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Abstract

This vignette presents the R package interp and focuses on interpolation of irregular
spaced data.

This is the second of planned three vignettes for this package (not yet finished).

Keywords: interpolation, spline, R software.

1. Note
Notice: This is a preliminary and not yet complete version of this vignette. Finally three
vignettes will be available for this package:

1. a first one related to partial derivatives estimation,

2. this one describing interpolation related stuff

3. and a third one dealing with triangulations and Voronoi mosaics.

2. Introduction
The main aim of this R package is to provide interpolation algorithms for both regular and
irregular data grids

{((xi, yi)⊺, zi)|xi, yi, zi ∈ R i = 1, . . . , n}

From the early days of S and S-Plus there was a function interp() which solved this task. It
used Akima’s spline interpolation algorithms available at netlib1 twice: Once to determine
a triangulation of the data which is needed for a piecewise linear interpolation. This is the
default application case of this function and as shown in Bivand and Gebhardt (2017) the
most common use of it, especially in other R packages depending on it. Second to get the
spline interpolation based an the same triangulation. These algorithms have been available
since 1998 in R via the package akima. Unfortunately this package inherits a non-free license
from the underlying Fortran code. So the need to rewrite the algorithms under a free license,

1https://netlib.org/toms/526.gz

https://netlib.org/toms/526.gz
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encouraged by the CRAN team, appeared convincing to the authors of this package. This is
now mostly done and package interp provides plugin capable replacement functions for the
interpolations delivered in package akima.
For both of these interpolations to work it has to be ensured that no duplicate points (xi, yi)
may exist in the given point set {(xi, yi)|i = 1, . . . , n}. This is reached via the argument
duplicate of interp::interp(). It offers three options:

• "error": Stop with an error, this is the default.

• "strip": Completely remove points with duplicates, or

• "mean","median","user": apply some function to them. The Implementation provides
mean(), median() or a user supplied function ("dupfun").

3. Bivariate Linear Interpolation
The default behaviour of the interp::interp() function is to produce a piecewise linear
interpolation. This interpolation takes the triangles of the Delaunay triangulation as also
returned by tri.mesh() and simply fits a plane to the three vertices (xi, yi, zi), i = 1, 2, 3 of
those triangles. As a natural consequence it is not possible to extrapolate this interpolation
beyond the convex hull of the given point set.
First load the data set used by Akima in his initial work on irregular gridded data (Akima
1978b), see figure 1.

> data(akima)
> library(scatterplot3d)
> scatterplot3d(akima, type="h", angle=60, asp=0.2, lab=c(4,4,0))

The next plot in figure 2 shows the linear nature of the isolines of the interpolation generated
within all triangles:

> li <- interp(akima$x, akima$y, akima$z, nx=150, ny=150)
> MASS::eqscplot(akima$x, akima$y)
> contour(li, nlevels=30, add=TRUE)
> plot(tri.mesh(akima), add=TRUE)

In case the point data set resembles a regular rectangular grid it should be noted that no
unique solution to the triangulation task exists. For each rectangle of this grid there are two
possibilities to form triangles compatible with the main condition of a Delaunay triangulation:
The interior of the circumcircle of each triangle does not contain any other point of the
data set. Generally, as long as the data set contains more then 3 points on a common
circumcircle which is otherwise empty of remaining points, it will lead to non uniqueness of
the triangulation. This in turn means that a piece wise linear interpolation of rectangular
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Figure 1: Akimas test data in Akima (1978b)

gridded data is not unique. Nevertheless interp::interp() will always produce the same
result as long as no jitter is applied to the data set. This can be done by explicitly via the
argument jitter or it is applied automatically during the underlying triangulation, which
applies this in some cases of collinear points to avoid error conditions.
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Figure 2: Piecewise linear interpolation

4. Bivariate Spline Interpolation
Akimas spline interpolator ’with the accuracy of a bicubic polynomial’ (Akima 1978a) for
irregular gridded data is given by the following polynomial in x and y:

p(x, y) =
5∑

i=0

5−i∑
j=0

pi,jxiyj (1)

with 21 coefficients pi,j , 0 ≤ i ≤ j ≤ 5. This polynomial is determined within each triangle
(v1, v2, v3) with vertexes vi ∈ R2, i = 1, 2, 3 of the Delaunay triangulation. The solution has
to fulfill the following restrictions:

1. The interpolation itself (condition (i) in (Akima 1974)) results in 3 conditions.

2. First and second order partial derivatives of p(x, y) have to match estimated derivatives
at the triangle vertices (Akima denotes them as condition (ii)). This makes up for 15
conditions.

