This function computes the predictive posterior density of the outcome of interest under the imprecise Dirichlet prior distribution. It follows a beta-binomial distribution.
dbetabinom(i, M, x, s, N, tA) pbetabinom(M, x, s, N, y)
dbetabinom(i, M, x, s, N, tA) pbetabinom(M, x, s, N, y)
i |
number of occurrences of event A in the M future trials |
M |
number of future trials |
x |
number of occurrence of event A in the N previous trials |
s |
learning parameter |
N |
total number of previous trials |
tA |
prior probability of event A under the Dirichlet prior |
y |
maximum number of occurrences of event A in the M future trials |
dbetabinom
returns a scalar value of density and pdetabinom
returns a list of scalars corresponding to the lower and upper probabilities of the distribution.
pbetabinom(M=6, x=1, s=1, N=6, y=0)
pbetabinom(M=6, x=1, s=1, N=6, y=0)
Distribution of Difference of Two Proportions
dbetadif(x, a1, b1, a2, b2)
dbetadif(x, a1, b1, a2, b2)
x |
difference of two beta distributions |
a1 |
shape 1 parameter of Beta distribution with control |
b1 |
shape 2 parameter of Beta distribution with control |
a2 |
shape 1 parameter of Beta distribution with treatment |
b2 |
shape 2 parameter of Beta distribution with treatment |
betadif
gives a scalar value of density.
Chen, Y., & Luo, S. (2011). A few remarks on 'Statistical distribution of the difference of two proportions' by Nadarajah and Kotz, Statistics in Medicine 2007; 26 (18): 3518-3523. Statistics in Medicine, 30(15), 1913-1915.
This function computes lower and upper posterior probabilities under an imprecise Beta model when prior information is not available.
ibm(n = 10, m = 6, s0 = 2, showplot = TRUE, xlab1 = NA, main1 = NA)
ibm(n = 10, m = 6, s0 = 2, showplot = TRUE, xlab1 = NA, main1 = NA)
n |
total of trials |
m |
number of observations realized |
s0 |
learning parameter |
showplot |
logical, TRUE by default |
xlab1 |
x axis text |
main1 |
main title text |
ibm
returns data.frame containing posterior probabilities on the mean parameter space.
Walley, P. (1996), Inferences from Multinomial Data: Learning About a Bag of Marbles. Journal of the Royal Statistical Society: Series B (Methodological), 58: 3-34. https://doi.org/10.1111/j.2517-6161.1996.tb02065.x
tc <- seq(0,1,0.1) s <- 2 ibm(n=10, m=6)
tc <- seq(0,1,0.1) s <- 2 ibm(n=10, m=6)
This function computes lower and upper posterior probabilities under an imprecise Dirichlet model when prior information is not available.
This function searches for the lower and upper bounds of a given level of the highest posterior density interval under the imprecise Dirichlet prior.
idm(nj, s = 1, N, tj = NA_real_, k, cA = 1) hpd( alpha = 3, beta = 5, p = 0.95, tolerance = 1e-04, maxiter = 100, verbose = FALSE )
idm(nj, s = 1, N, tj = NA_real_, k, cA = 1) hpd( alpha = 3, beta = 5, p = 0.95, tolerance = 1e-04, maxiter = 100, verbose = FALSE )
nj |
number of observations in the j th category |
s |
learning parameter |
N |
total number of drawings |
tj |
mean probability associated with the j th category |
k |
number of elements in the sample space |
cA |
the number of elements in the event A |
alpha |
shape1 parameter of beta distribution |
beta |
shape2 parameter of beta distribution |
p |
level of credible interval |
tolerance |
level of error allowed |
maxiter |
maximum number of iterations |
verbose |
logical option suppressing messages |
idm
returns a list of lower and upper probabilities.
p.lower |
Minimum of imprecise probabilities |
p.upper |
Maximum of imprecise probabilities |
v.lower |
Variance of lower bound |
v.upper |
Variance of upper bound |
s.lower |
Standard deviation of lower bound |
s.upper |
Standard deviation of upper bound |
p |
Precise probabilty |
p.delta |
Degree of imprecision |
hpd
gives a list of scalar values corresponding to the lower and upper bounds of highest posterior probability density region.
Walley, P. (1996), Inferences from Multinomial Data: Learning About a Bag of Marbles. Journal of the Royal Statistical Society: Series B (Methodological), 58: 3-34. https://doi.org/10.1111/j.2517-6161.1996.tb02065.x
idm(nj=1, N=6, s=2, k=4) x <- hpd(alpha=3, beta=5, p=0.95) # c(0.0031, 0.6587) when s=2 # round(x,4); x*(1-x)^5
idm(nj=1, N=6, s=2, k=4) x <- hpd(alpha=3, beta=5, p=0.95) # c(0.0031, 0.6587) when s=2 # round(x,4); x*(1-x)^5