Title: | Image Processing Library Based on 'CImg' |
---|---|
Description: | Fast image processing for images in up to 4 dimensions (two spatial dimensions, one time/depth dimension, one colour dimension). Provides most traditional image processing tools (filtering, morphology, transformations, etc.) as well as various functions for easily analysing image data using R. The package wraps 'CImg', <http://cimg.eu>, a simple, modern C++ library for image processing. |
Authors: | Simon Barthelme [aut], David Tschumperle [ctb], Jan Wijffels [ctb], Haz Edine Assemlal [ctb], Shota Ochi [ctb], Aaron Robotham [cre], Rodrigo Tobar [ctb] |
Maintainer: | Aaron Robotham <[email protected]> |
License: | LGPL-3 |
Version: | 1.0.2 |
Built: | 2024-12-10 07:05:47 UTC |
Source: | CRAN |
A shortcut for x >= a | x <= b.
x %inr% range
x %inr% range
x |
numeric values |
range |
a vector of length two, of the form c(a,b) |
a vector of logicals 1:10
Simon Barthelme
Add colour channels to a grayscale image or pixel set
add.colour(im, simple = TRUE) add.color(im, simple = TRUE)
add.colour(im, simple = TRUE) add.color(im, simple = TRUE)
im |
a grayscale image |
simple |
if TRUE just stack three copies of the grayscale image, if FALSE treat the image as the L channel in an HSL representation. Default TRUE. For pixel sets this option makes no sense and is ignored. |
an image of class cimg
add.color()
: Alias for add.colour
Simon Barthelme
grayscale(boats) #No more colour channels add.colour(grayscale(boats)) #Image has depth = 3 (but contains only grays)
grayscale(boats) #No more colour channels add.colour(grayscale(boats)) #Image has depth = 3 (but contains only grays)
Imager implements various converters that turn your data into cimg objects. If you convert from a vector (which only has a length, and no dimension), either specify dimensions explicitly or some guesswork will be involved. See examples for clarifications.
as.cimg(obj, ...) ## S3 method for class 'numeric' as.cimg(obj, ...) ## S3 method for class 'logical' as.cimg(obj, ...) ## S3 method for class 'double' as.cimg(obj, ...) ## S3 method for class 'cimg' as.cimg(obj, ...) ## S3 method for class 'vector' as.cimg(obj, x = NA, y = NA, z = NA, cc = NA, dim = NULL, ...) ## S3 method for class 'matrix' as.cimg(obj, ...)
as.cimg(obj, ...) ## S3 method for class 'numeric' as.cimg(obj, ...) ## S3 method for class 'logical' as.cimg(obj, ...) ## S3 method for class 'double' as.cimg(obj, ...) ## S3 method for class 'cimg' as.cimg(obj, ...) ## S3 method for class 'vector' as.cimg(obj, x = NA, y = NA, z = NA, cc = NA, dim = NULL, ...) ## S3 method for class 'matrix' as.cimg(obj, ...)
obj |
an object |
... |
optional arguments |
x |
width |
y |
height |
z |
depth |
cc |
spectrum |
dim |
a vector of dimensions (optional, use instead of xyzcc) |
as.cimg(numeric)
: convert numeric
as.cimg(logical)
: convert logical
as.cimg(double)
: convert double
as.cimg(cimg)
: return object
as.cimg(vector)
: convert vector
as.cimg(matrix)
: Convert to matrix
Simon Barthelme
as.cimg.array, as.cimg.function, as.cimg.data.frame
as.cimg(1:100,x=10,y=10) #10x10, grayscale image as.cimg(rep(1:100,3),x=10,y=10,cc=3) #10x10 RGB as.cimg(1:100,dim=c(10,10,1,1)) as.cimg(1:100) #Guesses dimensions, warning is issued as.cimg(rep(1:100,3)) #Guesses dimensions, warning is issued
as.cimg(1:100,x=10,y=10) #10x10, grayscale image as.cimg(rep(1:100,3),x=10,y=10,cc=3) #10x10 RGB as.cimg(1:100,dim=c(10,10,1,1)) as.cimg(1:100) #Guesses dimensions, warning is issued as.cimg(rep(1:100,3)) #Guesses dimensions, warning is issued
If the array has two dimensions, we assume it's a grayscale image. If it has three dimensions we assume it's a video, unless the third dimension has a depth of 3, in which case we assume it's a colour image,
## S3 method for class 'array' as.cimg(obj, ...)
## S3 method for class 'array' as.cimg(obj, ...)
obj |
an array |
... |
ignored |
as.cimg(array(1:9,c(3,3))) as.cimg(array(1,c(10,10,3))) #Guesses colour image as.cimg(array(1:9,c(10,10,4))) #Guesses video
as.cimg(array(1:9,c(3,3))) as.cimg(array(1,c(10,10,3))) #Guesses colour image as.cimg(array(1:9,c(10,10,4))) #Guesses video
This function is meant to be just like as.cimg.data.frame, but in reverse. Each line in the data frame must correspond to a pixel. For example, the data fame can be of the form (x,y,value) or (x,y,z,value), or (x,y,z,cc,value). The coordinates must be valid image coordinates (i.e., positive integers).
## S3 method for class 'data.frame' as.cimg(obj, v.name = "value", dims, ...)
## S3 method for class 'data.frame' as.cimg(obj, v.name = "value", dims, ...)
obj |
a data.frame |
v.name |
name of the variable to extract pixel values from (default "value") |
dims |
a vector of length 4 corresponding to image dimensions. If missing, a guess will be made. |
... |
ignored |
an object of class cimg
Simon Barthelme
#Create a data.frame with columns x,y and value df <- expand.grid(x=1:10,y=1:10) %>% dplyr::mutate(value=x*y) #Convert to cimg object (2D, grayscale image of size 10*10 as.cimg(df,dims=c(10,10,1,1)) %>% plot
#Create a data.frame with columns x,y and value df <- expand.grid(x=1:10,y=1:10) %>% dplyr::mutate(value=x*y) #Convert to cimg object (2D, grayscale image of size 10*10 as.cimg(df,dims=c(10,10,1,1)) %>% plot
Similar to as.im.function from the spatstat package, but simpler. Creates a grid of pixel coordinates x=1:width,y=1:height and (optional) z=1:depth, and evaluates the input function at these values.
## S3 method for class ''function'' as.cimg( obj, width, height, depth = 1, spectrum = 1, standardise = FALSE, dim = NULL, ... )
## S3 method for class ''function'' as.cimg( obj, width, height, depth = 1, spectrum = 1, standardise = FALSE, dim = NULL, ... )
obj |
a function with arguments (x,y), or (x,y,cc), or (x,y,z), etc. Must be vectorised; see examples. |
width |
width of the image (in pixels) |
height |
height of the image (in pixels) |
depth |
depth of the image (in pixels). Default 1. |
spectrum |
number of colour channels. Defaut 1. |
standardise |
coordinates are scaled and centered (see doc for pixel.grid) |
dim |
a vector of image dimensions (can be used instead of width, height, etc.) |
... |
ignored |
an object of class cimg
Simon Barthelme
im = as.cimg(function(x,y) cos(sin(x*y/100)),100,100) plot(im) #The following is just a rectangle at the center of the image im = as.cimg(function(x,y) (abs(x) < .1)*(abs(y) < .1) ,100,100,standardise=TRUE) plot(im) #Since coordinates are standardised the rectangle scales with the size of the image im = as.cimg(function(x,y) (abs(x) < .1)*(abs(y) < .1) ,200,200,standardise=TRUE) plot(im) #A Gaussian mask around the center im = as.cimg(function(x,y) dnorm(x,sd=.1)*dnorm(y,sd=.3) ,dim=dim(boats),standardise=TRUE) im = im/max(im) plot(im*boats) #A Gaussian mask for just the red channel fun = function(x,y,cc) ifelse(cc==1,dnorm(x,sd=.1)*dnorm(y,sd=.3),0) im = as.cimg(fun,dim=dim(boats),standardise=TRUE) plot(im*boats)
im = as.cimg(function(x,y) cos(sin(x*y/100)),100,100) plot(im) #The following is just a rectangle at the center of the image im = as.cimg(function(x,y) (abs(x) < .1)*(abs(y) < .1) ,100,100,standardise=TRUE) plot(im) #Since coordinates are standardised the rectangle scales with the size of the image im = as.cimg(function(x,y) (abs(x) < .1)*(abs(y) < .1) ,200,200,standardise=TRUE) plot(im) #A Gaussian mask around the center im = as.cimg(function(x,y) dnorm(x,sd=.1)*dnorm(y,sd=.3) ,dim=dim(boats),standardise=TRUE) im = im/max(im) plot(im*boats) #A Gaussian mask for just the red channel fun = function(x,y,cc) ifelse(cc==1,dnorm(x,sd=.1)*dnorm(y,sd=.3),0) im = as.cimg(fun,dim=dim(boats),standardise=TRUE) plot(im*boats)
Convert an image in spatstat format to an image in cimg format
## S3 method for class 'im' as.cimg(obj, ...)
## S3 method for class 'im' as.cimg(obj, ...)
obj |
a spatstat image |
... |
optional arguments |
a cimg image
Simon Barthelme
R's native object for representing images is a "raster". This function converts raster objects to cimg objects.
## S3 method for class 'raster' as.cimg(obj, ...)
## S3 method for class 'raster' as.cimg(obj, ...)
obj |
a raster object |
... |
ignored |
a cimg object
Simon Barthelme
rst <- as.raster(matrix((1:4)/4,2,2)) as.cimg(rst) %>% plot(int=FALSE) all.equal(rst,as.raster(as.cimg(rst)))
rst <- as.raster(matrix((1:4)/4,2,2)) as.cimg(rst) %>% plot(int=FALSE) all.equal(rst,as.raster(as.cimg(rst)))
This function combines the output of pixel.grid with the actual values (stored in $value)
## S3 method for class 'cimg' as.data.frame(x, ..., wide = c(FALSE, "c", "d"))
## S3 method for class 'cimg' as.data.frame(x, ..., wide = c(FALSE, "c", "d"))
x |
an image of class cimg |
... |
arguments passed to pixel.grid |
wide |
if "c" or "d" return a data.frame that is wide along colour or depth (for example with rgb values along columns). The default is FALSE, with each pixel forming a separate entry. |
a data.frame
Simon Barthelme
#First five pixels as.data.frame(boats) %>% head(5) #Wide format along colour axis as.data.frame(boats,wide="c") %>% head(5)
#First five pixels as.data.frame(boats) %>% head(5) #Wide format along colour axis as.data.frame(boats,wide="c") %>% head(5)
Convert image list to data.frame
## S3 method for class 'imlist' as.data.frame(x, ..., index = "im")
## S3 method for class 'imlist' as.data.frame(x, ..., index = "im")
x |
an image list (an imlist object) |
... |
Passed on to as.data.frame.cimg |
index |
Name of the column containing the index (or name) of the image in the list. Default: "im" |
#Transform the image gradient into a data.frame gr <- imgradient(boats,"xy") %>% setNames(c("dx","dy")) %>% as.data.frame str(gr)
#Transform the image gradient into a data.frame gr <- imgradient(boats,"xy") %>% setNames(c("dx","dy")) %>% as.data.frame str(gr)
Methods to convert pixsets to various objects
## S3 method for class 'pixset' as.data.frame(x, ..., drop = FALSE)
## S3 method for class 'pixset' as.data.frame(x, ..., drop = FALSE)
x |
pixset to convert |
... |
ignored |
drop |
drop flat dimensions |
where
px <- boats > 250 #Convert to array of logicals as.logical(px) %>% dim #Convert to data.frame: gives all pixel locations in the set as.data.frame(px) %>% head #Drop flat dimensions as.data.frame(px,drop=TRUE) %>% head
px <- boats > 250 #Convert to array of logicals as.logical(px) %>% dim #Convert to data.frame: gives all pixel locations in the set as.data.frame(px) %>% head #Drop flat dimensions as.data.frame(px,drop=TRUE) %>% head
In this graph representation, every pixel is a vertex connected to its neighbours. The image values along edges are stored as graph attributes (see examples).
## S3 method for class 'cimg' as.igraph(x, mask = px.all(channel(im, 1)), ...)
## S3 method for class 'cimg' as.igraph(x, mask = px.all(channel(im, 1)), ...)
x |
an image (must be 2D, 3D not implemented yet) |
mask |
optional: a pixset. if provided, pixels are only connected if they are both in the pixset. |
... |
ignored |
a graph (igraph format) with attributes value.from, value.to and dist
Simon Barthelme
as.igraph.pixset
library(igraph) im <- imfill(5,5) G <- as.igraph(im) plot(G) #Shortest-path distance from pixel 1 to all other pixels d <- igraph::distances(G,1) %>% as.vector as.cimg(d,dim=gsdim(im)) %>% plot(interpolate=FALSE) #Notice that moving along the diagonal has the same cost #as moving along the cardinal directions, whereas the Euclidean distance #is actually sqrt(2) and not 1. #Modify weight attribute, to change the way distance is computed igraph::E(G)$weight <- G$dist d2 <- igraph::distances(G,1) %>% as.vector as.cimg(d2,dim=gsdim(im)) %>% plot(interpolate=FALSE) #More interesting example im <- grayscale(boats) G <- as.igraph(im) #value.from holds the value of the source pixel, value.to the sink's #set w_ij = (|v_i - v_j|)/d_ij igraph::E(G)$weight <- (abs(G$value.from - G$value.to))/G$dist igraph::distances(G,5000) %>% as.vector %>% as.cimg(dim=gsdim(im)) %>% plot
library(igraph) im <- imfill(5,5) G <- as.igraph(im) plot(G) #Shortest-path distance from pixel 1 to all other pixels d <- igraph::distances(G,1) %>% as.vector as.cimg(d,dim=gsdim(im)) %>% plot(interpolate=FALSE) #Notice that moving along the diagonal has the same cost #as moving along the cardinal directions, whereas the Euclidean distance #is actually sqrt(2) and not 1. #Modify weight attribute, to change the way distance is computed igraph::E(G)$weight <- G$dist d2 <- igraph::distances(G,1) %>% as.vector as.cimg(d2,dim=gsdim(im)) %>% plot(interpolate=FALSE) #More interesting example im <- grayscale(boats) G <- as.igraph(im) #value.from holds the value of the source pixel, value.to the sink's #set w_ij = (|v_i - v_j|)/d_ij igraph::E(G)$weight <- (abs(G$value.from - G$value.to))/G$dist igraph::distances(G,5000) %>% as.vector %>% as.cimg(dim=gsdim(im)) %>% plot
Return a graph where nodes are pixels, and two nodes are connected if and only if both nodes are in the pixset, and the pixels are adjacent. Optionnally, add weights corresponding to distance (either 1 or sqrt(2), depending on the orientation of the edge). The graph is represented as an igraph "graph" object
## S3 method for class 'pixset' as.igraph(x, weighted = TRUE, ...)
## S3 method for class 'pixset' as.igraph(x, weighted = TRUE, ...)
x |
a pixset |
weighted |
add weight for distance (default TRUE) |
... |
ignored |
an igraph "graph" object
as.igraph.cimg
library(igraph) #Simple 3x3 lattice px <- px.all(imfill(3,3)) as.igraph(px) %>% plot #Disconnect central pixel px[5] <- FALSE as.igraph(px) %>% plot #Form graph from thresholded image im <- load.example("coins") px <- threshold(im) %>% fill(5) G <- as.igraph(px) #Label connected components v <- (igraph::clusters(G)$membership) as.cimg(v,dim=dim(px)) %>% plot #Find a path across the image that avoids all #the coins G <- as.igraph(!px) start <- index.coord(im,data.frame(x=1,y=100)) end <- index.coord(im,data.frame(x=384,y=300)) sp <- igraph::shortest_paths(G,start,end,output="vpath") path <- sp$vpath[[1]] %>% as.integer %>% coord.index(im,.)
library(igraph) #Simple 3x3 lattice px <- px.all(imfill(3,3)) as.igraph(px) %>% plot #Disconnect central pixel px[5] <- FALSE as.igraph(px) %>% plot #Form graph from thresholded image im <- load.example("coins") px <- threshold(im) %>% fill(5) G <- as.igraph(px) #Label connected components v <- (igraph::clusters(G)$membership) as.cimg(v,dim=dim(px)) %>% plot #Find a path across the image that avoids all #the coins G <- as.igraph(!px) start <- index.coord(im,data.frame(x=1,y=100)) end <- index.coord(im,data.frame(x=384,y=300)) sp <- igraph::shortest_paths(G,start,end,output="vpath") path <- sp$vpath[[1]] %>% as.integer %>% coord.index(im,.)
Convert various objects to image lists
## S3 method for class 'list' as.imlist(obj, ...) as.imlist(obj, ...) ## S3 method for class 'imlist' as.imlist(obj, ...) ## S3 method for class 'cimg' as.imlist(obj, ...)
## S3 method for class 'list' as.imlist(obj, ...) as.imlist(obj, ...) ## S3 method for class 'imlist' as.imlist(obj, ...) ## S3 method for class 'cimg' as.imlist(obj, ...)
obj |
an image list |
... |
ignored |
a list
as.imlist(list)
: convert from list
as.imlist(imlist)
: Convert from imlist (identity)
as.imlist(cimg)
: Convert from image
list(a=boats,b=boats*2) %>% as.imlist
list(a=boats,b=boats*2) %>% as.imlist
Methods to convert various objects to pixsets
as.pixset(x, ...) ## S3 method for class 'cimg' as.pixset(x, ...) ## S3 method for class 'pixset' as.cimg(obj, ...)
as.pixset(x, ...) ## S3 method for class 'cimg' as.pixset(x, ...) ## S3 method for class 'pixset' as.cimg(obj, ...)
x |
object to convert to pixset |
... |
ignored |
obj |
pixset to convert |
as.pixset(cimg)
: convert cimg to pixset
as.cimg(pixset)
: convert pixset to cimg
#When converting an image to a pixset, the default is to include all pixels with non-zero value as.pixset(boats) #The above is equivalent to: boats!=0
#When converting an image to a pixset, the default is to include all pixels with non-zero value as.pixset(boats) #The above is equivalent to: boats!=0
raster objects are used by R's base graphics for plotting. R wants hexadecimal RGB values for plotting, e.g. gray(0) yields #000000, meaning black. If you want to control precisely how numerical values are turned into colours for plotting, you need to specify a colour scale using the colourscale argument (see examples). Otherwise the default is "gray" for grayscale images, "rgb" for colour. These expect values in [0..1], so the default is to rescale the data to [0..1]. If you wish to over-ride that behaviour, set rescale=FALSE.