3. Finally the last three equations (condition (iii)) involve the directional derivatives along
the normal vectors of the triangle sides. As the spline polynomial is of degree 5 these
derivatives generally will be polynomials of degree 4. Now the condition demands that
they are polynomials of degree 3 in that variable that is describing the position of that
normal vector along the triangle side (later denoted as s in a (s, t) coordinate system),
thus setting its highest degree coefficient to zero. This can be expressed by setting the
appropriate 4th derivative of this directional derivative to zero.

The same conditions are also used in an improved algorithm described in (Akima 1996b), but
e.g. the estimation of the partial derivatives is different to the old algorithm and a better
triangulation based on the TRIPACK Fortran package has been used (Renka 1996).
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Next we will formulate the conditions at the triangle vertices vi = (xi, yi)⊺, i = 1, 2, 3 and for

the normal vectors nij =
[

0 1
−1 0

]
tij of the triangle sides tij = (xj , yj)⊺ − (xi, yi)⊺ (i, j) ∈

{(1, 3), (3, 2), (2, 1)}.

(i) p(xi, yi) = zi, i = 1, 2, 3
(ii) ∂

∂xp(xi, yi) = zx,i,
∂

∂y p(xi, yi) = zy,i, i = 1, 2, 3
∂2

∂x∂y p(xi, yi) = zxy,i,
∂2

∂x2 p(xi, yi) = zxx,i,
∂2

∂y2 p(xi, yi) = zyy,i

(iii) ∂4

∂s4 nij∇p(x, y) = 0 (i, j) ∈ {(1, 3), (3, 2), (2, 1)}

(2)

where zi are the values to interpolate in vi = (xi, yi)⊺, i = 1, 2, 3 and zx,i = ∂
∂xp(xi, yi),

zy,i = ∂
∂y p(xi, yi), zxx,i = ∂2

∂x2 p(xi, yi), zxy,i = ∂2

∂x∂y p(xi, yi) and zyy,i = ∂2

∂2y
p(xi, yi) denote the

estimates for partial derivatives at vi. Note that the scalar product nij∇p(x, y) represents
the directional derivative mentioned above expressed in coordinates s and t.
All these conditions together ensure that the resulting spline interpolates the given data and
the interpolating function is continuous and differentiable across the borders of all triangles.
We now illustrate this with the same data set as above in figure 3.

> si <- interp(akima$x, akima$y, akima$z, method="akima", nx=150, ny=150)
> MASS::eqscplot(akima$x, akima$y)
> contour(si, nlevels=30, add=TRUE)
> plot(tri.mesh(akima), add=TRUE)
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Figure 3: Bivariate Spline Interpolation

5. Implementation details
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The call to interp::interp() follows this form:

interp(x, y = NULL, z, xo = seq(min(x), max(x), length = nx),
yo = seq(min(y), max(y), length = ny),
linear = (method == "linear"), extrap = FALSE,
duplicate = "error", dupfun = NULL,
nx = 40, ny = 40, input="points", output = "grid",
method = "linear", deltri = "shull", h=0,
kernel="gaussian", solver="QR", degree=3,
baryweight=TRUE, autodegree=FALSE, adtol=0.1,
smoothpde=FALSE, akimaweight=TRUE, nweight=25)

