new state.

The function tri.mesh is now applied to a simple artificial example data set:

> data(tritest)
> tr <- tri.mesh(tritest)
> tr

Delaunay triangulation, node and triangle indices:
triangle: nodes (a,b,c), neighbour triangles [i,j,k]
1: (1,9,4), [3,9,2]
2: (3,9,1), [1,15,5]
3: (12,4,9), [1,4,10]
4: (9,10,12), [6,3,5]
5: (9,3,10), [14,4,2]
6: (11,12,10), [4,12,8]
7: (12,6,7), [16,10,8]
8: (6,12,11), [6,17,7]
9: (7,1,4), [1,10,0]
10: (12,7,4), [9,3,7]
11: (11,5,8), [18,17,12]
12: (5,11,10), [6,13,11]
13: (10,2,5), [18,12,14]
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14: (10,3,2), [15,13,5]
15: (2,3,1), [2,0,14]
16: (8,7,6), [7,17,0]
17: (11,8,6), [16,8,11]
18: (8,5,2), [13,0,11]
boundary nodes: 7 1 2 8

In return the triangles and the indices of their neighbour triangles will be printed. With
interp::triangles() more detailed information can be accessed:

> triangles(tr)

node1 node2 node3 tr1 tr2 tr3 arc1 arc2 arc3
[1,] 1 9 4 3 9 2 1 2 3
[2,] 3 9 1 1 15 5 3 4 5
[3,] 12 4 9 1 4 10 1 6 7
[4,] 9 10 12 6 3 5 8 6 9
[5,] 9 3 10 14 4 2 10 9 5
[6,] 11 12 10 4 12 8 8 11 12
[7,] 12 6 7 16 10 8 13 14 15
[8,] 6 12 11 6 17 7 12 16 15
[9,] 7 1 4 1 10 0 2 17 18

[10,] 12 7 4 9 3 7 17 7 14
[11,] 11 5 8 18 17 12 19 20 21
[12,] 5 11 10 6 13 11 11 22 21
[13,] 10 2 5 18 12 14 23 22 24
[14,] 10 3 2 15 13 5 25 24 10
[15,] 2 3 1 2 0 14 4 26 25
[16,] 8 7 6 7 17 0 13 27 28
[17,] 11 8 6 16 8 11 27 16 20
[18,] 8 5 2 13 0 11 23 29 19

The first three columns contain the indices of the triangle vertices, the next three columns
carry the indices of the neighbour triangles (0 means it is neigbour to the plane outside the
convex hull). The last three columns are filled with indices to the arcs of the triangulation.
While plotting the triangulation, we also plot the circumcircles to check the condition of
empty circumcircles:

> MASS::eqscplot(tritest)
> plot(tr, do.circumcircles=TRUE, add=TRUE)
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Figure 1: Delaunay triangulation with added circumcircles

4. Voronoi Mosaics

Definition 4.1. Given a set of points P = {pi|pi = (xi, yi)⊺, i = 1, . . . , n} the associated
Voronoi mosaic is a disjoint partition of the plane, where each set of this partition (the
Thiessen polygon) is created by one of the points pi in a way that this set is the geometric
location of all points of R2 which have pi as its nearest neighbour out of the set P .

There is some sort of duality between Delaunay triangulations and Voronoi mosaics:
The circumcircle centers of the triangles of the triangulation are the vertices of the Voronoi
mosaic. The edges of the Voronoi mosaic are the perpendicular bisectors of the edges of the
triangles of the triangulation.
Using this duality it is easy to construct a Voronoi mosaic given a Delaunay triangulation.
This is done completely in R, no Rcpp is used.
Continuing with the previous data we get the following mosaic:
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> vm <- voronoi.mosaic(tr)
> vm

voronoi mosaic:
nodes: (x,y): neighbours (<0: dummy node)
1: (0.1107143,0.2392857): 3 9 2
2: (0.2392857,0.1107143): 1 15 5
3: (0.30625,0.5): 1 4 10
4: (0.5,0.5): 6 3 5
5: (0.5,0.30625): 14 4 2
6: (0.5,0.5): 4 12 8
7: (0.2392857,0.8892857): 16 10 8
8: (0.5,0.69375): 6 17 7
9: (-0.7583333,0.5): 1 10 -1
10: (0.1107143,0.7607143): 9 3 7
11: (0.8892857,0.7607143): 18 17 12
12: (0.69375,0.5): 6 13 11
13: (0.8892857,0.2392857): 18 12 14
14: (0.7607143,0.1107143): 15 13 5
15: (0.5,-0.7583333): 2 -2 14
16: (0.5,1.758333): 7 17 -3
17: (0.7607143,0.8892857): 16 8 11
18: (1.758333,0.5): 13 -4 11
dummy nodes: (x,y)
1: (-3.275,0.5)
2: (0.5,-3.275)
3: (0.5,4.275)
4: (4.275,0.5)

Dummy nodes have to be created to build the unbounded Voronoi cells on the border of the
mosaic.
Again while plotting it we overlay it with the triangulation to show the above mentioned
duality:

> MASS::eqscplot(tritest)
> plot(vm, add=TRUE)
> plot(tr, add=TRUE)
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Figure 2: Voronoi mosaic with Delaunay triangulation as overlay

5. Implementation details
This is the call to tri.mesh:

tri.mesh(x, y = NULL, duplicate = "error", jitter = FALSE)

The argument duplicate offers three options to deal with duplicates:

• "error": Stop with an error, this is the default.

• "strip": Completely remove points with duplicates, or

• "remove": Leave one of the duplicates and remove the remaining.
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The two vectors x and y of equal length contain the coordinates of the given data points.
Omitting y implicates that x consist of a two column matrix or dataframe containing x and
y entries.
In case of errors with a specific data set the option jitter=TRUE can be tried. It adds some
small random error to the x, y location. In some cases (e.g. collinear points) this can help to
succeed with the triangulation. Under some circumstances the algorithm internally decides
to restart with jitter. In this case a warning is issued.
The return value of interp::tri.mesh() is of the class triSht. This is in contrast to the
return value of tripack::tri.mesh() which returns an object of class tri.
That means that it is not possible to use objects created by tripack::tri.mesh() as argu-
ments to functions in interp which operate on triangulations returned by interp::tri.mesh
↪→ ().
The call to voronoi.mosaic() uses the same arguments:

voronoi.mosaic(x, y = NULL, duplicate = "error")

x and y are treated as in tri.mesh(), but x can also be a triangulation object of class triSht
returned by tri.mesh().
All functions from tripack which generate triangulation or Voronoi mosaic objects are also
available in interp with matching calls. The only restriction is that restricted triangulations
as possible in tripack are not implemented in interp.
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