--- title: "example" author: "Exercised by Chel Hee Lee" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{example} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console bibliography: references.bib nocite: | @Walley1991, @Bernard2005 --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::opts_chunk$set(fig.width = 6, fig.height=6) # knitr::opts_chunk$set(tidy.opts=list(width.cutoff=80), tidy=TRUE) ``` ```{r setup} library(imprecise101) ``` ## Imprecise Dirichlet Model ### 4. Bag of Marbles Example This example is taken from @Walley1996a. #### 4.1. Probabilities of Future Outcomes For $s=2$, $\overline{P}(R|n)=0.375$ and $\underline{P}(R|n)=0.125$. ```{r} op <- idm(nj=1, s=2, N=6, k=4) c(op$p.lower, op$p.upper) ``` For $s=1$, $\overline{P}(R|n)=0.286$ and $\underline{P}(R|n)=0.143$. ```{r} op <- idm(nj=1, s=1, N=6, k=4) round(c(op$p.lower, op$p.upper),3) ``` For $s=0$, $P(R|n)=0.167$ irrespective of $\Omega$. ```{r} op <- idm(nj=1, s=0, N=6, k=4) round(c(op$p.lower, op$p.upper),3) ``` Table 1. $P(R|n)$ for different choices of $\Omega$ and $s$ (on page 20) ```{r} r1 <- c(idm(nj=1, s=1, N=6, k=4)$p, idm(nj=1, s=2, N=6, k=4)$p, idm(nj=1, s=4/2, N=6, k=4)$p, idm(nj=1, s=4, N=6, k=4)$p) # Omega 1 r2 <- c(idm(nj=1, s=1, N=6, k=2)$p, idm(nj=1, s=2, N=6, k=2)$p, idm(nj=1, s=2/2, N=6, k=2)$p, idm(nj=1, s=2, N=6, k=2)$p) # Omega 2 r3 <- c(idm(nj=1, s=1, N=6, k=3, cA=2)$p, idm(nj=1, s=2, N=6, k=3, cA=2)$p, idm(nj=1, s=3/2, N=6, k=3, cA=2)$p, idm(nj=1, s=3, N=6, k=3, cA=2)$p) # Omega 3 tb1 <- rbind(r1, r2, r3) rownames(tb1) <- c("Omega1", "Omega2", "Omega3") colnames(tb1) <- c("s=1", "s=2", "s=k/2", "s=k") round(tb1,3) ``` For $M=6$ and $s=1$, the CDF are: ```{r} mat <- cbind( unlist(pbetabinom(M=6, x=1, s=1, N=6, y=0)), unlist(pbetabinom(M=6, x=1, s=1, N=6, y=1)), unlist(pbetabinom(M=6, x=1, s=1, N=6, y=2)), unlist(pbetabinom(M=6, x=1, s=1, N=6, y=3)), unlist(pbetabinom(M=6, x=1, s=1, N=6, y=4)), unlist(pbetabinom(M=6, x=1, s=1, N=6, y=5)), unlist(pbetabinom(M=6, x=1, s=1, N=6, y=6)) ) colnames(mat) <- c("y=0", "y=1", "y=2", "y=3", "y=4", "y=5", "y=6") round(mat, 3) ``` #### 4.2 Means and Standard Deviations for $\theta_R$ For $s=2$, $\overline{E}(\theta_R|n) = 0.375$, $\underline{E}(\theta_R|n)=0.125$, $\overline{\sigma}(\theta_R|n)=0.188$, and $\underline{\sigma}(\theta_R|n)=0.110$. For $s=1$, $\overline{E}(\theta_R|n) = 0.286$, $\underline{E}(\theta_R|n)=0.143$, $\overline{\sigma}(\theta_R|n)=0.164$, and $\underline{\sigma}(\theta_R|n)=0.124$. ```{r} op <- idm(nj=1, s=2, N=6, k=4) round(c(op$p.upper, op$p.lower, op$s.upper, op$s.lower),3) op <- idm(nj=1, s=1, N=6, k=4) round(c(op$p.upper, op$p.lower, op$s.upper, op$s.lower),3) ``` #### 4.3 Credible Intervals for $\theta_R$ For $s=2$, 95%, 90%, and 50% credible intervals are $[0.0031, 