## S3 method for class 'cimg' as.raster( x, frames, rescale = TRUE, colourscale = NULL, colorscale = NULL, col.na = rgb(0, 0, 0, 0), ... )
## S3 method for class 'cimg' as.raster( x, frames, rescale = TRUE, colourscale = NULL, colorscale = NULL, col.na = rgb(0, 0, 0, 0), ... )
x |
an image (of class cimg) |
frames |
which frames to extract (in case depth > 1) |
rescale |
rescale so that pixel values are in [0,1]? (subtract min and divide by range). default TRUE |
colourscale |
a function that returns RGB values in hexadecimal |
colorscale |
same as above in American spelling |
col.na |
which colour to use for NA values, as R rgb code. The default is "rgb(0,0,0,0)", which corresponds to a fully transparent colour. |
... |
ignored |
a raster object
Simon Barthelme
plot.cimg, rasterImage
#A raster is a simple array of RGB values as.raster(boats) %>% str #By default as.raster rescales input values, so that: all.equal(as.raster(boats),as.raster(boats/2)) #TRUE #Setting rescale to FALSE changes that as.raster(boats,rescale=FALSE) %>% plot as.raster(boats/2,rescale=FALSE) %>% plot #For grayscale images, a colourmap should take a single value and #return an RGB code #Example: mapping grayscale value to saturation cscale <- function(v) hsv(.5,v,1) grayscale(boats) %>% as.raster(colourscale=cscale) %>% plot
#A raster is a simple array of RGB values as.raster(boats) %>% str #By default as.raster rescales input values, so that: all.equal(as.raster(boats),as.raster(boats/2)) #TRUE #Setting rescale to FALSE changes that as.raster(boats,rescale=FALSE) %>% plot as.raster(boats/2,rescale=FALSE) %>% plot #For grayscale images, a colourmap should take a single value and #return an RGB code #Example: mapping grayscale value to saturation cscale <- function(v) hsv(.5,v,1) grayscale(boats) %>% as.raster(colourscale=cscale) %>% plot
Return or set pixel value at coordinates
at(im, x, y, z = 1, cc = 1) at(im, x, y, z = 1, cc = 1) <- value color.at(im, x, y, z = 1) color.at(im, x, y, z = 1) <- value
at(im, x, y, z = 1, cc = 1) at(im, x, y, z = 1, cc = 1) <- value color.at(im, x, y, z = 1) color.at(im, x, y, z = 1) <- value
im |
an image (cimg object) |
x |
x coordinate (vector) |
y |
y coordinate (vector) |
z |
z coordinate (vector, default 1) |
cc |
colour coordinate (vector, default 1) |
value |
replacement |
pixel values
at(im, x, y, z = 1, cc = 1) <- value
: set value of pixel at a location
color.at()
: return value of all colour channels at a location
color.at(im, x, y, z = 1) <- value
: set value of all colour channels at a location
Simon Barthelme
im <- as.cimg(function(x,y) x+y,50,50) at(im,10,1) at(im,10:12,1) at(im,10:12,1:3) at(im,1,2) <- 10 at(im,1,2) color.at(boats,x=10,y=10) im <- boats color.at(im,x=10,y=10) <- c(255,0,0) #There should now be a red dot imsub(im, x %inr% c(1,100), y %inr% c(1,100)) %>% plot
im <- as.cimg(function(x,y) x+y,50,50) at(im,10,1) at(im,10:12,1) at(im,10:12,1:3) at(im,1,2) <- 10 at(im,1,2) color.at(boats,x=10,y=10) im <- boats color.at(im,x=10,y=10) <- c(255,0,0) #There should now be a red dot imsub(im, x %inr% c(1,100), y %inr% c(1,100)) %>% plot
Autocrop image region
autocrop(im, color = color.at(im, 1, 1), axes = "zyx")
autocrop(im, color = color.at(im, 1, 1), axes = "zyx")
im |
an image |
color |
Colour used for the crop. If missing, the colour is taken from the top-left pixel. Can also be a colour name (e.g. "red", or "black") |
axes |
Axes used for the crop. |
#Add pointless padding padded <- pad(boats,30,"xy") plot(padded) #Remove padding autocrop(padded) %>% plot #You can specify the colour if needs be autocrop(padded,"black") %>% plot #autocrop has a zero-tolerance policy: if a pixel value is slightly different from the one you gave #the pixel won't get cropped. A fix is to do a bucket fill first padded <- isoblur(padded,10) autocrop(padded) %>% plot padded2 <- bucketfill(padded,1,1,col=c(0,0,0),sigma=.1) autocrop(padded2) %>% plot
#Add pointless padding padded <- pad(boats,30,"xy") plot(padded) #Remove padding autocrop(padded) %>% plot #You can specify the colour if needs be autocrop(padded,"black") %>% plot #autocrop has a zero-tolerance policy: if a pixel value is slightly different from the one you gave #the pixel won't get cropped. A fix is to do a bucket fill first padded <- isoblur(padded,10) autocrop(padded) %>% plot padded2 <- bucketfill(padded,1,1,col=c(0,0,0),sigma=.1) autocrop(padded2) %>% plot
This function returns the bounding box of a pixset as another pixset. If the image has more than one frame, a bounding cube is returned. If the image has several colour channels, the bounding box is computed separately in each channel. crop.bbox crops an image using the bounding box of a pixset.
bbox(px) crop.bbox(im, px)
bbox(px) crop.bbox(im, px)
px |
a pixset |
im |
an image |
a pixset object
crop.bbox()
: crop image using the bounding box of pixset px
Simon Barthelme
im <- grayscale(boats) px <- im > .85 plot(im) highlight(bbox(px)) highlight(px,col="green") crop.bbox(im,px) %>% plot
im <- grayscale(boats) px <- im > .85 plot(im) highlight(bbox(px)) highlight(px,col="green") crop.bbox(im,px) %>% plot
Standard blurring removes noise from images, but tends to smooth away edges in the process. This anisotropic filter preserves edges better.
blur_anisotropic( im, amplitude, sharpness = 0.7, anisotropy = 0.6, alpha = 0.6, sigma = 1.1, dl = 0.8, da = 30, gauss_prec = 2, interpolation_type = 0L, fast_approx = TRUE )
blur_anisotropic( im, amplitude, sharpness = 0.7, anisotropy = 0.6, alpha = 0.6, sigma = 1.1, dl = 0.8, da = 30, gauss_prec = 2, interpolation_type = 0L, fast_approx = TRUE )
im |
an image |
amplitude |
Amplitude of the smoothing. |
sharpness |
Sharpness. |
anisotropy |
Anisotropy. |
alpha |
Standard deviation of the gradient blur. |
sigma |
Standard deviation of the structure tensor blur. |
dl |
Spatial discretization. |
da |
Angular discretization. |
gauss_prec |
Precision of the diffusion process. |
interpolation_type |
Interpolation scheme. Can be 0=nearest-neighbor | 1=linear | 2=Runge-Kutta |
fast_approx |
If true, use fast approximation (default TRUE) |
im <- load.image(system.file('extdata/Leonardo_Birds.jpg',package='imager')) im.noisy <- (im + 80*rnorm(prod(dim(im)))) blur_anisotropic(im.noisy,ampl=1e4,sharp=1) %>% plot
im <- load.image(system.file('extdata/Leonardo_Birds.jpg',package='imager')) im.noisy <- (im + 80*rnorm(prod(dim(im)))) blur_anisotropic(im.noisy,ampl=1e4,sharp=1) %>% plot
This photograph was downloaded from http://r0k.us/graphics/kodak/kodim09.html. Its size was reduced by half to speed up loading and save space.
boats
boats
an image of class cimg
http://r0k.us/graphics/kodak/kodim09.html
Find the boundary of a shape in a pixel set
boundary(px, depth = 1, high_connexity = FALSE)
boundary(px, depth = 1, high_connexity = FALSE)
px |
pixel set |
depth |
boundary depth (default 1) |
high_connexity |
if FALSE, use 4-point neighbourhood. If TRUE, use 8-point. (default FALSE) |
px.diamond(10,30,30) %>% boundary %>% plot px.square(10,30,30) %>% boundary %>% plot px.square(10,30,30) %>% boundary(depth=3) %>% plot px <- (px.square(10,30,30) | px.circle(12,30,30)) boundary(px,high=TRUE) %>% plot(int=TRUE,main="8-point neighbourhood") boundary(px,high=TRUE) %>% plot(int=FALSE,main="4-point neighbourhood")
px.diamond(10,30,30) %>% boundary %>% plot px.square(10,30,30) %>% boundary %>% plot px.square(10,30,30) %>% boundary(depth=3) %>% plot px <- (px.square(10,30,30) | px.circle(12,30,30)) boundary(px,high=TRUE) %>% plot(int=TRUE,main="8-point neighbourhood") boundary(px,high=TRUE) %>% plot(int=FALSE,main="4-point neighbourhood")
Blur image with a box filter (square window)
boxblur(im, boxsize, neumann = TRUE)
boxblur(im, boxsize, neumann = TRUE)
im |
an image |
boxsize |
Size of the box window (can be subpixel). |
neumann |
If true, use Neumann boundary conditions, Dirichlet otherwise (default true, Neumann) |
deriche(), vanvliet().
boxblur(boats,5) %>% plot(main="Dirichlet boundary") boxblur(boats,5,TRUE) %>% plot(main="Neumann boundary")
boxblur(boats,5) %>% plot(main="Dirichlet boundary") boxblur(boats,5,TRUE) %>% plot(main="Neumann boundary")
This is a recursive algorithm, not depending on the values of the box kernel size.
boxblur_xy(im, sx, sy, neumann = TRUE)
boxblur_xy(im, sx, sy, neumann = TRUE)
im |
an image |
sx |
Size of the box window, along the X-axis. |
sy |
Size of the box window, along the Y-axis. |
neumann |
If true, use Neumann boundary conditions, Dirichlet otherwise (default true, Neumann) |
blur().
boxblur_xy(boats,20,5) %>% plot(main="Anisotropic blur")
boxblur_xy(boats,20,5) %>% plot(main="Anisotropic blur")
Bucket fill
bucketfill( im, x, y, z = 1, color, opacity = 1, sigma = 0, high_connexity = FALSE )
bucketfill( im, x, y, z = 1, color, opacity = 1, sigma = 0, high_connexity = FALSE )
im |
an image |
x |
X-coordinate of the starting point of the region to fill. |
y |
Y-coordinate of the starting point of the region to fill. |
z |
Z-coordinate of the starting point of the region to fill. |
color |
a vector of values (of length spectrum(im)), or a colour name (e.g. "red"). If missing, use the colour at location (x,y,z). |
opacity |
opacity. If the opacity is below 1, paint with transparency. |
sigma |
Tolerance for neighborhood values: spread to neighbours if difference is less than sigma (for grayscale). If there are several channels, the sum of squared differences is used: if it below sigma^2, the colour spreads. |
high_connexity |
Use 8-connexity (only for 2d images, default FALSE). |
px.flood
#Change the colour of a sail boats.new <- bucketfill(boats,x=169,y=179,color="pink",sigma=.2) layout(t(1:2)) plot(boats,main="Original") plot(boats.new,main="New sails") #More spreading, lower opacity, colour specified as vector ugly <- bucketfill(boats,x=169,y=179,color=c(0,1,0),sigma=.6,opacity=.5) plot(ugly)
#Change the colour of a sail boats.new <- bucketfill(boats,x=169,y=179,color="pink",sigma=.2) layout(t(1:2)) plot(boats,main="Original") plot(boats.new,main="New sails") #More spreading, lower opacity, colour specified as vector ugly <- bucketfill(boats,x=169,y=179,color=c(0,1,0),sigma=.6,opacity=.5) plot(ugly)
If the threshold parameters are missing, they are determined automatically using a k-means heuristic. Use the alpha parameter to adjust the automatic thresholds up or down The thresholds are returned as attributes. The edge detection is based on a smoothed image gradient with a degree of smoothing set by the sigma parameter.
cannyEdges(im, t1, t2, alpha = 1, sigma = 2)
cannyEdges(im, t1, t2, alpha = 1, sigma = 2)
im |
input image |
t1 |
threshold for weak edges (if missing, both thresholds are determined automatically) |
t2 |
threshold for strong edges |
alpha |
threshold adjusment factor (default 1) |
sigma |
smoothing |
Simon Barthelme
cannyEdges(boats) %>% plot #Make thresholds less strict cannyEdges(boats,alpha=.4) %>% plot #Make thresholds more strict cannyEdges(boats,alpha=1.4) %>% plot
cannyEdges(boats) %>% plot #Make thresholds less strict cannyEdges(boats,alpha=.4) %>% plot #Make thresholds more strict cannyEdges(boats,alpha=1.4) %>% plot
Capture the current R plot device as a cimg image
capture.plot()
capture.plot()
a cimg image corresponding to the contents of the current plotting window
Simon Barthelme
##interactive only: ##plot(1:10) ###Make a plot of the plot ##capture.plot() %>% plot
##interactive only: ##plot(1:10) ###Make a plot of the plot ##capture.plot() %>% plot
Center stencil at a location
center.stencil(stencil, ...)
center.stencil(stencil, ...)
stencil |
a stencil (data.frame with coordinates dx,dy,dz,dc) |
... |
centering locations (e.g. x=4,y=2) |
stencil <- data.frame(dx=seq(-2,2,1),dy=seq(-2,2,1)) center.stencil(stencil,x=10,y=20)
stencil <- data.frame(dx=seq(-2,2,1),dy=seq(-2,2,1)) center.stencil(stencil,x=10,y=20)
Split a colour image into a list of separate channels
channels(im, index, drop = FALSE)
channels(im, index, drop = FALSE)
im |
an image |
index |
which channels to extract (default all) |
drop |
if TRUE drop extra dimensions, returning normal arrays and not cimg objects |
a list of channels
frames
channels(boats) channels(boats,1:2) channels(boats,1:2,drop=TRUE) %>% str #A list of 2D arrays
channels(boats) channels(boats,1:2) channels(boats,1:2,drop=TRUE) %>% str #A list of 2D arrays
Allows you to concatenate image lists together, or images with image lists. Doesn't quite work like R's "c" primitive: image lists are always *flat*, not nested, meaning each element of an image list is an image.
ci(...)
ci(...)
... |
objects to concatenate |
an image list
Simon Barthelme
l1 <- imlist(boats,grayscale(boats)) l2 <- imgradient(boats,"xy") ci(l1,l2) #List + list ci(l1,imfill(3,3)) #List + image ci(imfill(3,3),l1,l2) #Three elements, etc.
l1 <- imlist(boats,grayscale(boats)) l2 <- imgradient(boats,"xy") ci(l1,l2) #List + list ci(l1,imfill(3,3)) #List + image ci(imfill(3,3),l1,l2) #Three elements, etc.
cimg is a class for storing image or video/hyperspectral data. It is designed to provide easy interaction with the CImg library, but in order to use it you need to be aware of how CImg wants its image data stored. Images have up to 4 dimensions, labelled x,y,z,c. x and y are the usual spatial dimensions, z is a depth dimension (which would correspond to time in a movie), and c is a colour dimension. Images are stored linearly in that order, starting from the top-left pixel and going along *rows* (scanline order). A colour image is just three R,G,B channels in succession. A sequence of N images is encoded as R1,R2,....,RN,G1,...,GN,B1,...,BN where R_i is the red channel of frame i. The number of pixels along the x,y,z, and c axes is called (in that order), width, height, depth and spectrum. NB: Logical and integer values are automatically converted to type double. NAs are not supported by CImg, so you should manage them on the R end of things.
cimg(X)
cimg(X)
X |
a four-dimensional numeric array |
an object of class cimg
Simon Barthelme
cimg(array(1,c(10,10,5,3)))
cimg(array(1,c(10,10,5,3)))
Image dimensions
width(im) height(im) spectrum(im) depth(im) nPix(im)
width(im) height(im) spectrum(im) depth(im) nPix(im)
im |
an image |
width()
: Width of the image (in pixels)
height()
: Height of the image (in pixels)
spectrum()
: Number of colour channels
depth()
: Depth of the image/number of frames in a video
nPix()
: Total number of pixels (prod(dim(im)))
Various shortcuts for extracting colour channels, frames, etc
Extract one frame out of a 4D image/video
frame(im, index) imcol(im, x) imrow(im, y) channel(im, ind) R(im) G(im) B(im)
frame(im, index) imcol(im, x) imrow(im, y) channel(im, ind) R(im) G(im) B(im)
im |
an image |
index |
frame index |
x |
x coordinate of the row |
y |
y coordinate of the row |
ind |
channel index |
frame()
: Extract frame
imcol()
: Extract a particular column from an image
imrow()
: Extract a particular row from an image
channel()
: Extract an image channel
R()
: Extract red channel
G()
: Extract green channel
B()
: Extract blue channel
Simon Barthelme
#Extract the red channel from the boats image, then the first row, plot rw <- R(boats) %>% imrow(10) plot(rw,type="l",xlab="x",ylab="Pixel value") #Note that R(boats) returns an image R(boats) #while imrow returns a vector or a list R(boats) %>% imrow(1) %>% str imrow(boats,1) %>% str
#Extract the red channel from the boats image, then the first row, plot rw <- R(boats) %>% imrow(10) plot(rw,type="l",xlab="x",ylab="Pixel value") #Note that R(boats) returns an image R(boats) #while imrow returns a vector or a list R(boats) %>% imrow(1) %>% str imrow(boats,1) %>% str
On supported architectures CImg can parallelise many operations using OpenMP (e.g. imager.combine
). Use this function to turn parallelisation on or off.
cimg.use.openmp(mode = "adaptive", nthreads = 1, verbose = FALSE) cimg.limit.openmp()
cimg.use.openmp(mode = "adaptive", nthreads = 1, verbose = FALSE) cimg.limit.openmp()
mode |
Either "adaptive","always" or "none". The default is adaptive (parallelisation for large images only). |
nthreads |
The number of OpenMP threads that imager should use. The default is 1. Set to 0 to get no more than 2, based on OpenMP environment variables. |
verbose |
Whether to output information about the threads being set. |
You need to be careful that nthreads is not higher than the value in the system environment variable OMP_THREAD_LIMIT (this can be checked with Sys.getenv('OMP_THREAD_LIMIT')). The OMP_THREAD_LIMIT thread limit usually needs to be correctly set before launching R, so using Sys.setenv once a session has started is not certain to work.
NULL (function is used for side effects)
cimg.limit.openmp()
: Limit OpenMP thread count to no more than 2, based on OpenMP environment variables.