The arguments duplicate and dupfun have been introduced above, as well as method with
its currently two available options "linear" and "akima".
Generally the input will be given as three vectors x, y and z of equal length. Omitting y
implicates that x consist of a two column matrix or dataframe containing x and y entries.
Additionally the argument input has to be set to "points" (which it is by default). If input
↪→ ="grid" is given, z is treated as a matrix of z values containing zi,j for the x and y values
given in the argument vectors x and y both of a length matching the dimensions of z. A
similar scheme is applied to the output: If output="grid" is set (default) a matrix with rows
and columns according to the output defining vectors xo and yo is returned. The output grid
can also be specified by setting its dimension to nx times ny, it will then be chosen to cover
the range of the input data. With output="points" xo and yo have to be of equal length
and only a vector of z values of the same length is returned. Extrapolation (extrap=TRUE)
is only possible for spline interpolation but is disabled by default. The remaining parameters
control several aspects of the algorithm and are at least partially explained later.
Both methods are implemented via the Rcpp interface (Eddelbuettel and Balamuta 2018).
As mentioned before, step 1 of these interpolation methods is the Delaunay triangulation,
described in another vignette (vignette("tri")) which is based on the sweep hull algorithm
described in (Sinclair 2016). The access to the triangulation code is done internally via C++,
not via the R function interp::tri.mesh().
In the second step the needed estimates for the partial derivatives up to degree 2 in all data
points are determined. This is based on a local polynomial regression approach implemented
in C++. These intermediate results are also available via interp::locpoly() described in
a separate vignette (vignette("partDeriv")). All options of the related interp::locpoly
↪→ () function are also available in interp::interp(), e.g. argument kernel specifies the
kernel used. In contrast to Akima’s interpolation we use a gaussian kernel by default and
not a uniform one. Argument h contains the bandwidth, either as a scaler, or a vector of
length 2. The first setting gives a percentage of the data set used for a local nearest neigbour
bendwidth approach. If two bandwidths as a vector are given then two global bandwidths
for x and y are chosen as the given percentage of their data range. If h=0 then a minimum
local bandwidth resulting in 10 nearest neigbours are choosen to be able to determine the 10
parameters of a degree=3 polynomial. It is possible to choose different numerical solutions
of the weighted least squares method behind the local regression via the argument solver
(default is "QR", but also "LLT", "SVD", "Eigen" and "CPivQR" are available) to be used in
the local regression step, compare fastLm() in (Bates and Eddelbuettel 2013).
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The third step performs the real interpolation. First the estimated derivatives are (optionally)
smoothed according to the smoothing scheme detailed in (Akima 1978b). Then the system
of equations (2) is solved per triangle and the results are determined via

p(x, y) = y (y (y (y (p0,5 y +p1,4 x+p0,4)+x (p2,3 x+p1,3)+p0,3)+x (x (p3,2 x+p2,2)+p1,2)
+ p0,2) + x (x (x (p4,1 x + p3,1) + p2,1) + p1,1) + p0,1)

+ x (x (x (x (p5,0 x + p4,0) + p3,0) + p2,0) + p1,0) + p0,0
(3)

which is equivalent to (1) but numerically more stable.
Optionally some methods to improve the results can be applied. They are choosen via the
following arguments:

• akimaweight: As mentioned above, this sort of averaging is also done in Akimas original
algorithms. It takes by default 25 (parameter nweight) estimates of that specific partial
derivative and builds a weighted sum of them with the weights beeing constructed out of
normal densities with mean and standard deviations of the according estmation errors.

• baryweight: The system of equations (2) is solved after transforming each triangle
into a standardized triangle with vertices (0, 0)⊺, (1, 0)⊺, (0, 1)⊺. So one of the three
vertices of a triangle gets transformed into (0, 0)⊺. During the development of the code
it became apperent that the numerical errors for points near to this vertices are minimal
and increase for the two other vertices. This weighting scheme repeats the interpolation
for all three possibilities to transform a vertex into (0, 0)⊺ and then merges the results
using the barycentric coordinates (see 7.1) of the prediction points. That way results
generated from a vertex mapped to (0, 0)⊺ always dominate and all three vertices can
benefit from the reduced numerical errors near (0, 0)⊺ after transformation. Clearly
this triples the computing time. But nevertheless this option is used by default. As
motivation a result with barycentric weighting turned off is given below in figure 4.

> si.nobw <- interp(akima$x, akima$y, akima$z, method="akima", nx=150, ny=150,
baryweight=FALSE)

> MASS::eqscplot(akima$x, akima$y)
> contour(si.nobw, nlevels=30, add=TRUE)
> plot(tri.mesh(akima), add=TRUE)

The plot clearly shows (e.g. in the center of the upper left quadrant) the numerical
problems of disconnected isolines across the triangle borders. Note, that these errors
occur only on one triangle edge. It turned out this is opposite to the vertex mapped
internally by the algorithm to (0, 0)⊺. So we encourage to use this option even dispite
the tripled computing time. Only if acurracy does not really matter one could reduce
the computing time by turning it off.