0.6587]$, $[0.0066, 0.5962]$, and $[0.0481, 0.3656]$, respectively. For $s=1$, 95%, 90%, and 50% credible intervals are $[0.0076, 0.5834]$, $[0.0150, 0.5141]$, $[0.0761, 0.2958]$, respectively. ```{r} round(hpd(alpha=3, beta=5, p=0.95),4) # s=2 round(hpd(alpha=3, beta=5, p=0.90),4) # s=2 round(hpd(alpha=3, beta=5, p=0.50),4) # s=2 (required for message of failure) round(hpd(alpha=2, beta=5, p=0.95),4) # s=1 round(hpd(alpha=2, beta=5, p=0.90),4) # s=1 round(hpd(alpha=2, beta=5, p=0.50),4) # s=1 ``` HPD interval, uniform prior $(s=2) [0.0133, 0.5273]$. ```{r} x <- pscl::betaHPD(alpha=2, beta=6, p=0.95, plot=FALSE) round(x,4) ``` #### 4.4 Testing Hypotheses about $\theta_R$ Test $H_0: \theta_R \ge 1/2$ against $H_a: \theta_R < 1/2$. The posterior lower and upper probabilities of $H_0$ are $\underline{P}(H_0|n)=0.00781$ and $\overline{P}(H_0|n)=0.227$. ```{r} fn <- function(x) choose(7,1)*(1-x)^6 integrate(f=fn, lower=1/2, upper=1)$value fn <- function(x) dbeta(x, 3, 5) integrate(f=fn, lower=1/2, upper=1)$value ``` ## Imprecise Beta Model ### 5. CT vs ECMO Example This example is taken from @Walley1996a. ### 5.5 Deciding when to terminate randomized trials ```{r out.width="45%"} x <- seq(-0.99, 0.99, 0.02) ymax <- ymin <- numeric(length(x)) for(i in 1:length(x)) ymin[i] <- dbetadif(x=x[i], a1=9,b1=2,a2=8,b2=4) for(i in 1:length(x)) ymax[i] <- dbetadif(x=x[i], a1=11,b1=0.01,a2=6,b2=6) plot(x=x, y=cumsum(ymin)/sum(ymin), type="l", ylab="F(z)", xlab="z", main=expression(paste("Fig 1. Posterior upper and lower CDFs for ", psi, "=", theta[e]-theta[c]))) points(x=x, y=cumsum(ymax)/sum(ymax), type="l") ``` ### Further inferences concerning $\theta_c$, $\theta_e$, and $\psi$ This example is taken from @Walley1996a. ```{r out.width="45%", echo=FALSE} tc <- seq(0,1,0.1) s <- 2 op <- ibm(n=10, m=6, showplot=TRUE, xlab1="z", main1=expression(paste("Fig 1. Posterior ", theta[c], " based on ", s==2))) op <- ibm(n=9, m=9, showplot=TRUE, xlab1="z", main1=expression(paste("Fig 2. Posterior ", theta[e], " based on ", s==2))) ``` ```{r out.width="45%", echo=FALSE} x <- seq(-0.99, 0.99, 0.02) ymax <- ymin <- numeric(length(x)) for(i in 1:length(x)) ymin[i] <- dbetadif(x=x[i], a1=9,b1=2,a2=8,b2=4) for(i in 1:length(x)) ymax[i] <- dbetadif(x=x[i], a1=11,b1=0.01,a2=6,b2=6) plot(x=x, y=1-cumsum(ymin)/sum(ymin), type="l", ylab="G(z)", xlab="z", main=expression(paste("Fig 3. ", psi, "=", theta[e]-theta[c], " Walley 1996 p.496" ))) points(x=x, y=1-cumsum(ymax)/sum(ymax), type="l") dmin <- 1-cumsum(ymin/sum(ymin)) dmax <- 1-cumsum(ymax/sum(ymax)) ``` Since the imprecision is the area between lower and upper probabilities, $A = \overline{E} - \underline{E}$ =`r sum((dmax - dmin)*0.02)` ## TODO * Add the examples of decision problem from @Walley1996b. ## References
## Appendix