Simon Barthelme
cimg.use.openmp("never") #turn off parallelisation
cimg.use.openmp("never") #turn off parallelisation
The spatstat library uses a different format for images, which have class "im". This utility converts a cimg object to an im object. spatstat im objects are limited to 2D grayscale images, so if the image has depth or spectrum > 1 a list is returned for the separate frames or channels (or both, in which case a list of lists is returned, with frames at the higher level and channels at the lower one).
cimg2im(img, W = NULL)
cimg2im(img, W = NULL)
img |
an image of class cimg |
W |
a spatial window (see spatstat doc). Default NULL |
an object of class im, or a list of objects of class im, or a list of lists of objects of class im
Simon Barthelme
im, as.im
Base R has a function for plotting circles called "symbols". Unfortunately, the size of the circles is inconsistent across devices. This function plots circles whose radius is specified in used coordinates.
circles(x, y, radius, bg = NULL, fg = "white", ...)
circles(x, y, radius, bg = NULL, fg = "white", ...)
x |
centers (x coordinate) |
y |
centers (y coordinate) |
radius |
radius (in user coordinates) |
bg |
background colour |
fg |
foreground colour |
... |
passed to polygon, e.g. lwd |
none, used for side effect
Simon Barthelme
hough_circle
Cleaning up a pixel set here means removing small isolated elements (speckle). Filling in means removing holes. Cleaning up can be achieved by shrinking the set (removing speckle), followed by growing it back up. Filling in can be achieved by growing the set (removing holes), and shrinking it again.
clean(px, ...) fill(px, ...)
clean(px, ...) fill(px, ...)
px |
a pixset |
... |
parameters that define the structuring element to use, passed on to "grow" and "shrink" |
fill()
: Fill in holes using morphological closing
Simon Barthelme
im <- load.example("birds") %>% grayscale sub <- imsub(-im,y> 380) %>% threshold("85%") plot(sub) #Turn into a pixel set px <- sub==1 layout(t(1:2)) plot(px,main="Before clean-up") clean(px,3) %>% plot(main="After clean-up") #Now fill in the holes px <- clean(px,3) plot(px,main="Before filling-in") fill(px,28) %>% plot(main="After filling-in")
im <- load.example("birds") %>% grayscale sub <- imsub(-im,y> 380) %>% threshold("85%") plot(sub) #Turn into a pixel set px <- sub==1 layout(t(1:2)) plot(px,main="Before clean-up") clean(px,3) %>% plot(main="After clean-up") #Now fill in the holes px <- clean(px,3) plot(px,main="Before filling-in") fill(px,28) %>% plot(main="After filling-in")
Paint all pixels in pixset px with the same colour
colorise(im, px, col, alpha = 1)
colorise(im, px, col, alpha = 1)
im |
an image |
px |
either a pixset or a formula, as in imeval. |
col |
colour to fill in. either a vector of numeric values or a string (e.g. "red") |
alpha |
transparency (default 1, no transparency) |
an image
Simon Barthelme
im <- load.example("coins") colorise(im,Xc(im) < 50,"blue") %>% plot #Same thing with the formula interface colorise(im,~ x < 50,"blue") %>% plot #Add transparency colorise(im,~ x < 50,"blue",alpha=.5) %>% plot #Highlight pixels with low luminance values colorise(im,~ . < 0.3,"blue",alpha=.2) %>% plot
im <- load.example("coins") colorise(im,Xc(im) < 50,"blue") %>% plot #Same thing with the formula interface colorise(im,~ x < 50,"blue") %>% plot #Add transparency colorise(im,~ x < 50,"blue",alpha=.5) %>% plot #Highlight pixels with low luminance values colorise(im,~ . < 0.3,"blue",alpha=.2) %>% plot
These functions define some commonly used pixsets. px.left gives the left-most pixels of an image, px.right the right-most, etc. px.circle returns an (approximately) circular pixset of radius r, embedded in an image of width x and height y Mathematically speaking, the set of all pixels whose L2 distance to the center equals r or less. px.diamond is similar but returns a diamond (L1 distance less than r) px.square is also similar but returns a square (Linf distance less than r)
px.circle(r, x = 2 * r + 1, y = 2 * r + 1) px.diamond(r, x = 2 * r + 1, y = 2 * r + 1) px.square(r, x = 2 * r + 1, y = 2 * r + 1) px.left(im, n = 1) px.top(im, n = 1) px.bottom(im, n = 1) px.right(im, n = 1) px.borders(im, n = 1) px.all(im) px.none(im)
px.circle(r, x = 2 * r + 1, y = 2 * r + 1) px.diamond(r, x = 2 * r + 1, y = 2 * r + 1) px.square(r, x = 2 * r + 1, y = 2 * r + 1) px.left(im, n = 1) px.top(im, n = 1) px.bottom(im, n = 1) px.right(im, n = 1) px.borders(im, n = 1) px.all(im) px.none(im)
r |
radius (in pixels) |
x |
width (default 2*r+1) |
y |
height (default 2*r+1) |
im |
an image |
n |
number of pixels to include |
a pixset
px.circle()
: A circular-shaped pixset
px.diamond()
: A diamond-shaped pixset
px.square()
: A square-shaped pixset
px.left()
: n left-most pixels (left-hand border)
px.top()
: n top-most pixels
px.bottom()
: n bottom-most pixels
px.right()
: n right-most pixels
px.borders()
: image borders (to depth n)
px.all()
: all pixels in image
px.none()
: no pixel in image
Simon Barthelme
px.circle(20,350,350) %>% plot(interp=FALSE) px.circle(3) %>% plot(interp=FALSE) r <- 5 layout(t(1:3)) plot(px.circle(r,20,20)) plot(px.square(r,20,20)) plot(px.diamond(r,20,20)) #These pixsets are useful as structuring elements px <- grayscale(boats) > .8 grow(px,px.circle(5)) %>% plot #The following functions select pixels on the left, right, bottom, top of the image im <- imfill(10,10) px.left(im,3) %>% plot(int=FALSE) px.right(im,1) %>% plot(int=FALSE) px.top(im,4) %>% plot(int=FALSE) px.bottom(im,2) %>% plot(int=FALSE) #All of the above px.borders(im,1) %>% plot(int=FALSE)
px.circle(20,350,350) %>% plot(interp=FALSE) px.circle(3) %>% plot(interp=FALSE) r <- 5 layout(t(1:3)) plot(px.circle(r,20,20)) plot(px.square(r,20,20)) plot(px.diamond(r,20,20)) #These pixsets are useful as structuring elements px <- grayscale(boats) > .8 grow(px,px.circle(5)) %>% plot #The following functions select pixels on the left, right, bottom, top of the image im <- imfill(10,10) px.left(im,3) %>% plot(int=FALSE) px.right(im,1) %>% plot(int=FALSE) px.top(im,4) %>% plot(int=FALSE) px.bottom(im,2) %>% plot(int=FALSE) #All of the above px.borders(im,1) %>% plot(int=FALSE)
This is just a light interface over contourLines. See help for contourLines for details. If the image has more than one colour channel, return a list with the contour lines in each channel. Does not work on 3D images.
contours(x, nlevels, ...)
contours(x, nlevels, ...)
x |
an image or pixset |
nlevels |
number of contour levels. For pixsets this can only equal two. |
... |
extra parameters passed to contourLines |
a list of contours
Simon Barthelme
highlight
boats.gs <- grayscale(boats) ct <- contours(boats.gs,nlevels=3) plot(boats.gs) #Add contour lines purrr::walk(ct,function(v) lines(v$x,v$y,col="red")) #Contours of a pixel set px <- boats.gs > .8 plot(boats.gs) ct <- contours(px) #Highlight pixset purrr::walk(ct,function(v) lines(v$x,v$y,col="red"))
boats.gs <- grayscale(boats) ct <- contours(boats.gs,nlevels=3) plot(boats.gs) #Add contour lines purrr::walk(ct,function(v) lines(v$x,v$y,col="red")) #Contours of a pixel set px <- boats.gs > .8 plot(boats.gs) ct <- contours(px) #Highlight pixset purrr::walk(ct,function(v) lines(v$x,v$y,col="red"))
Compute (x,y,z,cc) coordinates from linear pixel index.
coord.index(im, index)
coord.index(im, index)
im |
an image |
index |
a vector of indices |
a data.frame of coordinate values
Simon Barthelme
index.coord for the reverse operation
cind <- coord.index(boats,33) #Returns (x,y,z,c) coordinates of the 33rd pixel in the array cind all.equal(boats[33],with(cind,at(boats,x,y,z,cc))) all.equal(33,index.coord(boats,cind))
cind <- coord.index(boats,33) #Returns (x,y,z,c) coordinates of the 33rd pixel in the array cind all.equal(boats[33],with(cind,at(boats,x,y,z,cc))) all.equal(33,index.coord(boats,cind))
The correlation of image im by filter flt is defined as:
The convolution of an image img by filter flt is defined to be:
correlate(im, filter, dirichlet = TRUE, normalise = FALSE) convolve(im, filter, dirichlet = TRUE, normalise = FALSE)
correlate(im, filter, dirichlet = TRUE, normalise = FALSE) convolve(im, filter, dirichlet = TRUE, normalise = FALSE)
im |
an image |
filter |
the correlation kernel. |
dirichlet |
boundary condition. Dirichlet if true, Neumann if false (default TRUE, Dirichlet) |
normalise |
compute a normalised correlation (ie. local cosine similarity) |
convolve()
: convolve image with filter
#Edge filter filter <- as.cimg(function(x,y) sign(x-5),10,10) layout(t(1:2)) #Convolution vs. correlation correlate(boats,filter) %>% plot(main="Correlation") convolve(boats,filter) %>% plot(main="Convolution")
#Edge filter filter <- as.cimg(function(x,y) sign(x-5),10,10) layout(t(1:2)) #Convolution vs. correlation correlate(boats,filter) %>% plot(main="Correlation") convolve(boats,filter) %>% plot(main="Convolution")
This function crops pixels on each side of an image. This function is a kind of inverse (centred) padding, and is useful e.g. when you want to get only the valid part of a convolution
crop.borders(im, nx = 0, ny = 0, nz = 0, nPix)
crop.borders(im, nx = 0, ny = 0, nz = 0, nPix)
im |
an image |
nx |
number of pixels to crop along horizontal axis |
ny |
number of pixels to crop along vertical axis |
nz |
number of pixels to crop along depth axis |
nPix |
optional: crop the same number of pixels along all dimensions |
an image
Simon Barthelme
#These two versions are equivalent imfill(10,10) %>% crop.borders(nx=1,ny=1) imfill(10,10) %>% crop.borders(nPix=1) #Filter, keep valid part correlate(boats,imfill(3,3)) %>% crop.borders(nPix=2)
#These two versions are equivalent imfill(10,10) %>% crop.borders(nx=1,ny=1) imfill(10,10) %>% crop.borders(nPix=1) #Filter, keep valid part correlate(boats,imfill(3,3)) %>% crop.borders(nPix=2)
The Deriche filter is a fast approximation to a Gaussian filter (order = 0), or Gaussian derivatives (order = 1 or 2).
deriche(im, sigma, order = 0L, axis = "x", neumann = FALSE)
deriche(im, sigma, order = 0L, axis = "x", neumann = FALSE)
im |
an image |
sigma |
Standard deviation of the filter. |
order |
Order of the filter. 0 for a smoothing filter, 1 for first-derivative, 2 for second. |
axis |
Axis along which the filter is computed ( 'x' , 'y', 'z' or 'c'). |
neumann |
If true, use Neumann boundary conditions (default false, Dirichlet) |
deriche(boats,sigma=2,order=0) %>% plot("Zeroth-order Deriche along x") deriche(boats,sigma=2,order=1) %>% plot("First-order Deriche along x") deriche(boats,sigma=2,order=1) %>% plot("Second-order Deriche along x") deriche(boats,sigma=2,order=1,axis="y") %>% plot("Second-order Deriche along y")
deriche(boats,sigma=2,order=0) %>% plot("Zeroth-order Deriche along x") deriche(boats,sigma=2,order=1) %>% plot("First-order Deriche along x") deriche(boats,sigma=2,order=1) %>% plot("Second-order Deriche along x") deriche(boats,sigma=2,order=1,axis="y") %>% plot("Second-order Deriche along y")
Compute field of diffusion tensors for edge-preserving smoothing.
diffusion_tensors( im, sharpness = 0.7, anisotropy = 0.6, alpha = 0.6, sigma = 1.1, is_sqrt = FALSE )
diffusion_tensors( im, sharpness = 0.7, anisotropy = 0.6, alpha = 0.6, sigma = 1.1, is_sqrt = FALSE )
im |
an image |
sharpness |
Sharpness |
anisotropy |
Anisotropy |
alpha |
Standard deviation of the gradient blur. |
sigma |
Standard deviation of the structure tensor blur. |
is_sqrt |
Tells if the square root of the tensor field is computed instead. |
Estimate displacement field between two images.
displacement( sourceIm, destIm, smoothness = 0.1, precision = 5, nb_scales = 0L, iteration_max = 10000L, is_backward = FALSE )
displacement( sourceIm, destIm, smoothness = 0.1, precision = 5, nb_scales = 0L, iteration_max = 10000L, is_backward = FALSE )
sourceIm |
Reference image. |
destIm |
Reference image. |
smoothness |
Smoothness of estimated displacement field. |
precision |
Precision required for algorithm convergence. |
nb_scales |
Number of scales used to estimate the displacement field. |
iteration_max |
Maximum number of iterations allowed for one scale. |
is_backward |
If false, match I2(X + U(X)) = I1(X), else match I2(X) = I1(X - U(X)). |
CImg has its own functions for fast, interactive image plotting. Use this if you get frustrated with slow rendering in RStudio. Note that you need X11 library to use this function.
display(x, ...)
display(x, ...)
x |
an image or a list of images |
... |
ignored |
display.cimg, display.imlist
Press escape or close the window to exit. Note that you need X11 library to use this function.
## S3 method for class 'cimg' display(x, ..., rescale = TRUE)
## S3 method for class 'cimg' display(x, ..., rescale = TRUE)
x |
an image (cimg object) |
... |
ignored |
rescale |
if true pixel values are rescaled to [0-1] (default TRUE) |
##Not run: interactive only ##display(boats,TRUE) #Normalisation on ##display(boats/2,TRUE) #Normalisation on, so same as above ##display(boats,FALSE) #Normalisation off ##display(boats/2,FALSE) #Normalisation off, so different from above
##Not run: interactive only ##display(boats,TRUE) #Normalisation on ##display(boats/2,TRUE) #Normalisation on, so same as above ##display(boats,FALSE) #Normalisation off ##display(boats/2,FALSE) #Normalisation off, so different from above
Click on individual images to zoom in.
## S3 method for class 'list' display(x, ...)
## S3 method for class 'list' display(x, ...)
x |
a list of cimg objects |
... |
ignored |
##Not run: interactive only ## imgradient(boats,"xy") %>% display
##Not run: interactive only ## imgradient(boats,"xy") %>% display
The distance transform implementation has been submitted by A. Meijster, and implements the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, "A general algorithm for computing distance transforms in linear time.", In: Mathematical Morphology and its Applications to Image and Signal Processing, J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' The submitted code has then been modified to fit CImg coding style and constraints.
distance_transform(im, value, metric = 2L)
distance_transform(im, value, metric = 2L)
im |
an image |
value |
Reference value. |
metric |
Type of metric. Can be 0=Chebyshev | 1=Manhattan | 2=Euclidean | 3=Squared-euclidean. |
imd <- function(x,y) imdirac(c(100,100,1,1),x,y) #Image is three white dots im <- imd(20,20)+imd(40,40)+imd(80,80) plot(im) #How far are we from the nearest white dot? distance_transform(im,1) %>% plot
imd <- function(x,y) imdirac(c(100,100,1,1),x,y) #Image is three white dots im <- imd(20,20)+imd(40,40)+imd(80,80) plot(im) #How far are we from the nearest white dot? distance_transform(im,1) %>% plot
Add circle or circles to an image. Like other native CImg drawing functions, this is meant to be basic but fast. Use implot for flexible drawing.
draw_circle(im, x, y, radius, color = "white", opacity = 1, filled = TRUE)
draw_circle(im, x, y, radius, color = "white", opacity = 1, filled = TRUE)
im |
an image |
x |
x coordinates |
y |
y coordinates |
radius |
radius (either a single value or a vector of length equal to length(x)) |
color |
either a string ("red"), a character vector of length equal to x, or a matrix of dimension length(x) times spectrum(im) |
opacity |
scalar or vector of length equal to length(x). 0: transparent 1: opaque. |
filled |
fill circle (default TRUE) |
an image
Simon Barthelme
implot
draw_circle(boats,c(50,100),c(150,200),30,"darkgreen") %>% plot draw_circle(boats,125,60,radius=30,col=c(0,1,0),opacity=.2,filled=TRUE) %>% plot
draw_circle(boats,c(50,100),c(150,200),30,"darkgreen") %>% plot draw_circle(boats,125,60,radius=30,col=c(0,1,0),opacity=.2,filled=TRUE) %>% plot
Add a rectangle to an image. Like other native CImg drawing functions, this is meant to be basic but fast. Use implot for flexible drawing.
draw_rect(im, x0, y0, x1, y1, color = "white", opacity = 1, filled = TRUE)
draw_rect(im, x0, y0, x1, y1, color = "white", opacity = 1, filled = TRUE)
im |
an image |
x0 |
x coordinate of the bottom-left corner |
y0 |
y coordinate of the bottom-left corner |
x1 |
x coordinate of the top-right corner |
y1 |
y coordinate of the top-right corner |
color |
either a vector, or a string (e.g. "blue") |
opacity |
0: transparent 1: opaque. |
filled |
fill rectangle (default TRUE) |
an image
Simon Barthelme
implot,draw_circle
draw_rect(boats,1,1,50,50,"darkgreen") %>% plot
draw_rect(boats,1,1,50,50,"darkgreen") %>% plot
Like other native CImg drawing functions, this is meant to be basic but fast. Use implot for flexible drawing.
draw_text(im, x, y, text, color, opacity = 1, fsize = 20)
draw_text(im, x, y, text, color, opacity = 1, fsize = 20)
im |
an image |
x |
x coord. |
y |
y coord. |
text |
text to draw (a string) |
color |
either a vector or a string (e.g. "red") |
opacity |
0: transparent 1: opaque. |
fsize |
font size (in pix., default 20) |
an image
Simon Barthelme
implot,draw_circle,draw_rect
draw_text(boats,100,100,"Some text",col="black") %>% plot
draw_text(boats,100,100,"Some text",col="black") %>% plot
Erode/dilate image by a structuring element.
erode(im, mask, boundary_conditions = TRUE, real_mode = FALSE) erode_rect(im, sx, sy, sz = 1L) erode_square(im, size) dilate(im, mask, boundary_conditions = TRUE, real_mode = FALSE) dilate_rect(im, sx, sy, sz = 1L) dilate_square(im, size) mopening(im, mask, boundary_conditions = TRUE, real_mode = FALSE) mopening_square(im, size) mclosing_square(im, size) mclosing(im, mask, boundary_conditions = TRUE, real_mode = FALSE)
erode(im, mask, boundary_conditions = TRUE, real_mode = FALSE) erode_rect(im, sx, sy, sz = 1L) erode_square(im, size) dilate(im, mask, boundary_conditions = TRUE, real_mode = FALSE) dilate_rect(im, sx, sy, sz = 1L) dilate_square(im, size) mopening(im, mask, boundary_conditions = TRUE, real_mode = FALSE) mopening_square(im, size) mclosing_square(im, size) mclosing(im, mask, boundary_conditions = TRUE, real_mode = FALSE)
im |
an image |
mask |
Structuring element. |
boundary_conditions |
Boundary conditions. If FALSE, pixels beyond image boundaries are considered to be 0, if TRUE one. Default: TRUE. |
real_mode |
If TRUE, perform erosion as defined on the reals. If FALSE, perform binary erosion (default FALSE). |
sx |
Width of the structuring element. |
sy |
Height of the structuring element. |
sz |
Depth of the structuring element. |
size |
size of the structuring element. |
erode_rect()
: Erode image by a rectangular structuring element of specified size.
erode_square()
: Erode image by a square structuring element of specified size.
dilate()
: Dilate image by a structuring element.
dilate_rect()
: Dilate image by a rectangular structuring element of specified size
dilate_square()
: Dilate image by a square structuring element of specified size
mopening()
: Morphological opening (erosion followed by dilation)
mopening_square()
: Morphological opening by a square element (erosion followed by dilation)
mclosing_square()
: Morphological closing by a square element (dilation followed by erosion)
mclosing()
: Morphological closing (dilation followed by erosion)
fname <- system.file('extdata/Leonardo_Birds.jpg',package='imager') im <- load.image(fname) %>% grayscale outline <- threshold(-im,"95%") plot(outline) mask <- imfill(5,10,val=1) #Rectangular mask plot(erode(outline,mask)) plot(erode_rect(outline,5,10)) #Same thing plot(erode_square(outline,5)) plot(dilate(outline,mask)) plot(dilate_rect(outline,5,10)) plot(dilate_square(outline,5))
fname <- system.file('extdata/Leonardo_Birds.jpg',package='imager') im <- load.image(fname) %>% grayscale outline <- threshold(-im,"95%") plot(outline) mask <- imfill(5,10,val=1) #Rectangular mask plot(erode(outline,mask)) plot(erode_rect(outline,5,10)) #Same thing plot(erode_square(outline,5)) plot(dilate(outline,mask)) plot(dilate_rect(outline,5,10)) plot(dilate_square(outline,5))
Patches are rectangular (cubic) image regions centered at cx,cy (cz) with width wx and height wy (opt. depth wz) WARNINGS: - values outside of the image region are subject to boundary conditions. The default is to set them to 0 (Dirichlet), other boundary conditions are listed below. - widths and heights should be odd integers (they're rounded up otherwise).
extract_patches(im, cx, cy, wx, wy, boundary_conditions = 0L) extract_patches3D(im, cx, cy, cz, wx, wy, wz, boundary_conditions = 0L)
extract_patches(im, cx, cy, wx, wy, boundary_conditions = 0L) extract_patches3D(im, cx, cy, cz, wx, wy, wz, boundary_conditions = 0L)
im |
an image |
cx |
vector of x coordinates for patch centers |
cy |
vector of y coordinates for patch centers |
wx |
vector of patch widths (or single value) |
wy |
vector of patch heights (or single value) |
boundary_conditions |
integer. Can be 0 (Dirichlet, default), 1 (Neumann) 2 (Periodic) 3 (mirror). |
cz |
vector of z coordinates for patch centers |
wz |
vector of coordinates for patch depth |
a list of image patches (cimg objects)
extract_patches3D()
: Extract 3D patches
#2 patches of size 5x5 located at (10,10) and (10,20) extract_patches(boats,c(10,10),c(10,20),5,5)
#2 patches of size 5x5 located at (10,10) and (10,20) extract_patches(boats,c(10,10),c(10,20),5,5)
This function is equivalent to R's builtin fft, up to normalisation (R's version is unnormalised, this one is). It calls CImg's implementation. Important note: FFT will compute a multidimensional Fast Fourier Transform, using as many dimensions as you have in the image, meaning that if you have a colour video, it will perform a 4D FFT. If you want to compute separate FFTs across channels, use imsplit.