• smoothpde: If TRUE smoothing of partial derivative estimates, if akimaweight==TRUE
↪→ then Akimas weighting scheme is applied, otherwise a simple arithmetic mean is
returned. Note that it is disabled by default which in turn means that also no Akima
weighting is applied. If it is enabled then Akima weighting is used by default and a
simple arithmetic mean if akimaweight=FALSE is given.
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Figure 4: Bivariate Spline Interpolation (Without barycentric weighting)

• autodegree: If the variability of the interpolates is above adtol then reduce the degree
of the polynomial to get a smoother result. This is also disabled by default.

If interp::interp() is called with regular gridded data as input, it uses the same irregular
grid based algorithm. This is in contrast to the old package akima, this also contained Akimas
code for regular gridded data, based on (Akima 1974) and (Akima 1996a). Maybe a future
version of package interp will also contain a re-implementation of this old code.
This package also implements bilinear interpolation for rectangular grids. Given a rectangle
{(x1, y1)⊺, (x2, y2)⊺, (x3, y3)⊺, (x4, y4)⊺} and y1 = y2, y3 = y4, x1 = x4 and x2 = x3 (this makes
it axis parallel) with counter clockwise indexed vertexes and according z values z1, z2, z3, z4,
this algorithm can be described as follows: For a location (x0, y0)⊺ contained in this rectangle
the interpolation is determined via:

1. Determine intermediate z values for (x0, y1)⊺ and (x0, y3)⊺ as

z01 = x0 − x1
x2 − x1

(z1 + z2) and z03 = x0 − x1
x2 − x1

(z3 + z4).

2. Now get

z0 = y0 − y1
y4 − y1

(z01 + z03).

This results in a polynomial of degree 2 which is continuous but not differentiable at the
borders of the rectangle.
We use Franke function 1 (Franke 1982) on a regular grid for the demonstration, see figure 5.
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> nx <- 8; ny <- 8
> xg<-seq(0,1,length=nx)
> yg<-seq(0,1,length=ny)
> xyg<-expand.grid(xg,yg)
> fg <- outer(xg,yg,function(x,y)franke.fn(x,y,1))
> # not yet implemented this way:
> # bil <- interp(xg,yg,fg,input="grid",output="grid",method="bilinear")
> bil <- bilinear.grid(xg, yg, fg, dx=0.01, dy=0.01)
> MASS::eqscplot(xyg[,1], xyg[,2])
> contour(bil, add=TRUE)
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Figure 5: Bilinear interpolation of regularly gridded data

6. One-Dimensional Data
Akima also implemented algorithms for one-dimensional spline interpolation, see (Akima
1972). So it was a natural choice to include these algorithms also in the package akima. The
functions aspline() and aSpline() are freely licensed re-implementations of this algorithm
in Fortran and C++. It comes in two versions, one as described in (Akima 1972) and an
improved version as described in (Akima 1991), the newer algorithm also allows for higher
degrees of the polynomial, not only degree 3, compare figure 6

> x <- c(-3, -2, -1, 0, 1, 2, 2.5, 3)
> y <- c( 0, 0, 0, 0, -1, -1, 0, 2)
> MASS::eqscplot(x, y, ylim=c(-2, 3))
> lines(aspline(x, y, n=200, method="original"), col="red")
> lines(aspline(x, y, n=200, method="improved"), col="black", lty="dotted")
> lines(aspline(x, y, n=200, method="improved", degree=10), col="green", lty="dashed")
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Figure 6: Spline interpolation of onedimensional data

7. Appendix

7.1. Barycentric Coordinates
Points within a triangle can be expressed in barycentric coordinates as follows:
Given a triangle with vertices vi = (xi, yi)⊺, i = 1, 2, 3 any interior point v0 = (x0, y0)⊺ of this
triangle can be expressed as a convex linear combination

v0 = a · v1 + b · v2 + c · v3

with a, b, c ∈ [0, 1] and a + b + c = 1 (notation: [a : b : c]). The vertices itself carry the
representation [1 : 0 : 0] , [0 : 1 : 0] and [0 : 0 : 1].
In section 5 we used these coordinates to build a weighted sum of three interpolation results.
Component a of the barycentric coordinates of a point near vertex v1 will be close to 1 and so
the interpolation result with the lowest numerical error (where vertex v1 had been transformed
to (0, 0)⊺) will dominate the barycentric weighted sum mentioned above. Using this approach
we cherry pick the numerically best portions of these three interpolation results.
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