Title: | Identify the Racial Complex of Native Corns from Mexico |
---|---|
Description: | A model that provides researchers with a powerful tool for the classification and study of native corn by aiding in the identification of racial complexes which are fundamental to Mexico's agriculture and culture. This package has been developed based on data collected by "Proyecto Global de Maíces Nativos México", which has conducted exhaustive surveys across the country to document the qualitative and quantitative characteristics of different types of native maize. The trained model uses a robust and diverse dataset, enabling it to achieve an 80% accuracy in classifying maize racial complexes. The characteristics included in the analysis comprise geographic location, grain and cob colors, as well as various physical measurements, such as lengths and widths. |
Authors: | Rafael Nieves-Alvarez [aut, cre] , Arturo Sanchez-Porras [aut, cph] , Aline Romero-Natale [aut] , Otilio Arturo Acevedo-Sandoval [aut] |
Maintainer: | Rafael Nieves-Alvarez <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.2 |
Built: | 2024-12-22 06:36:34 UTC |
Source: | CRAN |
Dataset of characteristics of native Mexican corn cobs obtained from the "Proyecto Global de Maíces Nativos" considering the most relevant variables and a subset of observations for the examples.
data("data24")
data("data24")
A data frame with 24 observations and 61 variables.
Data available on the website: <https://biodiversidad.gob.mx/diversidad/proyectoMaices>.
CONABIO. 2011. Proyecto Global de Maíces Nativos. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Instituto Nacional de Ecología y cambio Climático. México. https://biodiversidad.gob.mx/diversidad/proyectoMaices.
data(data24) # lazy loading str(data24)
data(data24) # lazy loading str(data24)
Dataset of characteristics of native Mexican corn cobs obtained from the "Proyecto Global de Maíces Nativos" considering the most relevant variables and a subset of observations for the examples.
data("data31")
data("data31")
A data frame with 31 observations and 61 variables.
Data available on the website: <https://biodiversidad.gob.mx/diversidad/proyectoMaices>.
CONABIO. 2011. Proyecto Global de Maíces Nativos. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Instituto Nacional de Ecología y cambio Climático. México. https://biodiversidad.gob.mx/diversidad/proyectoMaices.
data(data31) # lazy loading str(data31)
data(data31) # lazy loading str(data31)
Identify the Racial Complex of native corn from Mexico
find_racial_complex(data)
find_racial_complex(data)
data |
A dataset that contains qualitative and quantitative characteristics of a corn ear or series of ears. The selected characteristics are related to colors, some measurements and the locations in which the corn was grown. A template for what has to be filled will be included on the GitHub page of the project. |
findraciacomplex()
returns a racial complex classification for the dataset or single observation that the user entered
Rafael Nieves-Alvarez ([email protected]), Arturo Sanchez-Porras, Aline Romero-Natale, Otilio Arturo Acevedo-Sandoval
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R (1st ed.). Springer.\ Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (1st ed.). Springer.\ Monroy, L. G. D. (2007). Estadística Multivariada: Inferencia y Métodos. Univ. Nacional.
[impute_data()]
df <- find_racial_complex(data31) df
df <- find_racial_complex(data31) df
Impute and prepare a dataframe to apply the find_racialcomplex()
function,
in case the dataframe has missing values. The imputation is done with random
forests. The database must have the same variables as those in bdMaiz.rds
in this same package.
impute_data(data, useParallel = FALSE)
impute_data(data, useParallel = FALSE)
data |
An incomplete dataset that contains qualitative and quantitative characteristics of a corn or series of corns. The selected characteristics are related to colors, some measurements, and the locations in which the corn was grown. A template for what has to be filled will be included on the GitHub page of the project. |
useParallel |
Logical. Perform the analysis in parallel? Defaults to FALSE. |
impute_data()
returns an imputed dataset that can be used with
find_racialcomplex()
.
Rafael Nieves-Alvarez ([email protected]), Arturo Sanchez-Porras, Aline Romero-Natale, Otilio Arturo Acevedo-Sandoval
Báez Vergara, K. J. Estimación de datos faltantes a través de redes neuronales, una comparación con métodos simples y múltiples (Doctoral dissertation, Universidad Santo Tomás).
[find_racialcomplex()]
set.seed(42) df <- data24[17,] df df_imp <- impute_data(df, useParallel = FALSE) df_imp
set.seed(42) df <- data24[17,] df df_imp <- impute_data(df, useParallel = FALSE) df_imp