FFT(im.real, im.imag, inverse = FALSE)
FFT(im.real, im.imag, inverse = FALSE)
im.real |
The real part of the input (an image) |
im.imag |
The imaginary part (also an image. If missing, assume the signal is real). |
inverse |
If true compute the inverse FFT (default: FALSE) |
a list with components "real" (an image) and "imag" (an image), corresponding to the real and imaginary parts of the transform
Simon Barthelme
im <- as.cimg(function(x,y) sin(x/5)+cos(x/4)*sin(y/2),128,128) ff <- FFT(im) plot(ff$real,main="Real part of the transform") plot(ff$imag,main="Imaginary part of the transform") sqrt(ff$real^2+ff$imag^2) %>% plot(main="Power spectrum") #Check that we do get our image back check <- FFT(ff$real,ff$imag,inverse=TRUE)$real #Should be the same as original mean((check-im)^2)
im <- as.cimg(function(x,y) sin(x/5)+cos(x/4)*sin(y/2),128,128) ff <- FFT(im) plot(ff$real,main="Real part of the transform") plot(ff$imag,main="Imaginary part of the transform") sqrt(ff$real^2+ff$imag^2) %>% plot(main="Power spectrum") #Check that we do get our image back check <- FFT(ff$real,ff$imag,inverse=TRUE)$real #Should be the same as original mean((check-im)^2)
Flatten alpha channel
flatten.alpha(im, bg = "white")
flatten.alpha(im, bg = "white")
im |
an image (with 4 RGBA colour channels) |
bg |
background: either an RGB image, or a vector of colour values, or a string (e.g. "blue"). Default: white background. |
a blended image
Simon Barthelme
rm.alpha
#Add alpha channel alpha <- Xc(grayscale(boats))/width(boats) boats.a <- imlist(boats,alpha) %>% imappend("c") flatten.alpha(boats.a) %>% plot flatten.alpha(boats.a,"darkgreen") %>% plot
#Add alpha channel alpha <- Xc(grayscale(boats))/width(boats) boats.a <- imlist(boats,alpha) %>% imappend("c") flatten.alpha(boats.a) %>% plot flatten.alpha(boats.a,"darkgreen") %>% plot
Split a video into separate frames
frames(im, index, drop = FALSE)
frames(im, index, drop = FALSE)
im |
an image |
index |
which channels to extract (default all) |
drop |
if TRUE drop extra dimensions, returning normal arrays and not cimg objects |
a list of frames
channels
Compute image gradient.
get_gradient(im, axes = "", scheme = 3L)
get_gradient(im, axes = "", scheme = 3L)
im |
an image |
axes |
Axes considered for the gradient computation, as a C-string (e.g "xy"). |
scheme |
= Numerical scheme used for the gradient computation: 1 = Backward finite differences 0 = Centered finite differences 1 = Forward finite differences 2 = Using Sobel masks 3 = Using rotation invariant masks 4 = Using Deriche recursive filter. 5 = Using Van Vliet recursive filter. |
a list of images (corresponding to the different directions)
imgradient
Return image hessian.
get_hessian(im, axes = "")
get_hessian(im, axes = "")
im |
an image |
axes |
Axes considered for the hessian computation, as a character string (e.g "xy"). |
Typical use case: you want the coordinates of all pixels with a value above a certain threshold
get.locations(im, condition)
get.locations(im, condition)
im |
the image |
condition |
a function that takes scalars and returns logicals |
coordinates of all pixels such that condition(pixel) == TRUE
Simon Barthelme
im <- as.cimg(function(x,y) x+y,10,10) get.locations(im,function(v) v < 4) get.locations(im,function(v) v^2 + 3*v - 2 < 30)
im <- as.cimg(function(x,y) x+y,10,10) get.locations(im,function(v) v < 4) get.locations(im,function(v) v^2 + 3*v - 2 < 30)
A stencil defines a neighbourhood in an image (for example, the four nearest neighbours in a 2d image). This function centers the stencil at a certain pixel and returns the values of the neighbourhing pixels.
get.stencil(im, stencil, ...)
get.stencil(im, stencil, ...)
im |
an image |
stencil |
a data.frame with values dx,dy,[dz],[dcc] defining the neighbourhood |
... |
where to center, e.g. x = 100,y = 10,z=3,cc=1 |
pixel values in neighbourhood
Simon Barthelme
#The following stencil defines a neighbourhood that #includes the next pixel to the left (delta_x = -1) and the next pixel to the right (delta_x = 1) stencil <- data.frame(dx=c(-1,1),dy=c(0,0)) im <- as.cimg(function(x,y) x+y,w=100,h=100) get.stencil(im,stencil,x=50,y=50) #A larger neighbourhood that includes pixels upwards and #downwards of center (delta_y = -1 and +1) stencil <- stencil.cross() im <- as.cimg(function(x,y) x,w=100,h=100) get.stencil(im,stencil,x=5,y=50)
#The following stencil defines a neighbourhood that #includes the next pixel to the left (delta_x = -1) and the next pixel to the right (delta_x = 1) stencil <- data.frame(dx=c(-1,1),dy=c(0,0)) im <- as.cimg(function(x,y) x+y,w=100,h=100) get.stencil(im,stencil,x=50,y=50) #A larger neighbourhood that includes pixels upwards and #downwards of center (delta_y = -1 and +1) stencil <- stencil.cross() im <- as.cimg(function(x,y) x,w=100,h=100) get.stencil(im,stencil,x=5,y=50)
These functions let you select a shape in an image (a point, a line, or a rectangle) They either return the coordinates of the shape (default), or the contents. In case of lines contents are interpolated. Note that grabLine does not support the "pixset" return type. Note that you need X11 library to use these functions.
grabLine(im, output = "coord") grabRect(im, output = "coord") grabPoint(im, output = "coord")
grabLine(im, output = "coord") grabRect(im, output = "coord") grabPoint(im, output = "coord")
im |
an image |
output |
one of "im","pixset","coord","value". Default "coord" |
Depending on the value of the output parameter. Either a vector of coordinates (output = "coord"), an image (output = "im"), a pixset (output = "pixset"), or a vector of values (output = "value"). grabLine and grabPoint support the "value" output mode and not the "im" output.
Simon Barthelme
display
##Not run: interactive only ##grabRect(boats) ##grabRect(boats,TRUE)
##Not run: interactive only ##grabRect(boats) ##grabRect(boats,TRUE)
This function converts from RGB images to grayscale
grayscale(im, method = "Luma", drop = TRUE)
grayscale(im, method = "Luma", drop = TRUE)
im |
an RGB image |
method |
either "Luma", in which case a linear approximation to luminance is used, or "XYZ", in which case the image is assumed to be in sRGB color space and CIE luminance is used. |
drop |
if TRUE returns an image with a single channel, otherwise keep the three channels (default TRUE) |
a grayscale image (spectrum == 1)
grayscale(boats) %>% plot #In many pictures, the difference between Luma and XYZ conversion is subtle grayscale(boats,method="XYZ") %>% plot grayscale(boats,method="XYZ",drop=FALSE) %>% dim
grayscale(boats) %>% plot #In many pictures, the difference between Luma and XYZ conversion is subtle grayscale(boats,method="XYZ") %>% plot grayscale(boats,method="XYZ",drop=FALSE) %>% dim
Grow/shrink a pixel set through morphological dilation/erosion. The default is to use square or rectangular structuring elements, but an arbitrary structuring element can be given as input. A structuring element is a pattern to be moved over the image: for example a 3x3 square. In "shrink" mode, a element of the pixset is retained only if and only the structuring element fits entirely within the pixset. In "grow" mode, the structuring element acts like a neighbourhood: all pixels that are in the original pixset *or* in the neighbourhood defined by the structuring element belong the new pixset.
grow(px, x, y = x, z = x, boundary = TRUE) shrink(px, x, y = x, z = x, boundary = TRUE)
grow(px, x, y = x, z = x, boundary = TRUE) shrink(px, x, y = x, z = x, boundary = TRUE)
px |
a pixset |
x |
either an integer value, or an image/pixel set. |
y |
width of the rectangular structuring element (if x is an integer value) |
z |
depth of the rectangular structuring element (if x is an integer value) |
boundary |
are pixels beyond the boundary considered to have value TRUE or FALSE (default TRUE) |
shrink()
: shrink pixset using erosion
#A pixel set: a <- grayscale(boats) > .8 plot(a) #Grow by a 8x8 square grow(a,8) %>% plot #Grow by a 8x2 rectangle grow(a,8,2) %>% plot #Custom structuring element el <- matrix(1,2,2) %>% as.cimg all.equal(grow(a,el),grow(a,2)) #Circular structuring element px.circle(5) %>% grow(a,.) %>% plot #Sometimes boundary conditions matter im <- imfill(10,10) px <- px.all(im) shrink(px,3,bound=TRUE) %>% plot(main="Boundary conditions: TRUE") shrink(px,3,bound=FALSE) %>% plot(main="Boundary conditions: FALSE")
#A pixel set: a <- grayscale(boats) > .8 plot(a) #Grow by a 8x8 square grow(a,8) %>% plot #Grow by a 8x2 rectangle grow(a,8,2) %>% plot #Custom structuring element el <- matrix(1,2,2) %>% as.cimg all.equal(grow(a,el),grow(a,2)) #Circular structuring element px.circle(5) %>% grow(a,.) %>% plot #Sometimes boundary conditions matter im <- imfill(10,10) px <- px.all(im) shrink(px,3,bound=TRUE) %>% plot(main="Boundary conditions: TRUE") shrink(px,3,bound=FALSE) %>% plot(main="Boundary conditions: FALSE")
Shortcut, returns the dimensions of an image if it had only one colour channel
gsdim(im)
gsdim(im)
im |
an image |
returns c(dim(im)[1:3],1)
Simon Barthelme
imnoise(dim=gsdim(boats))
imnoise(dim=gsdim(boats))
Compute Haar multiscale wavelet transform.
haar(im, inverse = FALSE, nb_scales = 1L)
haar(im, inverse = FALSE, nb_scales = 1L)
im |
an image |
inverse |
Compute inverse transform (default FALSE) |
nb_scales |
Number of scales used for the transform. |
#Image compression: set small Haar coefficients to 0 hr <- haar(boats,nb=3) mask.low <- threshold(abs(hr),"75%") mask.high <- threshold(abs(hr),"95%") haar(hr*mask.low,inverse=TRUE,nb=3) %>% plot(main="75% compression") haar(hr*mask.high,inverse=TRUE,nb=3) %>% plot(main="95% compression")
#Image compression: set small Haar coefficients to 0 hr <- haar(boats,nb=3) mask.low <- threshold(abs(hr),"75%") mask.high <- threshold(abs(hr),"95%") haar(hr*mask.low,inverse=TRUE,nb=3) %>% plot(main="75% compression") haar(hr*mask.high,inverse=TRUE,nb=3) %>% plot(main="95% compression")
Overlay an image plot with the contours of a pixel set. Note that this function doesn't do the image plotting, just the highlighting.
highlight(px, col = "red", ...)
highlight(px, col = "red", ...)
px |
a pixel set |
col |
color of the contours |
... |
passed to the "lines" function |
Simon Barthelme
colorise, another way of highlighting stuff
#Select similar pixels around point (180,200) px <- px.flood(boats,180,200,sigma=.08) plot(boats) #Highlight selected set highlight(px) px.flood(boats,18,50,sigma=.08) %>% highlight(col="white",lwd=3)
#Select similar pixels around point (180,200) px <- px.flood(boats,180,200,sigma=.08) plot(boats) #Highlight selected set highlight(px) px.flood(boats,18,50,sigma=.08) %>% highlight(col="white",lwd=3)
Detects circles of known radius in a pixset. The output is an image where the pixel value at (x,y) represents the amount of evidence for the presence of a circle of radius r at position (x,y). NB: in the current implementation, does not detect circles centred outside the limits of the pixset.
hough_circle(px, radius)
hough_circle(px, radius)
px |
a pixset (e.g., the output of a Canny detector) |
radius |
radius of circle |
a histogram of Hough scores, with the same dimension as the original image.
Simon Barthelme
im <- load.example('coins') px <- cannyEdges(im) #Find circles of radius 20 hc <- hough_circle(px,20) plot(hc) #Clean up, run non-maxima suppression nms <- function(im,sigma) { im[dilate_square(im,sigma) != im] <- 0; im} hc.clean <- isoblur(hc,3) %>% nms(50) #Top ten matches df <- as.data.frame(hc.clean) %>% dplyr::arrange(desc(value)) %>% head(10) with(df,circles(x,y,20,fg="red",lwd=3))
im <- load.example('coins') px <- cannyEdges(im) #Find circles of radius 20 hc <- hough_circle(px,20) plot(hc) #Clean up, run non-maxima suppression nms <- function(im,sigma) { im[dilate_square(im,sigma) != im] <- 0; im} hc.clean <- isoblur(hc,3) %>% nms(50) #Top ten matches df <- as.data.frame(hc.clean) %>% dplyr::arrange(desc(value)) %>% head(10) with(df,circles(x,y,20,fg="red",lwd=3))
Two algorithms are used, depending on the input: if the input is a pixset then the classical Hough transform is used. If the input is an image, then a faster gradient-based heuristic is used. The method returns either an image (the votes), or a data.frame. In both cases the parameterisation used is the Hesse normal form (theta,rho), where a line is represented as the set of values such that cos(theta)*x + sin(theta)*y = rho. Here theta is an angle and rho is a distance. The image form returns a histogram of scores in (rho,theta) space, where good candidates for lines have high scores. The data.frame form may be more convenient for further processing in R: each line represents a pair (rho,theta) along with its score. If the 'shift' argument is true, then the image is assumed to start at x=1,y=1 (more convenient for plotting in R). If false, the image begins at x=0,y=0 and in both cases the origin is at the top left.
hough_line(im, ntheta = 100, data.frame = FALSE, shift = TRUE)
hough_line(im, ntheta = 100, data.frame = FALSE, shift = TRUE)
im |
an image or pixset |
ntheta |
number of bins along theta (default 100) |
data.frame |
return a data.frame? (default FALSE) |
shift |
if TRUE, image is considered to begin at (x=1,y=1). |
either an image or a data.frame
Simon Barthelme
#Find the lines along the boundary of a square px <- px.square(30,80,80) %>% boundary plot(px) #Hough transform hough_line(px,ntheta=200) %>% plot df <- hough_line(px,ntheta=800,data.frame=TRUE) #Plot lines with the highest score plot(px) with(subset(df,score > quantile(score,.9995)),nfline(theta,rho,col="red")) plot(boats) df <- hough_line(boats,ntheta=800,data=TRUE)
#Find the lines along the boundary of a square px <- px.square(30,80,80) %>% boundary plot(px) #Hough transform hough_line(px,ntheta=200) %>% plot df <- hough_line(px,ntheta=800,data.frame=TRUE) #Plot lines with the highest score plot(px) with(subset(df,score > quantile(score,.9995)),nfline(theta,rho,col="red")) plot(boats) df <- hough_line(boats,ntheta=800,data=TRUE)
Shorthand for imsplit followed by purrr::map_df
idply(im, axis, fun, ...)
idply(im, axis, fun, ...)
im |
image |
axis |
axis for the split (e.g "c") |
fun |
function to apply |
... |
extra arguments to function fun |
idply(boats,"c",mean) #mean luminance per colour channel
idply(boats,"c",mean) #mean luminance per colour channel
This is just imsplit followed by purrr::map followed by imappend
iiply(im, axis, fun, ...)
iiply(im, axis, fun, ...)
im |
image |
axis |
axis for the split (e.g "c") |
fun |
function to apply |
... |
extra arguments to function fun |
##' #Normalise colour channels separately, recombine iiply(boats,"c",function(v) (v-mean(v))/sd(v)) %>% plot
##' #Normalise colour channels separately, recombine iiply(boats,"c",function(v) (v-mean(v))/sd(v)) %>% plot
Shorthand for imsplit followed by purrr::map
ilply(im, axis, fun, ...)
ilply(im, axis, fun, ...)
im |
image |
axis |
axis for the split (e.g "c") |
fun |
function to apply |
... |
extra arguments for function fun |
parrots <- load.example("parrots") ilply(parrots,"c",mean) #mean luminance per colour channel
parrots <- load.example("parrots") ilply(parrots,"c",mean) #mean luminance per colour channel
Split an image along a certain axis (producing a list)
im_split(im, axis, nb = -1L)
im_split(im, axis, nb = -1L)
im |
an image |
axis |
the axis along which to split (for example 'c') |
nb |
number of objects to split into. if nb=-1 (the default) the maximum number of splits is used ie. split(im,"c") produces a list containing all individual colour channels |
imappend (the reverse operation)
CImg by David Tschumperle is a C++ library for image processing. It provides most common functions for image manipulation and filtering, as well as some advanced algorithms. imager makes these functions accessible from R and adds many utilities for accessing and working with image data from R. You should install ImageMagick if you want support for image formats beyond PNG and JPEG, and ffmpeg if you need to work with videos (in which case you probably also want to take a look at experimental package imagerstreams on github). Package documentation is available at http://asgr.github.io/imager/.
Maintainer: Aaron Robotham [email protected]
Authors:
Simon Barthelme [email protected]
Other contributors:
David Tschumperle [contributor]
Jan Wijffels [contributor]
Haz Edine Assemlal [contributor]
Shota Ochi [email protected] [contributor]
Rodrigo Tobar [contributor]
Useful links:
Report bugs at https://github.com/asgr/imager/issues
These functions take a list of images and combine them by adding, multiplying, taking the parallel min or max, etc. The max. in absolute value of (x1,x2) is defined as x1 if (|x1| > |x2|), x2 otherwise. It's useful for example in getting the most extreme value while keeping the sign. "parsort","parrank" and "parorder" aren't really reductions because they return a list of the same size. They perform a pixel-wise sort (resp. order and rank) across the list.
add(x, na.rm = FALSE) wsum(x, w, na.rm = FALSE) average(x, na.rm = FALSE) mult(x, na.rm = FALSE) parmax(x, na.rm = FALSE) parmax.abs(x) parmin.abs(x) parmin(x, na.rm = FALSE) enorm(x) parmed(x, na.rm = FALSE) parquan(x, prob = 0.5, na.rm = FALSE) parvar(x, na.rm = FALSE) parsd(x, na.rm = FALSE) parall(x) parany(x) equal(x) which.parmax(x) which.parmin(x) parsort(x, increasing = TRUE) parorder(x, increasing = TRUE) parrank(x, increasing = TRUE)
add(x, na.rm = FALSE) wsum(x, w, na.rm = FALSE) average(x, na.rm = FALSE) mult(x, na.rm = FALSE) parmax(x, na.rm = FALSE) parmax.abs(x) parmin.abs(x) parmin(x, na.rm = FALSE) enorm(x) parmed(x, na.rm = FALSE) parquan(x, prob = 0.5, na.rm = FALSE) parvar(x, na.rm = FALSE) parsd(x, na.rm = FALSE) parall(x) parany(x) equal(x) which.parmax(x) which.parmin(x) parsort(x, increasing = TRUE) parorder(x, increasing = TRUE) parrank(x, increasing = TRUE)
x |
a list of images |
na.rm |
ignore NAs (default FALSE) |
w |
weights (must be the same length as the list) |
prob |
probability level for parquan, default of 0.5 returns the median |
increasing |
if TRUE, sort in increasing order (default TRUE) |
parvar returns an unbiased estimate of the variance (as in the base var function). parsd returns the square root of parvar. parquan returns the specified quantile, and defines this in the same manner as the default R quantile function (type = 7). Using parmed and parquan with quan = 0.5 will return the same result, but parmed will be slightly faster (but only a few percent).
To correctly use multiple threads users should set nthreads in cimg.use.openmp
. You also need to be careful that this is not higher than the value in the system environment variable OMP_THREAD_LIMIT (this can be checked with Sys.getenv('OMP_THREAD_LIMIT')). The OMP_THREAD_LIMIT thread limit usually needs to be correctly set before launching R, so using Sys.setenv once a session has started is not certain to work.
add()
: Add images
wsum()
: Weighted sum of images
average()
: Average images
mult()
: Multiply images (pointwise)
parmax()
: Parallel max over images
parmax.abs()
: Parallel max in absolute value over images,
parmin.abs()
: Parallel min in absolute value over images,
parmin()
: Parallel min over images
enorm()
: Euclidean norm (i.e. sqrt(A^2 + B^2 + ...))
parmed()
: Parallel Median over images
parquan()
: Parallel Quantile over images
parvar()
: Variance
parsd()
: Std. deviation
parall()
: Parallel all (for pixsets)
parany()
: Parallel any (for pixsets)
equal()
: Test equality
which.parmax()
: index of parallel maxima
which.parmin()
: index of parallel minima
parsort()
: pixel-wise sort
parorder()
: pixel-wise order
parrank()
: pixel-wise rank
Simon Barthelme
imsplit,Reduce
im1 <- as.cimg(function(x,y) x,50,50) im2 <- as.cimg(function(x,y) y,50,50) im3 <- as.cimg(function(x,y) cos(x/10),50,50) l <- imlist(im1,im2,im3) add(l) %>% plot #Add the images average(l) %>% plot #Average the images mult(l) %>% plot #Multiply wsum(l,c(.1,8,.1)) %>% plot #Weighted sum parmax(l) %>% plot #Parallel max parmin(l) %>% plot #Parallel min parmed(l) %>% plot #Parallel median parsd(l) %>% plot #Parallel std. dev #parsort can also be used to produce parallel max. and min (parsort(l)[[1]]) %>% plot("Parallel min") (parsort(l)[[length(l)]]) %>% plot("Parallel max") #Resize boats so the next examples run faster im <- imresize(boats,.5) #Edge detection (Euclidean norm of gradient) imgradient(im,"xy") %>% enorm %>% plot #Pseudo-artistic effects l <- map_il(seq(1,35,5),~ boxblur(im,.)) parmin(l) %>% plot average(l) %>% plot mult(l) %>% plot #At each pixel, which colour channel has the maximum value? imsplit(im,"c") %>% which.parmax %>% table #Same thing using parorder (ties are broken differently)!!! imsplit(im,"c") %>% { parorder(.)[[length(.)]] } %>% table
im1 <- as.cimg(function(x,y) x,50,50) im2 <- as.cimg(function(x,y) y,50,50) im3 <- as.cimg(function(x,y) cos(x/10),50,50) l <- imlist(im1,im2,im3) add(l) %>% plot #Add the images average(l) %>% plot #Average the images mult(l) %>% plot #Multiply wsum(l,c(.1,8,.1)) %>% plot #Weighted sum parmax(l) %>% plot #Parallel max parmin(l) %>% plot #Parallel min parmed(l) %>% plot #Parallel median parsd(l) %>% plot #Parallel std. dev #parsort can also be used to produce parallel max. and min (parsort(l)[[1]]) %>% plot("Parallel min") (parsort(l)[[length(l)]]) %>% plot("Parallel max") #Resize boats so the next examples run faster im <- imresize(boats,.5) #Edge detection (Euclidean norm of gradient) imgradient(im,"xy") %>% enorm %>% plot #Pseudo-artistic effects l <- map_il(seq(1,35,5),~ boxblur(im,.)) parmin(l) %>% plot average(l) %>% plot mult(l) %>% plot #At each pixel, which colour channel has the maximum value? imsplit(im,"c") %>% which.parmax %>% table #Same thing using parorder (ties are broken differently)!!! imsplit(im,"c") %>% { parorder(.)[[length(.)]] } %>% table
These replacement functions let you modify part of an image (for example, only the red channel). Note that cimg objects can also be treated as regular arrays and modified using the usual [] operator.
channel(x, ind) <- value R(x) <- value G(x) <- value B(x) <- value frame(x, ind) <- value
channel(x, ind) <- value R(x) <- value G(x) <- value B(x) <- value frame(x, ind) <- value
x |
an image to be modified |
ind |
an index |
value |
the image to insert |
channel(x, ind) <- value
: Replace image channel
R(x) <- value
: Replace red channel
G(x) <- value
: Replace green channel
B(x) <- value
: Replace blue channel
frame(x, ind) <- value
: Replace image frame
imdraw
boats.cp <- boats #Set the green channel in the boats image to 0 G(boats.cp) <- 0 #Same thing, more verbose channel(boats.cp,2) <- 0 #Replace the red channel with noise R(boats.cp) <- imnoise(width(boats),height(boats)) #A new image with 5 frames tmp <- imfill(10,10,5) #Fill the third frame with noise frame(tmp,3) <- imnoise(10,10)
boats.cp <- boats #Set the green channel in the boats image to 0 G(boats.cp) <- 0 #Same thing, more verbose channel(boats.cp,2) <- 0 #Replace the red channel with noise R(boats.cp) <- imnoise(width(boats),height(boats)) #A new image with 5 frames tmp <- imfill(10,10,5) #Fill the third frame with noise frame(tmp,3) <- imnoise(10,10)
Internally cimg objects are 4D arrays (stored in x,y,z,c mode) but often one doesn't need all dimensions. This is the case for instance when working on grayscale images, which use only two. The array subset operator works like the regular array [] operator, but it won't force you to use all dimensions. There are easier ways of accessing image data, for example imsub, channels, R, G, B, and the like.
x |
an image (cimg object) |
drop |
if true return an array, otherwise return an image object (default FALSE) |
... |
subsetting arguments |
imsub, which provides a more convenient interface, autocrop, imdraw
im <- imfill(4,4) dim(im) #4 dimensional, but the last two ones are singletons im[,1,,] <- 1:4 #Assignment the standard way im[,1] <- 1:4 #Shortcut as.matrix(im) im[1:2,] dim(boats) #Arguments will be recycled, as in normal array operations boats[1:2,1:3,] <- imnoise(2,3) #The same noise array is replicated over the three channels
im <- imfill(4,4) dim(im) #4 dimensional, but the last two ones are singletons im[,1,,] <- 1:4 #Assignment the standard way im[,1] <- 1:4 #Shortcut as.matrix(im) im[1:2,] dim(boats) #Arguments will be recycled, as in normal array operations boats[1:2,1:3,] <- imnoise(2,3) #The same noise array is replicated over the three channels
All images will be concatenated along the x,y,z, or c axis.
imappend(imlist, axis)
imappend(imlist, axis)
imlist |
a list of images (all elements must be of class cimg) |
axis |
the axis along which to concatenate (for example 'c') |
imsplit (the reverse operation)
imappend(list(boats,boats),"x") %>% plot imappend(list(boats,boats),"y") %>% plot purrr::map(1:3, ~imnoise(100,100)) %>% imappend("c") %>% plot boats.gs <- grayscale(boats) purrr::map(seq(1,5,l=3),function(v) isoblur(boats.gs,v)) %>% imappend("c") %>% plot #imappend also works on pixsets imsplit(boats > .5,"c") %>% imappend("x") %>% plot
imappend(list(boats,boats),"x") %>% plot imappend(list(boats,boats),"y") %>% plot purrr::map(1:3, ~imnoise(100,100)) %>% imappend("c") %>% plot boats.gs <- grayscale(boats) purrr::map(seq(1,5,l=3),function(v) isoblur(boats.gs,v)) %>% imappend("c") %>% plot #imappend also works on pixsets imsplit(boats > .5,"c") %>% imappend("x") %>% plot
A shortcut for modifying parts of an image, using imeval syntax. See doc for imeval first. As part of a pipe, avoids the creating of intermediate variables.
imchange(obj, where, fo, env = parent.frame())
imchange(obj, where, fo, env = parent.frame())
obj |
an image or imlist |
where |
where to modify. a pixset, or a formula (in imeval syntax) that evaluates to a pixset. |
fo |
a formula (in imeval syntax) used to modify the image part |
env |
evulation environment (see imeval) |
a modified image
Simon Barthelme
imeval
#Set border to 0: imchange(boats,px.borders(boats,10),~ 0) %>% plot #Eq. to im <- boats im[px.borders(im,10)] <- 0 #Using formula syntax imchange(boats,~ px.borders(.,10),~ 0) #Replace with grayscale ramp imchange(boats,~ px.borders(.,10),~ xs) %>% plot #Kill red channel in image imchange(boats,~ c==1,~ 0) %>% plot #Shit hue by an amount depending on eccentricity load.example("parrots") %>% RGBtoHSL %>% imchange(~ c==1,~ .+80*exp(-(rho/550)^2) ) %>% HSLtoRGB %>% plot
#Set border to 0: imchange(boats,px.borders(boats,10),~ 0) %>% plot #Eq. to im <- boats im[px.borders(im,10)] <- 0 #Using formula syntax imchange(boats,~ px.borders(.,10),~ 0) #Replace with grayscale ramp imchange(boats,~ px.borders(.,10),~ xs) %>% plot #Kill red channel in image imchange(boats,~ c==1,~ 0) %>% plot #Shit hue by an amount depending on eccentricity load.example("parrots") %>% RGBtoHSL %>% imchange(~ c==1,~ .+80*exp(-(rho/550)^2) ) %>% HSLtoRGB %>% plot
These functions return pixel coordinates for an image, as an image. All is made clear in the examples (hopefully)
Xc(im) Yc(im) Zc(im) Cc(im)
Xc(im) Yc(im) Zc(im) Cc(im)
im |
an image |
another image of the same size, containing pixel coordinates
Xc()
: X coordinates
Yc()
: Y coordinates
Zc()
: Z coordinates
Cc()
: C coordinates
as.cimg.function, pixel.grid
im <- imfill(5,5) #An image Xc(im) #An image of the same size, containing the x coordinates of each pixel Xc(im) %>% imrow(1) Yc(im) %>% imrow(3) #y is constant along rows Yc(im) %>% imcol(1) #Mask bits of the boats image: plot(boats*(Xc(boats) < 100)) plot(boats*(dnorm(Xc(boats),m=100,sd=30))) #Gaussian window
im <- imfill(5,5) #An image Xc(im) #An image of the same size, containing the x coordinates of each pixel Xc(im) %>% imrow(1) Yc(im) %>% imrow(3) #y is constant along rows Yc(im) %>% imcol(1) #Mask bits of the boats image: plot(boats*(Xc(boats) < 100)) plot(boats*(dnorm(Xc(boats),m=100,sd=30))) #Gaussian window
This small utility is useful to examine the impulse response of a filter
imdirac(dims, x, y, z = 1, cc = 1)
imdirac(dims, x, y, z = 1, cc = 1)
dims |
a vector of image dimensions, or an image whose dimensions will be used. If dims has length < 4 some guesswork will be used (see examples and ?as.cimg.array) |
x |
where to put the dirac (x coordinate) |
y |
y coordinate |
z |
z coordinate (default 1) |
cc |
colour coordinate (default 1) |
an image
Simon Barthelme
#Explicit settings of all dimensions imdirac(c(50,50,1,1),20,20) imdirac(c(50,50),20,20) #Implicit imdirac(c(50,50,3),20,20,cc=2) #RGB imdirac(c(50,50,7),20,20,z=2) #50x50 video with 7 frames #Impulse response of the blur filter imdirac(c(50,50),20,20) %>% isoblur(sigma=2) %>% plot #Impulse response of the first-order Deriche filter imdirac(c(50,50),20,20) %>% deriche(sigma=2,order=1,axis="x") %>% plot ##NOT RUN, interactive only ##Impulse response of the blur filter in space-time ##resp <- imdirac(c(50,50,100),x=25,y=25,z=50) %>% isoblur(16) ###Normalise to 0...255 and play as video ##renorm(resp) %>% play(normalise=FALSE)
#Explicit settings of all dimensions imdirac(c(50,50,1,1),20,20) imdirac(c(50,50),20,20) #Implicit imdirac(c(50,50,3),20,20,cc=2) #RGB imdirac(c(50,50,7),20,20,z=2) #50x50 video with 7 frames #Impulse response of the blur filter imdirac(c(50,50),20,20) %>% isoblur(sigma=2) %>% plot #Impulse response of the first-order Deriche filter imdirac(c(50,50),20,20) %>% deriche(sigma=2,order=1,axis="x") %>% plot ##NOT RUN, interactive only ##Impulse response of the blur filter in space-time ##resp <- imdirac(c(50,50,100),x=25,y=25,z=50) %>% isoblur(16) ###Normalise to 0...255 and play as video ##renorm(resp) %>% play(normalise=FALSE)
Draw image on another image
imdraw(im, sprite, x = 1, y = 1, z = 1, opacity = 1)
imdraw(im, sprite, x = 1, y = 1, z = 1, opacity = 1)
im |
background image |
sprite |
sprite to draw on background image |
x |
location |
y |
location |
z |
location |
opacity |
transparency level (default 1) |
Simon Barthelme
imager.combine, for different ways of combining images
im <- load.example("parrots") boats.small <- imresize(boats,.5) #I'm aware the result is somewhat ugly imdraw(im,boats.small,x=400,y=10,opacity=.7) %>% plot
im <- load.example("parrots") boats.small <- imresize(boats,.5) #I'm aware the result is somewhat ugly imdraw(im,boats.small,x=400,y=10,opacity=.7) %>% plot
imeval does for images what "with" does for data.frames, namely contextual evaluation. It provides various shortcuts for pixel-wise operations. imdo runs imeval, and reshapes the output as an image of the same dimensions as the input (useful for functions that return vectors). imeval takes inspiration from purrr::map in using formulas for defining anonymous functions using the "." argument. Usage is made clear (hopefully) in the examples. The old version of imeval used CImg's internal math parser, but has been retired.
imeval(obj, ..., env = parent.frame()) imdo(obj, form)
imeval(obj, ..., env = parent.frame()) imdo(obj, form)
obj |
an image, pixset or imlist |
... |
one or more formula objects, defining anonymous functions that will be evaluated with the image as first argument (with extra contextual variables added to the evaluation context) |
env |
additional variables (defaults to the calling environment) |
form |
a single formula |
imdo()
: run imeval and reshape
Simon Barthelme
imchange, which modifies specific parts of an image
## Computing mean absolute deviation imeval(boats, ~ mean(abs(.-median(.)))) ##Equivalent to: mean(abs(boats-median(boats))) ##Two statistics imeval(boats,mad= ~ mean(abs(.-median(.))),sd= ~ sd(.)) ##imeval can precompute certain quantities, like the x or y coord. of each pixel imeval(boats,~ x) %>% plot ##same as Xc(boats) %>% plot ## Other predefined quantities: ##w is width, h is height imeval(boats,~ x/w) %>% range ##It defines certain transformed coordinate systems: ##Scaled x,y,z ## xs=x/w ## ys=y/h ##Select upper-left quadrant (returns a pixset) imeval(boats,~ xs<.5 & ys < .5) %>% plot ##Fade effect imeval(boats,~ xs*.) %>% plot ## xc and yc are another set of transformed coordinates ## where xc=0,yc=0 is the image center imeval(boats,~ (abs(xc)/w)*.) %>% plot ##rho, theta: circular coordinates. rho is distance to center (in pix.), theta angle ##Gaussian mask with sd 10 pix. blank <- imfill(30,30) imeval(blank,~ dnorm(rho,sd=w/3)) %>% plot(int=FALSE) imeval(blank,~ theta) %>% plot ##imeval is made for interactive use, meaning it ##accesses the environment it got called from, e.g. this works: f <- function() { im1 <- imfill(3,3,val=1) im2 <- imfill(3,3,val=3) imeval(im1,~ .+im2) } f() ##imeval accepts lists as well map_il(1:3, ~ isoblur(boats,.)) %>% imeval(~ xs*.) %>% plot ##imeval is useful for defining pixsets: ##here, all central pixels that have value under the median grayscale(boats) %>% imeval(~ (. > median(.)) & rho < 150) %>% plot ##other abbreviations are defined: ##s for imshift, b for isoblur, rot for imrotate. ##e.g. imeval(boats, ~ .*s(.,3)) %>% plot #The rank function outputs a vector grayscale(boats) %>% rank %>% class #Auto-reshape into an image grayscale(boats) %>% imdo(~ rank(.)) %>% plot #Note that the above performs histogram normalisation #Also works on lists imsplit(boats,"c") %>% imdo( ~ rank(.)) %>% imappend("c") %>% plot
## Computing mean absolute deviation imeval(boats, ~ mean(abs(.-median(.)))) ##Equivalent to: mean(abs(boats-median(boats))) ##Two statistics imeval(boats,mad= ~ mean(abs(.-median(.))),sd= ~ sd(.)) ##imeval can precompute certain quantities, like the x or y coord. of each pixel imeval(boats,~ x) %>% plot ##same as Xc(boats) %>% plot ## Other predefined quantities: ##w is width, h is height imeval(boats,~ x/w) %>% range ##It defines certain transformed coordinate systems: ##Scaled x,y,z ## xs=x/w ## ys=y/h ##Select upper-left quadrant (returns a pixset) imeval(boats,~ xs<.5 & ys < .5) %>% plot ##Fade effect imeval(boats,~ xs*.) %>% plot ## xc and yc are another set of transformed coordinates ## where xc=0,yc=0 is the image center imeval(boats,~ (abs(xc)/w)*.) %>% plot ##rho, theta: circular coordinates. rho is distance to center (in pix.), theta angle ##Gaussian mask with sd 10 pix. blank <- imfill(30,30) imeval(blank,~ dnorm(rho,sd=w/3)) %>% plot(int=FALSE) imeval(blank,~ theta) %>% plot ##imeval is made for interactive use, meaning it ##accesses the environment it got called from, e.g. this works: f <- function() { im1 <- imfill(3,3,val=1) im2 <- imfill(3,3,val=3) imeval(im1,~ .+im2) } f() ##imeval accepts lists as well map_il(1:3, ~ isoblur(boats,.)) %>% imeval(~ xs*.) %>% plot ##imeval is useful for defining pixsets: ##here, all central pixels that have value under the median grayscale(boats) %>% imeval(~ (. > median(.)) & rho < 150) %>% plot ##other abbreviations are defined: ##s for imshift, b for isoblur, rot for imrotate. ##e.g. imeval(boats, ~ .*s(.,3)) %>% plot #The rank function outputs a vector grayscale(boats) %>% rank %>% class #Auto-reshape into an image grayscale(boats) %>% imdo(~ rank(.)) %>% plot #Note that the above performs histogram normalisation #Also works on lists imsplit(boats,"c") %>% imdo( ~ rank(.)) %>% imappend("c") %>% plot
This is a convenience function for quickly creating blank images, or images filled with a specific colour. See examples. If val is a logical value, creates a pixset instead.
imfill(x = 1, y = 1, z = 1, val = 0, dim = NULL)
imfill(x = 1, y = 1, z = 1, val = 0, dim = NULL)
x |
width (default 1) |
y |
height (default 1) |
z |
depth (default 1) |
val |
fill-in values. Either a single value (for grayscale), or RGB values for colour, or a character string for a colour (e.g. "blue") |
dim |
dimension vector (optional, alternative to specifying x,y,z) |
an image object (class cimg)
Simon Barthelme
imfill(20,20) %>% plot #Blank image of size 20x20 imfill(20,20,val=c(1,0,0)) %>% plot #All red image imfill(20,20,val="red") %>% plot #Same, using R colour name imfill(3,3,val=FALSE) #Pixset imfill(dim=dim(boats)) #Blank image of the same size as the boats image
imfill(20,20) %>% plot #Blank image of size 20x20 imfill(20,20,val=c(1,0,0)) %>% plot #All red image imfill(20,20,val="red") %>% plot #Same, using R colour name imfill(3,3,val=FALSE) #Pixset imfill(dim=dim(boats)) #Blank image of the same size as the boats image
Light interface for get_gradient. Refer to get_gradient for details on the computation.
imgradient(im, axes = "xy", scheme = 3)
imgradient(im, axes = "xy", scheme = 3)
im |
an image of class cimg |
axes |
direction along which to compute the gradient. Either a single character (e.g. "x"), or multiple characters (e.g. "xyz"). Default: "xy" |
scheme |
numerical scheme (default '3', rotation invariant) |
an image or a list of images, depending on the value of "axes"
Simon Barthelme
grayscale(boats) %>% imgradient("x") %>% plot imgradient(boats,"xy") #Returns a list
grayscale(boats) %>% imgradient("x") %>% plot imgradient(boats,"xy") #Returns a list
Compute image hessian.
imhessian(im, axes = c("xx", "xy", "yy"))
imhessian(im, axes = c("xx", "xy", "yy"))
im |
an image |
axes |
Axes considered for the hessian computation, as a character string (e.g "xy" corresponds to d/(dx*dy)). Can be a list of axes. Default: xx,xy,yy |
an image, or a list of images
imhessian(boats,"xy") %>% plot(main="Second-derivative, d/(dx*dy)")
imhessian(boats,"xy") %>% plot(main="Second-derivative, d/(dx*dy)")
This function calls ImageMagick's "identify" utility on an image file to get some information. You need ImageMagick on your path for this to work.
iminfo(fname)
iminfo(fname)
fname |
path to a file |
a list with fields name, format, width (pix.), height (pix.), size (bytes)
Simon Barthelme
## Not run: someFiles <- dir("*.png") #Find all PNGs in directory iminfo(someFiles[1]) #Get info on all files, as a data frame info <- purrr::map_df(someFiles,function(v) iminfo(v) %>% as.data.frame) ## End(Not run)
## Not run: someFiles <- dir("*.png") #Find all PNGs in directory iminfo(someFiles[1]) #Get info on all files, as a data frame info <- purrr::map_df(someFiles,function(v) iminfo(v) %>% as.data.frame) ## End(Not run)
The Laplacian is the sum of second derivatives, approximated here using finite differences.
imlap(im)
imlap(im)
im |
an image |
imlap(boats) %>% plot
imlap(boats) %>% plot
An imlist object is simply a list of images (of class cimg). For convenience, some generic functions are defined that wouldn't work on plain lists, like plot, display and as.data.frame DEPRECATION NOTE: in v0.30 of imager, the original behaviour of the "imlist" function was to take a list and turn it into an image list. This behaviour has now been changed to make "imlist" be more like "list". If you wish to turn a list into an image list, use as.imlist.
imlist(...)
imlist(...)
... |
images to be included in the image list |
plot.imlist, display.imlist, as.data.frame.imlist
imlist(a=imfill(3,3),b=imfill(10,10)) imsplit(boats,"x",6) imsplit(boats,"x",6) %>% plot
imlist(a=imfill(3,3),b=imfill(10,10)) imsplit(boats,"x",6) imsplit(boats,"x",6) %>% plot
A white-noise image is an image where all pixel values are drawn IID from a certain distribution. Here they are drawn from a Gaussian.
imnoise(x = 1, y = 1, z = 1, cc = 1, mean = 0, sd = 1, dim = NULL)
imnoise(x = 1, y = 1, z = 1, cc = 1, mean = 0, sd = 1, dim = NULL)
x |
width |
y |
height |
z |
depth |
cc |
spectrum |
mean |
mean pixel value (default 0) |
sd |
std. deviation of pixel values (default 1) |
dim |
dimension vector (optional, alternative to specifying x,y,z,cc) |
a cimg object
Simon Barthelme
imnoise(100,100,cc=3) %>% plot(main="White noise in RGB") imnoise(100,100,cc=3) %>% isoblur(5) %>% plot(main="Filtered (non-white) noise") imnoise(dim=dim(boats)) #Noise image of the same size as the boats image
imnoise(100,100,cc=3) %>% plot(main="White noise in RGB") imnoise(100,100,cc=3) %>% isoblur(5) %>% plot(main="Filtered (non-white) noise") imnoise(dim=dim(boats)) #Noise image of the same size as the boats image
This function lets you use an image as a canvas for base graphics, meaning you can use R functions like "text" and "points" to plot things on an image. The function takes as argument an image and an expression, executes the expression with the image as canvas, and outputs the result as an image (of the same size).
implot(im, expr, ...)
implot(im, expr, ...)
im |
an image (class cimg) |
expr |
an expression (graphics code to execute) |
... |
passed on to plot.cimg, to control the initial rendering of the image (for example the colorscale) |
an image
Simon Barthelme
plot, capture.plot
## Not run: b.new <- implot(boats,text(150,50,"Boats!!!",cex=3)) plot(b.new) #Draw a line on a white background bg <- imfill(150,150,val=1) implot(bg,lines(c(50,50),c(50,100),col="red",lwd=4))%>%plot #You can change the rendering of the initial image im <- grayscale(boats) draw.fun <- function() text(150,50,"Boats!!!",cex=3) out <- implot(im,draw.fun(),colorscale=function(v) rgb(0,v,v),rescale=FALSE) plot(out) ## End(Not run)
## Not run: b.new <- implot(boats,text(150,50,"Boats!!!",cex=3)) plot(b.new) #Draw a line on a white background bg <- imfill(150,150,val=1) implot(bg,lines(c(50,50),c(50,100),col="red",lwd=4))%>%plot #You can change the rendering of the initial image im <- grayscale(boats) draw.fun <- function() text(150,50,"Boats!!!",cex=3) out <- implot(im,draw.fun(),colorscale=function(v) rgb(0,v,v),rescale=FALSE) plot(out) ## End(Not run)
Kinda like rep, for images. Copy image n times and (optionally), append.
imrep(x, n = 1, axis = NULL)
imrep(x, n = 1, axis = NULL)
x |
an image |
n |
number of replications |
axis |
axis to append along (one of NULL, "x","y","z","c"). Default: NULL |
either an image or an image list
Simon Barthelme
#Result is a list imrep(boats,3) %>% plot #Result is an image imrep(boats,3,"x") %>% plot #Make an animation by repeating each frame 10x #map_il(1:5,~ isoblur(boats,.) %>% imrep(10,"z")) %>% # imappend("z") %>% play
#Result is a list imrep(boats,3) %>% plot #Result is an image imrep(boats,3,"x") %>% plot #Make an animation by repeating each frame 10x #map_il(1:5,~ isoblur(boats,.) %>% imrep(10,"z")) %>% # imappend("z") %>% play
If cx and cy aren't given, the default is to centre the rotation in the middle of the image. When cx and cy are given, the algorithm used is different, and does not change the size of the image.
imrotate(im, angle, cx, cy, interpolation = 1L, boundary = 0L)
imrotate(im, angle, cx, cy, interpolation = 1L, boundary = 0L)
im |
an image |
angle |
Rotation angle, in degrees. |
cx |
Center of rotation along x (default, image centre) |
cy |
Center of rotation along y (default, image centre) |
interpolation |
Type of interpolation. One of 0=nearest,1=linear,2=cubic. |
boundary |
Boundary conditions. One of 0=dirichlet, 1=neumann, 2=periodic |
imwarp, for flexible image warping, which includes rotations as a special case
imrotate(boats,30) %>% plot #Shift centre to (20,20) imrotate(boats,30,cx=20,cy=20) %>% plot
imrotate(boats,30) %>% plot #Shift centre to (20,20) imrotate(boats,30,cx=20,cy=20) %>% plot
The default sharpening filter is inverse diffusion. The "shock filter" is a non-linear diffusion that has better edge-preserving properties.
imsharpen(im, amplitude, type = "diffusion", edge = 1, alpha = 0, sigma = 0)
imsharpen(im, amplitude, type = "diffusion", edge = 1, alpha = 0, sigma = 0)
im |
an image |
amplitude |
Sharpening amplitude (positive scalar, 0: no filtering). |
type |
Filtering type. "diffusion" (default) or "shock" |
edge |
Edge threshold (shock filters only, positive scalar, default 1). |
alpha |
Window size for initial blur (shock filters only, positive scalar, default 0). |
sigma |
Window size for diffusion tensor blur (shock filters only, positive scalar, default 0). |
layout(t(1:2)) plot(boats,main="Original") imsharpen(boats,150) %>% plot(main="Sharpened")
layout(t(1:2)) plot(boats,main="Original") imsharpen(boats,150) %>% plot(main="Sharpened")
Shift image content.
imshift( im, delta_x = 0L, delta_y = 0L, delta_z = 0L, delta_c = 0L, boundary_conditions = 0L )
imshift( im, delta_x = 0L, delta_y = 0L, delta_z = 0L, delta_c = 0L, boundary_conditions = 0L )
im |
an image |
delta_x |
Amount of displacement along the X-axis. |
delta_y |
Amount of displacement along the Y-axis. |
delta_z |
Amount of displacement along the Z-axis. |
delta_c |
Amount of displacement along the C-axis. |
boundary_conditions |
can be: - 0: Zero border condition (Dirichlet). - 1: Nearest neighbors (Neumann). - 2: Repeat Pattern (Fourier style). |
imshift(boats,10,50) %>% plot
imshift(boats,10,50) %>% plot
Use this if you need to process colour channels separately, or frames separately, or rows separately, etc. You can also use it to chop up an image into blocks. Returns an "imlist" object, which is essentially a souped-up list.
imsplit(im, axis, nb = -1)
imsplit(im, axis, nb = -1)
im |
an image |
axis |
the axis along which to split (for example 'c') |
nb |
number of objects to split into. if nb=-1 (the default) the maximum number of splits is used, i.e. split(im,"c") produces a list containing all individual colour channels. |
imappend (the reverse operation)
im <- as.cimg(function(x,y,z) x+y+z,10,10,5) imsplit(im,"z") #Split along the z axis into a list with 5 elements imsplit(im,"z",2) #Split along the z axis into two groups imsplit(boats,"x",-200) %>% plot #Blocks of 200 pix. along x imsplit(im,"z",2) %>% imappend("z") #Split and reshape into a single image #You can also split pixsets imsplit(boats > .5,"c") %>% plot
im <- as.cimg(function(x,y,z) x+y+z,10,10,5) imsplit(im,"z") #Split along the z axis into a list with 5 elements imsplit(im,"z",2) #Split along the z axis into two groups imsplit(boats,"x",-200) %>% plot #Blocks of 200 pix. along x imsplit(im,"z",2) %>% imappend("z") #Split and reshape into a single image #You can also split pixsets imsplit(boats > .5,"c") %>% plot
imsub selects an image part based on coordinates: it allows you to select a subset of rows, columns, frames etc. Refer to the examples to see how it works
imsub(im, ...) subim(im, ...)
imsub(im, ...) subim(im, ...)
im |
an image |
... |
various conditions defining a rectangular image region |
subim is an alias defined for backward-compatibility.
an image with some parts cut out
subim()
: alias for imsub
Simon Barthelme
parrots <- load.example("parrots") imsub(parrots,x < 30) #Only the first 30 columns imsub(parrots,y < 30) #Only the first 30 rows imsub(parrots,x < 30,y < 30) #First 30 columns and rows imsub(parrots, sqrt(x) > 8) #Can use arbitrary expressions imsub(parrots,x > height/2,y > width/2) #height and width are defined based on the image #Using the %inr% operator, which is like %in% but for a numerical range all.equal(imsub(parrots,x %inr% c(1,10)), imsub(parrots,x >= 1,x <= 10)) imsub(parrots,cc==1) #Colour axis is "cc" not "c" here because "c" is an important R function ##Not run ##imsub(parrots,x+y==1) ##can't have expressions involving interactions between variables (domain might not be square)
parrots <- load.example("parrots") imsub(parrots,x < 30) #Only the first 30 columns imsub(parrots,y < 30) #Only the first 30 rows imsub(parrots,x < 30,y < 30) #First 30 columns and rows imsub(parrots, sqrt(x) > 8) #Can use arbitrary expressions imsub(parrots,x > height/2,y > width/2) #height and width are defined based on the image #Using the %inr% operator, which is like %in% but for a numerical range all.equal(imsub(parrots,x %inr% c(1,10)), imsub(parrots,x >= 1,x <= 10)) imsub(parrots,cc==1) #Colour axis is "cc" not "c" here because "c" is an important R function ##Not run ##imsub(parrots,x+y==1) ##can't have expressions involving interactions between variables (domain might not be square)
Image warping consists in remapping pixels, ie. you define a function M(x,y,z) -> (x',y',z') that displaces pixel content from (x,y,z) to (x',y',z'). Actual implementations rely on either the forward transformation M, or the backward (inverse) transformation M^-1. In CImg the forward implementation will go through all source (x,y,z) pixels and "paint" the corresponding pixel at (x',y',z'). This will result in unpainted pixels in the output if M is expansive (for example in the case of a scaling M(x,y,z) = 5*(x,y,z)). The backward implementation will go through every pixel in the destination image and look for ancestors in the source, meaning that every pixel will be painted. There are two ways of specifying the map: absolute or relative coordinates. In absolute coordinates you specify M or M^-1 directly. In relative coordinates you specify an offset function D: M(x,y) = (x,y) + D(x,y) (forward) M^-1(x,y) = (x,y) - D(x,y) (backward)
imwarp( im, map, direction = "forward", coordinates = "absolute", boundary = "dirichlet", interpolation = "linear" )
imwarp( im, map, direction = "forward", coordinates = "absolute", boundary = "dirichlet", interpolation = "linear" )
im |
an image |
map |
a function that takes (x,y) or (x,y,z) as arguments and returns a named list with members (x,y) or (x,y,z) |
direction |
"forward" or "backward" (default "forward") |
coordinates |
"absolute" or "relative" (default "relative") |
boundary |
boundary conditions: "dirichlet", "neumann", "periodic". Default "dirichlet" |
interpolation |
"nearest", "linear", "cubic" (default "linear") |
Note that 3D warps are possible as well. The mapping should be specified via the "map" argument, see examples.
a warped image
Simon Barthelme
warp for direct access to the CImg function
im <- load.example("parrots") #Shift image map.shift <- function(x,y) list(x=x+10,y=y+30) imwarp(im,map=map.shift) %>% plot #Shift image (backward transform) imwarp(im,map=map.shift,dir="backward") %>% plot #Shift using relative coordinates map.rel <- function(x,y) list(x=10+0*x,y=30+0*y) imwarp(im,map=map.rel,coordinates="relative") %>% plot #Scaling map.scaling <- function(x,y) list(x=1.5*x,y=1.5*y) imwarp(im,map=map.scaling) %>% plot #Note the holes map.scaling.inv <- function(x,y) list(x=x/1.5,y=y/1.5) imwarp(im,map=map.scaling.inv,dir="backward") %>% plot #No holes #Bending map.bend.rel <- function(x,y) list(x=50*sin(y/10),y=0*y) imwarp(im,map=map.bend.rel,coord="relative",dir="backward") %>% plot #No holes
im <- load.example("parrots") #Shift image map.shift <- function(x,y) list(x=x+10,y=y+30) imwarp(im,map=map.shift) %>% plot #Shift image (backward transform) imwarp(im,map=map.shift,dir="backward") %>% plot #Shift using relative coordinates map.rel <- function(x,y) list(x=10+0*x,y=30+0*y) imwarp(im,map=map.rel,coordinates="relative") %>% plot #Scaling map.scaling <- function(x,y) list(x=1.5*x,y=1.5*y) imwarp(im,map=map.scaling) %>% plot #Note the holes map.scaling.inv <- function(x,y) list(x=x/1.5,y=y/1.5) imwarp(im,map=map.scaling.inv,dir="backward") %>% plot #No holes #Bending map.bend.rel <- function(x,y) list(x=50*sin(y/10),y=0*y) imwarp(im,map=map.bend.rel,coord="relative",dir="backward") %>% plot #No holes
Pixels are stored linearly in (x,y,z,c) order. This function computes the vector index of a pixel given its coordinates
index.coord(im, coords, outside = "stop")
index.coord(im, coords, outside = "stop")
im |
an image |
coords |
a data.frame with values x,y,z (optional), c (optional) |
outside |
what to do if some coordinates are outside the image: "stop" issues error, "NA" replaces invalid coordinates with NAs. Default: "stop". |
a vector of indices (NA if the indices are invalid)
Simon Barthelme
coord.index, the reverse operation
im <- as.cimg(function(x,y) x+y,100,100) px <- index.coord(im,data.frame(x=c(3,3),y=c(1,2))) im[px] #Values should be 3+1=4, 3+2=5
im <- as.cimg(function(x,y) x+y,100,100) px <- index.coord(im,data.frame(x=c(3,3),y=c(1,2))) im[px] #Values should be 3+1=4, 3+2=5
Fill in NA values (inpainting) using a Gaussian filter, i.e. replace missing pixel values with a weighted average of the neighbours.
inpaint(im, sigma)
inpaint(im, sigma)
im |
input image |
sigma |
std. deviation of the Gaussian (size of neighbourhood) |
an image with missing values filled-in.
Simon Barthelme
im <- boats im[sample(nPix(im),1e4)] <- NA inpaint(im,1) %>% imlist(im,.) %>% setNames(c("before","after")) %>% plot(layout="row")
im <- boats im[sample(nPix(im),1e4)] <- NA inpaint(im,1) %>% imlist(im,.) %>% setNames(c("before","after")) %>% plot(layout="row")
To explore the effect of certain image manipulations, filter settings, etc., it's useful to have a basic interaction mechanism. You can use shiny for that, but imager provides a lightweight alternative. The user writes a function that gets called every time a user event happens (a click, a keypress, etc.). The role of the function is to process the event and output an image, which will then be displayed. You can exit the interface at any time by pressing Esc. See examples for more. This feature is experimental!!! Note that you need X11 library to use this function.
interact(fun, title = "", init)
interact(fun, title = "", init)
fun |
a function that takes a single argument (a list of user events) and returns an image to be plotted. The image won't be rescaled before plotting, so make sure RGB values are in [0,1]. |
title |
a title for the window (default "", none) |
init |
initial image to display (optional) |
an image, specifically the last image displayed
Simon Barthelme
#Implement a basic image gallery: #press "right" and "left" to view each image in a list gallery <- function(iml) { ind <- 1 f <- function(state) { if (state$key=="arrowleft") { ind <<- max(ind-1,1) } if (state$key=="arrowright") { ind <<- min(ind+1,length(iml)) } iml[[ind]] } interact(f) } ##Not run (interactive only) ##map_il(1:10,~ isoblur(boats,.)) %>% gallery
#Implement a basic image gallery: #press "right" and "left" to view each image in a list gallery <- function(iml) { ind <- 1 f <- function(state) { if (state$key=="arrowleft") { ind <<- max(ind-1,1) } if (state$key=="arrowright") { ind <<- min(ind+1,length(iml)) } iml[[ind]] } interact(f) } ##Not run (interactive only) ##map_il(1:10,~ isoblur(boats,.)) %>% gallery
This function provides 2D and 3D (linear or cubic) interpolation for pixel values. Locations need to be provided as a data.frame with variables x,y,z, and c (the last two are optional).
interp(im, locations, cubic = FALSE, extrapolate = TRUE)
interp(im, locations, cubic = FALSE, extrapolate = TRUE)
im |
the image (class cimg) |
locations |
a data.frame |
cubic |
if TRUE, use cubic interpolation. If FALSE, use linear (default FALSE) |
extrapolate |
allow extrapolation (to values outside the image) |
loc <- data.frame(x=runif(10,1,width(boats)),y=runif(10,1,height(boats))) #Ten random locations interp(boats,loc)
loc <- data.frame(x=runif(10,1,width(boats)),y=runif(10,1,height(boats))) #Ten random locations interp(boats,loc)
Checks that an object is a cimg object
is.cimg(x)
is.cimg(x)
x |
an object |
logical
Check that an object is an imlist object
is.imlist(x)
is.imlist(x)
x |
an object |
logical
Check that an object is a pixset object
is.pixset(x)
is.pixset(x)
x |
an object |
logical
Blur image isotropically.
isoblur(im, sigma, neumann = TRUE, gaussian = TRUE, na.rm = FALSE)
isoblur(im, sigma, neumann = TRUE, gaussian = TRUE, na.rm = FALSE)
im |
an image |
sigma |
Standard deviation of the blur (positive) |
neumann |
If true, use Neumann boundary conditions, Dirichlet otherwise (default true, Neumann) |
gaussian |
Use a Gaussian filter (actually van Vliet-Young). Default: 0th-order Deriche filter. |
na.rm |
if TRUE, ignore NA values. Default FALSE, in which case the whole image is NA if one of the values is NA (following the definition of the Gaussian filter) |
deriche,vanvliet,inpaint,medianblur
isoblur(boats,3) %>% plot(main="Isotropic blur, sigma=3") isoblur(boats,10) %>% plot(main="Isotropic blur, sigma=10")
isoblur(boats,3) %>% plot(main="Isotropic blur, sigma=3") isoblur(boats,10) %>% plot(main="Isotropic blur, sigma=10")
The algorithm of connected components computation has been primarily done by A. Meijster, according to the publication: 'W.H. Hesselink, A. Meijster, C. Bron, "Concurrent Determination of Connected Components.", In: Science of Computer Programming 41 (2001), pp. 173–194'.
label(im, high_connectivity = FALSE, tolerance = 0)
label(im, high_connectivity = FALSE, tolerance = 0)
im |
an image |
high_connectivity |
4(false)- or 8(true)-connectivity in 2d case, and between 6(false)- or 26(true)-connectivity in 3d case. Default FALSE |
tolerance |
Tolerance used to determine if two neighboring pixels belong to the same region. |
imname <- system.file('extdata/parrots.png',package='imager') im <- load.image(imname) %>% grayscale #Thresholding yields different discrete regions of high intensity regions <- isoblur(im,10) %>% threshold("97%") labels <- label(regions) layout(t(1:2)) plot(regions,"Regions") plot(labels,"Labels")
imname <- system.file('extdata/parrots.png',package='imager') im <- load.image(imname) %>% grayscale #Thresholding yields different discrete regions of high intensity regions <- isoblur(im,10) %>% threshold("97%") labels <- label(regions) layout(t(1:2)) plot(regions,"Regions") plot(labels,"Labels")
This is just a shortcut for purrr::map followed by imappend
liply(lst, fun, axis, ...)
liply(lst, fun, axis, ...)
lst |
a list |
fun |
function to apply |
axis |
which axis to append along (e.g. "c" for colour) |
... |
further arguments to be passed to fun |
build.im <- function(size) as.cimg(function(x,y) (x+y)/size,size,size) liply(c(10,50,100),build.im,"y") %>% plot
build.im <- function(size) as.cimg(function(x,y) (x+y)/size,size,size) liply(c(10,50,100),build.im,"y") %>% plot
Load all images in a directory and return them as an image list.
load.dir(path, pattern = NULL, quiet = FALSE)
load.dir(path, pattern = NULL, quiet = FALSE)
path |
directory to load from |
pattern |
optional: file pattern (ex. *jpg). Default NULL, in which case we look for file extensions png,jpeg,jpg,tif,bmp. |
quiet |
if TRUE, loading errors are quiet. If FALSE, they are displayed. Default FALSE |
an image list
Simon Barthelme
path <- system.file(package="imager") %>% paste0("/extdata") load.dir(path)
path <- system.file(package="imager") %>% paste0("/extdata") load.dir(path)
Imager ships with five test pictures and a video. Two (parrots and boats) come from the [Kodak set](http://r0k.us/graphics/kodak/). Another (birds) is a sketch of birds by Leonardo, from Wikimedia. The "coins" image comes from scikit-image. The Hubble Deep field (hubble) is from Wikimedia. The test video ("tennis") comes from [xiph.org](https://media.xiph.org/video/derf/)'s collection.
load.example(name)
load.example(name)
name |
name of the example |
an image
Simon Barthelme
load.example("hubble") %>% plot load.example("birds") %>% plot load.example("parrots") %>% plot
load.example("hubble") %>% plot load.example("birds") %>% plot load.example("parrots") %>% plot
PNG, JPEG and BMP are supported via the readbitmap package. You'll need to install ImageMagick for other formats. If the path is actually a URL, it should start with http(s) or ftp(s).
load.image(file)
load.image(file)
file |
path to file or URL |
an object of class 'cimg'
#Find path to example file from package fpath <- system.file('extdata/Leonardo_Birds.jpg',package='imager') im <- load.image(fpath) plot(im) #Load the R logo directly from the CRAN webpage #load.image("https://cran.r-project.org/Rlogo.jpg") %>% plot
#Find path to example file from package fpath <- system.file('extdata/Leonardo_Birds.jpg',package='imager') im <- load.image(fpath) plot(im) #Load the R logo directly from the CRAN webpage #load.image("https://cran.r-project.org/Rlogo.jpg") %>% plot
You need to have ffmpeg on your path for this to work. This function uses ffmpeg to split the video into individual frames, which are then loaded as images and recombined. Videos are memory-intensive, and load.video performs a safety check before loading a video that would be larger than maxSize in memory (default 1GB)
load.video( fname, maxSize = 1, skip.to = 0, frames = NULL, fps = NULL, extra.args = "", verbose = FALSE )
load.video( fname, maxSize = 1, skip.to = 0, frames = NULL, fps = NULL, extra.args = "", verbose = FALSE )
fname |
file to load |
maxSize |
max. allowed size in memory, in GB (default max 1GB). |
skip.to |
skip to a certain point in time (in sec., or "hh:mm::ss" format) |
frames |
number of frames to load (default NULL, all) |
fps |
frames per second (default NULL, determined automatically) |
extra.args |
extra arguments to be passed to ffmpeg (default "", none) |
verbose |
if TRUE, show ffmpeg output (default FALSE) |
an image with the extracted frames along the "z" coordinates
Simon Barthelme
save.video, make.video
fname <- system.file('extdata/tennis_sif.mpeg',package='imager') ##Not run ## load.video(fname) %>% play ## load.video(fname,fps=10) %>% play ## load.video(fname,skip=2) %>% play
fname <- system.file('extdata/tennis_sif.mpeg',package='imager') ##Not run ## load.video(fname) %>% play ## load.video(fname,fps=10) %>% play ## load.video(fname,skip=2) %>% play
The magick library package stores its data as "magick-image" object, which may in fact contain several images or an animation. These functions convert magick objects into imager objects or imager objects into magick objects. Note that cimg2magick function requires magick package.
magick2imlist(obj, alpha = "rm", ...) magick2cimg(obj, alpha = "rm", ...) cimg2magick(im, rotate = TRUE)
magick2imlist(obj, alpha = "rm", ...) magick2cimg(obj, alpha = "rm", ...) cimg2magick(im, rotate = TRUE)
obj |
an object of class "magick-image" |
alpha |
what do to with the alpha channel ("rm": remove and store as attribute, "flatten": flatten, "keep": keep). Default: "rm" |
... |
ignored |
im |
an image of class cimg |
rotate |
determine if rotate image to adjust orientation of image |
an object of class cimg or imlist
an object of class "magick-image"
Jan Wijffels, Simon Barthelme
Shota Ochi
flatten.alpha, rm.alpha
You need to have ffmpeg on your path for this to work. This function uses ffmpeg to combine individual frames into a video. save.video can be called directly with an image or image list as input. make.video takes as argument a directory that contains a sequence of images representing individual frames to be combined into a video.
make.video( dname, fname, pattern = "image-%d.png", fps = 25, extra.args = "", verbose = FALSE ) save.video(im, fname, ...)
make.video( dname, fname, pattern = "image-%d.png", fps = 25, extra.args = "", verbose = FALSE ) save.video(im, fname, ...)
dname |
name of a directory containing individual files |
fname |
name of the output file. The format is determined automatically from the name (example "a.mpeg" will have MPEG format) |
pattern |
pattern of filename for frames (the default matches "image-1.png", "image-2.png", etc.. See ffmpeg documentation for more). |
fps |
frames per second (default 25) |
extra.args |
extra arguments to be passed to ffmpeg (default "", none) |
verbose |
if TRUE, show ffmpeg output (default FALSE) |
im |
an image or image list |
... |
extra arguments to save.video, passed on to make.video |
save.video()
: Save a video using ffmpeg
Simon Barthelme
load.video
## Not run ## iml <- map_il(seq(0,20,l=60),~ isoblur(boats,.)) ## f <- tempfile(fileext=".avi") ## save.video(iml,f) ## load.video(f) %>% play ## #Making a video from a directory ## dd <- tempdir() ## for (i in 1:length(iml)) { ## png(sprintf("%s/image-%i.png",dd,i)); ## plot(iml[[i]]); dev.off() } ## make.video(dd,f) ## load.video(f) %>% play
## Not run ## iml <- map_il(seq(0,20,l=60),~ isoblur(boats,.)) ## f <- tempfile(fileext=".avi") ## save.video(iml,f) ## load.video(f) %>% play ## #Making a video from a directory ## dd <- tempdir() ## for (i in 1:length(iml)) { ## png(sprintf("%s/image-%i.png",dd,i)); ## plot(iml[[i]]); dev.off() } ## make.video(dd,f) ## load.video(f) %>% play
Works like purrr::map, purrr::map_dbl and the like but ensures that the output is an image list.
map_il(...) map2_il(...) pmap_il(...)
map_il(...) map2_il(...) pmap_il(...)
... |
passed to map |
an image list
map2_il()
: Parallel map (two values)
pmap_il()
: Parallel map (multiple values)
Simon Barthelme
#Returns a list imsplit(boats,"x",2) %>% purrr::map(~ isoblur(.,3)) #Returns an "imlist" object imsplit(boats,"x",2) %>% map_il(~ isoblur(.,3)) #Fails if function returns an object that's not an image try(imsplit(boats,"x",2) %>% map_il(~ . > 2)) #Parallel maps map2_il(1:3,101:103,~ imshift(boats,.x,.y)) pmap_il(list(x=1:3,y=4:6,z=7:9),function(x,y,z) imfill(x,y,z))
#Returns a list imsplit(boats,"x",2) %>% purrr::map(~ isoblur(.,3)) #Returns an "imlist" object imsplit(boats,"x",2) %>% map_il(~ isoblur(.,3)) #Fails if function returns an object that's not an image try(imsplit(boats,"x",2) %>% map_il(~ . > 2)) #Parallel maps map2_il(1:3,101:103,~ imshift(boats,.x,.y)) pmap_il(list(x=1:3,y=4:6,z=7:9),function(x,y,z) imfill(x,y,z))
Blur image with the median filter.
In a window of size n x n centered at pixel (x,y), compute median pixel value over the window. Optionally, ignore values that are too far from the value at current pixel.
medianblur(im, n, threshold = 0)
medianblur(im, n, threshold = 0)
im |
an image |
n |
Size of the median filter. |
threshold |
Threshold used to discard pixels too far from the current pixel value in the median computation. Can be used for edge-preserving smoothing. Default 0 (include all pixels in window). |
isoblur, boxblur
medianblur(boats,5) %>% plot(main="Median blur, 5 pixels") medianblur(boats,10) %>% plot(main="Median blur, 10 pixels") medianblur(boats,10,8) %>% plot(main="Median blur, 10 pixels, threshold = 8")
medianblur(boats,5) %>% plot(main="Median blur, 5 pixels") medianblur(boats,10) %>% plot(main="Median blur, 10 pixels") medianblur(boats,10,8) %>% plot(main="Median blur, 10 pixels, threshold = 8")
Mirror image content along specified axis
mirror(im, axis)
mirror(im, axis)
im |
an image |
axis |
Mirror axis ("x","y","z","c") |
mirror(boats,"x") %>% plot mirror(boats,"y") %>% plot
mirror(boats,"x") %>% plot mirror(boats,"y") %>% plot
This function copied directly from plyr, and modified to use a different name to avoid namespace collisions with dplyr/tidyverse functions.
mutate_plyr(.data, ...)
mutate_plyr(.data, ...)
.data |
the data frame to transform |
... |
named parameters giving definitions of new columns. |
This function is very similar to transform
but it executes
the transformations iteratively so that later transformations can use the
columns created by earlier transformations. Like transform, unnamed
components are silently dropped.
Mutate seems to be considerably faster than transform for large data frames.
This is a simple interface over abline meant to be used along with the Hough transform. In the Hesse normal form (theta,rho), a line is represented as the set of values (x,y) such that cos(theta)*x + sin(theta)*y = rho. Here theta is an angle and rho is a distance. See the documentation for hough_lines.
nfline(theta, rho, col, ...)
nfline(theta, rho, col, ...)
theta |
angle (radians) |
rho |
distance |
col |
colour |
... |
other graphical parameters, passed along to abline |
nothing
Simon Barthelme
#Boring example, see ?hough_lines plot(boats) nfline(theta=0,rho=10,col="red")
#Boring example, see ?hough_lines plot(boats) nfline(theta=0,rho=10,col="red")
Pad image with n pixels along specified axis
pad(im, nPix, axes, pos = 0, val)
pad(im, nPix, axes, pos = 0, val)
im |
the input image |
nPix |
how many pixels to pad with |
axes |
which axes to pad along |
pos |
-1: prepend 0: center 1: append |
val |
colour of the padded pixels (default 0 in all channels). Can be a string for colour images, e.g. "red", or "black". |
a padded image
Simon Barthelme
pad(boats,20,"xy") %>% plot pad(boats,20,pos=-1,"xy") %>% plot pad(boats,20,pos=1,"xy") %>% plot pad(boats,20,pos=1,"xy",val="red") %>% plot
pad(boats,20,"xy") %>% plot pad(boats,20,pos=-1,"xy") %>% plot pad(boats,20,pos=1,"xy") %>% plot pad(boats,20,pos=1,"xy",val="red") %>% plot
Extract a numerical summary from image patches, using CImg's mini-language Experimental feature.
patch_summary_cimg(im, expr, cx, cy, wx, wy)
patch_summary_cimg(im, expr, cx, cy, wx, wy)
im |
an image |
expr |
a CImg expression (as a string) |
cx |
vector of x coordinates for patch centers |
cy |
vector of y coordinates for patch centers |
wx |
vector of coordinates for patch width |
wy |
vector of coordinates for patch height |
#Example: median filtering using patch_summary_cimg #Center a patch at each pixel im <- grayscale(boats) patches <- pixel.grid(im) %>% dplyr::mutate(w=3,h=3) #Extract patch summary out <- dplyr::mutate(patches,med=patch_summary_cimg(im,"ic",x,y,w,h)) as.cimg(out,v.name="med") %>% plot
#Example: median filtering using patch_summary_cimg #Center a patch at each pixel im <- grayscale(boats) patches <- pixel.grid(im) %>% dplyr::mutate(w=3,h=3) #Extract patch summary out <- dplyr::mutate(patches,med=patch_summary_cimg(im,"ic",x,y,w,h)) as.cimg(out,v.name="med") %>% plot
Patches are rectangular image regions centered at cx,cy with width wx and height wy. This function provides a fast way of extracting a statistic over image patches (for example, their mean). Supported functions: sum,mean,min,max,median,var,sd, or any valid CImg expression. WARNINGS: - values outside of the image region are considered to be 0. - widths and heights should be odd integers (they're rounded up otherwise).
patchstat(im, expr, cx, cy, wx, wy)
patchstat(im, expr, cx, cy, wx, wy)
im |
an image |
expr |
statistic to extract. a string, either one of the usual statistics like "mean","median", or a CImg expression. |
cx |
vector of x coordinates for patch centers |
cy |
vector of y coordinates for patch centers |
wx |
vector of patch widths (or single value) |
wy |
vector of patch heights (or single value) |
a numeric vector
extract_patches
im <- grayscale(boats) #Mean of an image patch centered at (10,10) of size 3x3 patchstat(im,'mean',10,10,3,3) #Mean of image patches centered at (10,10) and (20,4) of size 2x2 patchstat(im,'mean',c(10,20),c(10,4),5,5) #Sample 10 random positions ptch <- pixel.grid(im) %>% dplyr::sample_n(10) #Compute median patch value with(ptch,patchstat(im,'median',x,y,3,3))
im <- grayscale(boats) #Mean of an image patch centered at (10,10) of size 3x3 patchstat(im,'mean',10,10,3,3) #Mean of image patches centered at (10,10) and (20,4) of size 2x2 patchstat(im,'mean',c(10,20),c(10,4),5,5) #Sample 10 random positions ptch <- pixel.grid(im) %>% dplyr::sample_n(10) #Compute median patch value with(ptch,patchstat(im,'median',x,y,3,3))
Moisan (2011) defines an additive image decomposition im = periodic + smooth where the periodic part shouldn't be too far from the original image. The periodic part can be used in frequency-domain analyses, to reduce the artifacts induced by non-periodicity.
periodic.part(im)
periodic.part(im)
im |
an image |
an image
Simon Barthelme
L. Moisan, Periodic plus Smooth Image Decomposition,J. Math. Imaging Vision, vol. 39:2, pp. 161-179, 2011
im <- load.example("parrots") %>% subim(x <= 512) layout(t(1:3)) plot(im,main="Original image") periodic.part(im) %>% plot(main="Periodic part") #The smooth error is the difference between #the original image and its periodic part (im-periodic.part(im)) %>% plot(main="Smooth part")
im <- load.example("parrots") %>% subim(x <= 512) layout(t(1:3)) plot(im,main="Original image") periodic.part(im) %>% plot(main="Periodic part") #The smooth error is the difference between #the original image and its periodic part (im-periodic.part(im)) %>% plot(main="Smooth part")
By default images are stored in xyzc order. Use permute_axes to change that order.
permute_axes(im, perm)
permute_axes(im, perm)
im |
an image |
perm |
a character string, e.g., "zxyc" to have the z-axis come first |
im <- array(0,c(10,30,40,3)) %>% as.cimg permute_axes(im,"zxyc")
im <- array(0,c(10,30,40,3)) %>% as.cimg permute_axes(im,"zxyc")
The pixel grid for image im gives the (x,y,z,c) coordinates of each successive pixel as a data.frame. The c coordinate has been renamed 'cc' to avoid conflicts with R's c function. NB: coordinates start at (x=1,y=1), corresponding to the top left corner of the image, unless standardise == TRUE, in which case we use the usual Cartesian coordinates with origin at the center of the image and scaled such that x varies between -.5 and .5, and a y arrow pointing up
pixel.grid(im, standardise = FALSE, drop.unused = TRUE, dim = NULL)
pixel.grid(im, standardise = FALSE, drop.unused = TRUE, dim = NULL)
im |
an image |
standardise |
If TRUE use a centered, scaled coordinate system. If FALSE use standard image coordinates (default FALSE) |
drop.unused |
if TRUE ignore empty dimensions, if FALSE include them anyway (default TRUE) |
dim |
a vector of image dimensions (optional, may be used instead of "im") |
a data.frame
im <- as.cimg(array(0,c(10,10))) #A 10x10 image pixel.grid(im) %>% head pixel.grid(dim=dim(im)) %>% head #Same as above pixel.grid(dim=c(10,10,3,2)) %>% head pixel.grid(im,standardise=TRUE) %>% head pixel.grid(im,drop.unused=FALSE) %>% head
im <- as.cimg(array(0,c(10,10))) #A 10x10 image pixel.grid(im) %>% head pixel.grid(dim=dim(im)) %>% head #Same as above pixel.grid(dim=c(10,10,3,2)) %>% head pixel.grid(im,standardise=TRUE) %>% head pixel.grid(im,drop.unused=FALSE) %>% head
Pixel sets represent sets of pixels in images (ROIs, foreground, etc.). From an implementation point of view, they're just a thin layer over arrays of logical values, just like the cimg class is a layer over arrays of numeric values. Pixsets can be turned back into logical arrays, but they come with a number of generic functions that should make your life easier. They are created automatically whenever you run a test on an image (for example im > 0 returns a pixset).
pixset(x)
pixset(x)
x |
an array of logical values |
#A test on an image returns a pixset boats > 250 #Pixsets can be combined using the usual Boolean operators (boats > 230) & (Xc(boats) < width(boats)/2) #Subset an image using a pixset boats[boats > 250] #Turn a pixset into an image as.cimg(boats > 250) #Equivalently: (boats > 250) + 0
#A test on an image returns a pixset boats > 250 #Pixsets can be combined using the usual Boolean operators (boats > 230) & (Xc(boats) < width(boats)/2) #Subset an image using a pixset boats[boats > 250] #Turn a pixset into an image as.cimg(boats > 250) #Equivalently: (boats > 250) + 0
A very basic video player. Press the space bar to pause and ESC to close. Note that you need X11 library to use this function.
play(vid, loop = FALSE, delay = 30L, normalise = TRUE)
play(vid, loop = FALSE, delay = 30L, normalise = TRUE)
vid |
A cimg object, to be played as video |
loop |
loop the video (default false) |
delay |
delay between frames, in ms. Default 30. |
normalise |
if true pixel values are rescaled to 0...255 (default TRUE). The normalisation is based on the *first frame*. If you don't want the default behaviour you can normalise by hand. Default TRUE. |
If you want to control precisely how numerical values are turned into colours for plotting, you need to specify a colour scale using the colourscale argument (see examples). Otherwise the default is "gray" for grayscale images, "rgb" for colour. These expect values in [0..1], so the default is to rescale the data to [0..1]. If you wish to over-ride that behaviour, set rescale=FALSE. See examples for an explanation. If the image is one dimensional (i.e., a simple row or column image), then pixel values will be plotted as a line.
## S3 method for class 'cimg' plot( x, frame, xlim = c(1, width(x)), ylim = c(height(x), 1), xlab = "x", ylab = "y", rescale = TRUE, colourscale = NULL, colorscale = NULL, interpolate = TRUE, axes = TRUE, main = "", xaxs = "i", yaxs = "i", asp = 1, col.na = rgb(0, 0, 0, 0), ... )
## S3 method for class 'cimg' plot( x, frame, xlim = c(1, width(x)), ylim = c(height(x), 1), xlab = "x", ylab = "y", rescale = TRUE, colourscale = NULL, colorscale = NULL, interpolate = TRUE, axes = TRUE, main = "", xaxs = "i", yaxs = "i", asp = 1, col.na = rgb(0, 0, 0, 0), ... )
x |
the image |
frame |
which frame to display, if the image has depth > 1 |
xlim |
x plot limits (default: 1 to width) |
ylim |
y plot limits (default: 1 to height) |
xlab |
x axis label |
ylab |
y axis label |
rescale |
rescale pixel values so that their range is [0,1] |
colourscale , colorscale
|
an optional colour scale (default is gray or rgb) |
interpolate |
should the image be plotted with antialiasing (default TRUE) |
axes |
Whether to draw axes (default TRUE) |
main |
Main title |
xaxs |
The style of axis interval calculation to be used for the x-axis. See ?par |
yaxs |
The style of axis interval calculation to be used for the y-axis. See ?par |
asp |
aspect ratio. The default value (1) means that the aspect ratio of the image will be kept regardless of the dimensions of the plot. A numeric value other than one changes the aspect ratio, but it will be kept the same regardless of dimensions. Setting asp="varying" means the aspect ratio will depend on plot dimensions (this used to be the default in versions of imager < 0.40) |
col.na |
which colour to use for NA values, as R rgb code. The default is "rgb(0,0,0,0)", which corresponds to a fully transparent colour. |
... |
other parameters to be passed to plot.default (eg "main") |
display, which is much faster, as.raster, which converts images to R raster objects
plot(boats,main="Boats") plot(boats,axes=FALSE,xlab="",ylab="") #Pixel values are rescaled to 0-1 by default, so that the following two plots are identical plot(boats) plot(boats/2,main="Rescaled") #If you don't want that behaviour, you can set rescale to FALSE, but #then you need to make sure values are in [0,1] try(plot(boats,rescale=FALSE)) #Error! try(plot(boats/255,rescale=FALSE)) #Works #You can specify a colour scale if you don't want the default one. #A colour scale is a function that takes pixels values and return an RGB code, #like R's rgb function,e.g. rgb(0,1,0) #Let's switch colour channels cscale <- function(r,g,b) rgb(b,g,r) plot(boats/255,rescale=FALSE,colourscale=cscale) #Display slice of HSV colour space im <- imfill(255,255,val=1) im <- list(Xc(im)/255,Yc(im)/255,im) %>% imappend("c") plot(im,colourscale=hsv,rescale=FALSE, xlab="Hue",ylab="Saturation") #In grayscale images, the colourscale function should take in a single value #and return an RGB code boats.gs <- grayscale(boats) #We use an interpolation function from package scales cscale <- scales::gradient_n_pal(c("red","purple","lightblue"),c(0,.5,1)) plot(boats.gs,rescale=FALSE,colourscale=cscale) #Plot a one-dimensional image imsub(boats,x==1) %>% plot(main="Image values along first column") #Plotting with and without anti-aliasing: boats.small <- imresize(boats,.3) plot(boats.small,interp=TRUE) plot(boats.small,interp=FALSE)
plot(boats,main="Boats") plot(boats,axes=FALSE,xlab="",ylab="") #Pixel values are rescaled to 0-1 by default, so that the following two plots are identical plot(boats) plot(boats/2,main="Rescaled") #If you don't want that behaviour, you can set rescale to FALSE, but #then you need to make sure values are in [0,1] try(plot(boats,rescale=FALSE)) #Error! try(plot(boats/255,rescale=FALSE)) #Works #You can specify a colour scale if you don't want the default one. #A colour scale is a function that takes pixels values and return an RGB code, #like R's rgb function,e.g. rgb(0,1,0) #Let's switch colour channels cscale <- function(r,g,b) rgb(b,g,r) plot(boats/255,rescale=FALSE,colourscale=cscale) #Display slice of HSV colour space im <- imfill(255,255,val=1) im <- list(Xc(im)/255,Yc(im)/255,im) %>% imappend("c") plot(im,colourscale=hsv,rescale=FALSE, xlab="Hue",ylab="Saturation") #In grayscale images, the colourscale function should take in a single value #and return an RGB code boats.gs <- grayscale(boats) #We use an interpolation function from package scales cscale <- scales::gradient_n_pal(c("red","purple","lightblue"),c(0,.5,1)) plot(boats.gs,rescale=FALSE,colourscale=cscale) #Plot a one-dimensional image imsub(boats,x==1) %>% plot(main="Image values along first column") #Plotting with and without anti-aliasing: boats.small <- imresize(boats,.3) plot(boats.small,interp=TRUE) plot(boats.small,interp=FALSE)
Each image in the list will be plotted separately. The layout argument controls the overall layout of the plot window. The default layout is "rect", which will fit all of your images into a rectangle that's as close to a square as possible.
## S3 method for class 'imlist' plot(x, layout = "rect", ...)
## S3 method for class 'imlist' plot(x, layout = "rect", ...)
x |
an image list (of type imlist) |
layout |
either a matrix (in the format defined by the layout command) or one of "row","col" or "rect". Default: "rect" |
... |
other parameters, to be passed to the plot command |
Simon Barthelme
imsplit(boats,"c") #Returns an image list imsplit(boats,"c") %>% plot imsplit(boats,"c") %>% plot(layout="row") imsplit(boats,"c") %>% plot(layout="col") imsplit(boats,"x",5) %>% plot(layout="rect")
imsplit(boats,"c") #Returns an image list imsplit(boats,"c") %>% plot imsplit(boats,"c") %>% plot(layout="row") imsplit(boats,"c") %>% plot(layout="col") imsplit(boats,"x",5) %>% plot(layout="rect")
Select pixels that are similar to a seed pixel. The underlying algorithm is the same as the bucket fill (AKA flood fill). Unlike with the bucket fill, the image isn't changed, the function simply returns a pixel set containing the selected pixels.
px.flood(im, x, y, z = 1, sigma = 0, high_connexity = FALSE)
px.flood(im, x, y, z = 1, sigma = 0, high_connexity = FALSE)
im |
an image |
x |
X-coordinate of the starting point of the region to flood |
y |
Y-coordinate of the starting point of the region to flood |
z |
Z-coordinate of the starting point of the region to flood |
sigma |
Tolerance concerning neighborhood values. |
high_connexity |
Use 8-connexity (only for 2d images, default FALSE). |
Old name: selectSimilar (deprecated)
bucketfill
#Select part of a sail px <- px.flood(boats,x=169,y=179,sigma=.2) plot(boats) highlight(px)
#Select part of a sail px <- px.flood(boats,x=169,y=179,sigma=.2) plot(boats) highlight(px)
A pixset containing all NA pixels
px.na(im)
px.na(im)
im |
an image |
a pixset
im <- boats im[1] <- NA px.na(im)
im <- boats im[1] <- NA px.na(im)
All pixels that belong to a connected region in contact with image boundaries are set to FALSE.
px.remove_outer(px)
px.remove_outer(px)
px |
a pixset |
a pixset
Simon Barthelme
im <- draw_circle(imfill(100,100),c(0,50,100),c(50,50,50),radius=10,color=1) plot(im) as.pixset(im) %>% px.remove_outer %>% plot
im <- draw_circle(imfill(100,100),c(0,50,100),c(50,50,50),radius=10,color=1) plot(im) as.pixset(im) %>% px.remove_outer %>% plot
The raster library stores its data as "RasterLayer" and "RasterBrick" objects. The raster package can store its data out-of-RAM, so in order not to load too much data the "maxpixels" argument sets a limit on how many pixels are loaded.
## S3 method for class 'RasterLayer' as.cimg(obj, maxpixels = 1e+07, ...) ## S3 method for class 'RasterStackBrick' as.imlist(obj, maxpixels = 1e+07, ...)
## S3 method for class 'RasterLayer' as.cimg(obj, maxpixels = 1e+07, ...) ## S3 method for class 'RasterStackBrick' as.imlist(obj, maxpixels = 1e+07, ...)
obj |
an object of class "RasterLayer" |
maxpixels |
max. number of pixels to load (default 1e7) |
... |
ignored |
Simon Barthelme, adapted from the image method for RasterLayer by Robert J Hijmans
Pixel data is usually expressed on a 0...255 scale for displaying. This function performs a linear renormalisation to range min...max
renorm(x, min = 0, max = 255)
renorm(x, min = 0, max = 255)
x |
numeric data |
min |
min of the range |
max |
max of the range |
Simon Barthelme
renorm(0:10) renorm(-5:5) #Same as above
renorm(0:10) renorm(-5:5) #Same as above
If the dimension arguments are negative, they are interpreted as a proportion of the original image.
resize( im, size_x = -100L, size_y = -100L, size_z = -100L, size_c = -100L, interpolation_type = 1L, boundary_conditions = 0L, centering_x = 0, centering_y = 0, centering_z = 0, centering_c = 0 )
resize( im, size_x = -100L, size_y = -100L, size_z = -100L, size_c = -100L, interpolation_type = 1L, boundary_conditions = 0L, centering_x = 0, centering_y = 0, centering_z = 0, centering_c = 0 )
im |
an image |
size_x |
Number of columns (new size along the X-axis). |
size_y |
Number of rows (new size along the Y-axis). |
size_z |
Number of slices (new size along the Z-axis). |
size_c |
Number of vector-channels (new size along the C-axis). |
interpolation_type |
Method of interpolation: -1 = no interpolation: raw memory resizing. 0 = no interpolation: additional space is filled according to boundary_conditions. 1 = nearest-neighbor interpolation. 2 = moving average interpolation. 3 = linear interpolation. 4 = grid interpolation. 5 = cubic interpolation. 6 = lanczos interpolation. |
boundary_conditions |
Border condition type. |
centering_x |
Set centering type (only if interpolation_type=0). |
centering_y |
Set centering type (only if interpolation_type=0). |
centering_z |
Set centering type (only if interpolation_type=0). |
centering_c |
Set centering type (only if interpolation_type=0). |
See imresize for an easier interface.
Resize image by a single scale factor. For non-uniform scaling and a wider range of options, see resize.
resize_doubleXY(im) resize_halfXY(im) resize_tripleXY(im) imresize(im, scale = 1, interpolation = 3)
resize_doubleXY(im) resize_halfXY(im) resize_tripleXY(im) imresize(im, scale = 1, interpolation = 3)
im |
an image |
scale |
a scale factor |
interpolation |
interpolation method to use (see doc for resize). Default 3, linear. Set to 5 for cubic, 6 for Lanczos (higher quality). |
an image
resize_doubleXY()
: Double size
resize_halfXY()
: Half size
resize_tripleXY()
: Triple size
imresize()
: resize by scale factor
Simon Barthelme
For double-scale, triple-scale, etc. uses an anisotropic scaling algorithm described in: http://www.scale2x.it/algorithm.html. For half-scaling uses what the CImg doc describes as an "optimised filter", see resize_halfXY in CImg.h.
resize
im <- load.example("parrots") imresize(im,1/4) #Quarter size map_il(2:4,~ imresize(im,1/.)) %>% imappend("x") %>% plot
im <- load.example("parrots") imresize(im,1/4) #Quarter size map_il(2:4,~ imresize(im,1/.)) %>% imappend("x") %>% plot
All functions listed here assume the input image has three colour channels (spectrum(im) == 3)
RGBtoHSL(im) RGBtoXYZ(im) XYZtoRGB(im) HSLtoRGB(im) RGBtoHSV(im) HSVtoRGB(im) RGBtoHSI(im) HSItoRGB(im) RGBtosRGB(im) sRGBtoRGB(im) RGBtoYCbCr(im) YCbCrtoRGB(im) RGBtoYUV(im) YUVtoRGB(im) LabtoRGB(im) RGBtoLab(im) LabtoXYZ(im) XYZtoLab(im) LabtosRGB(im) sRGBtoLab(im)
RGBtoHSL(im) RGBtoXYZ(im) XYZtoRGB(im) HSLtoRGB(im) RGBtoHSV(im) HSVtoRGB(im) RGBtoHSI(im) HSItoRGB(im) RGBtosRGB(im) sRGBtoRGB(im) RGBtoYCbCr(im) YCbCrtoRGB(im) RGBtoYUV(im) YUVtoRGB(im) LabtoRGB(im) RGBtoLab(im) LabtoXYZ(im) XYZtoLab(im) LabtosRGB(im) sRGBtoLab(im)
im |
an image |
RGBtoHSL()
: RGB to HSL conversion
RGBtoXYZ()
: CIE RGB to CIE XYZ (1931) conversion, D65 white point
XYZtoRGB()
: CIE XYZ to CIE RGB (1931) conversion, D65 white point
HSLtoRGB()
: HSL to RGB conversion
RGBtoHSV()
: RGB to HSV conversion
HSVtoRGB()
: HSV to RGB conversion
RGBtoHSI()
: RGB to HSI conversion
HSItoRGB()
: HSI to RGB conversion
RGBtosRGB()
: RGB to sRGB conversion
sRGBtoRGB()
: sRGB to RGB conversion
RGBtoYCbCr()
: RGB to YCbCr conversion
YCbCrtoRGB()
: YCbCr to RGB conversion
RGBtoYUV()
: RGB to YUV conversion
YUVtoRGB()
: YUV to RGB conversion
LabtoRGB()
: Lab to RGB (linear)
RGBtoLab()
: RGB (linear) to Lab
LabtoXYZ()
: Lab to XYZ
XYZtoLab()
: XYZ to Lab
LabtosRGB()
: Lab to sRGB
sRGBtoLab()
: sRGB to Lab
Remove alpha channel and store as attribute
rm.alpha(im)
rm.alpha(im)
im |
an image with 4 RGBA colour channels |
an image with only three RGB channels and the alpha channel as attribute
Simon Barthelme
flatten.alpha
#An image with 4 colour channels (RGBA) im <- imfill(2,2,val=c(0,0,0,0)) #Remove fourth channel rm.alpha(im) attr(rm.alpha(im),"alpha")
#An image with 4 colour channels (RGBA) im <- imfill(2,2,val=c(0,0,0,0)) #Remove fourth channel rm.alpha(im) attr(rm.alpha(im),"alpha")
Rotate image by an arbitrary angle, around a center point.
rotate_xy(im, angle, cx, cy, interpolation = 1L, boundary_conditions = 0L)
rotate_xy(im, angle, cx, cy, interpolation = 1L, boundary_conditions = 0L)
im |
an image |
angle |
Rotation angle, in degrees. |
cx |
X-coordinate of the rotation center. |
cy |
Y-coordinate of the rotation center. |
interpolation |
Interpolation type. 0=nearest | 1=linear | 2=cubic |
boundary_conditions |
Boundary conditions. 0=dirichlet | 1=neumann | 2=periodic |
rotate_xy(boats,30,200,400) %>% plot rotate_xy(boats,30,200,400,boundary=2) %>% plot
rotate_xy(boats,30,200,400) %>% plot rotate_xy(boats,30,200,400,boundary=2) %>% plot
You'll need ImageMagick for formats other than PNG and JPEG.
save.image(im, file, quality = 0.7)
save.image(im, file, quality = 0.7)
im |
an image (of class cimg) |
file |
path to file. The format is determined by the file's name |
quality |
(JPEG only) default 0.7. Higher quality means less compression. |
nothing
save.video
#Create temporary file tmpF <- tempfile(fileext=".png") #Save boats image save.image(boats,tmpF) #Read back and display load.image(tmpF) %>% plot
#Create temporary file tmpF <- tempfile(fileext=".png") #Save boats image save.image(boats,tmpF) #Read back and display load.image(tmpF) %>% plot
Compute connected components (using "label"), then split into as many sets as there are components. Useful for segmentation
split_connected(px, ...)
split_connected(px, ...)
px |
a pixset |
... |
further arguments passed to label |
a list of pixsets
Simon Barthelme
label
px <- isoblur(grayscale(boats),5) > .75 plot(px) spl <- split_connected(px) plot(spl[[1]]) px <- isoblur(grayscale(boats),5) > .75 plot(px) spl <- split_connected(px) plot(spl[[1]])
px <- isoblur(grayscale(boats),5) > .75 plot(px) spl <- split_connected(px) plot(spl[[1]]) px <- isoblur(grayscale(boats),5) > .75 plot(px) spl <- split_connected(px) plot(spl[[1]])
Works just like Matlab's squeeze function: if anything in dim(x) equals one the corresponding dimension is removed
squeeze(x)
squeeze(x)
x |
an array |
A <- array(1:9,c(3,1,3)) #3D array with one flat dimension A %>% squeeze #flat dimension removed
A <- array(1:9,c(3,1,3)) #3D array with one flat dimension A %>% squeeze #flat dimension removed
Returns a stencil corresponding to all nearest-neighbours of a pixel
stencil.cross(z = FALSE, cc = FALSE, origin = FALSE)
stencil.cross(z = FALSE, cc = FALSE, origin = FALSE)
z |
include neighbours along the z axis |
cc |
include neighbours along the cc axis |
origin |
include center pixel (default false) |
a data.frame defining a stencil
Simon Barthelme
get.stencil
Thresholding corresponding to setting all values below a threshold to 0, all above to 1. If you call threshold with thr="auto" a threshold will be computed automatically using kmeans (ie., using a variant of Otsu's method). This works well if the pixel values have a clear bimodal distribution. If you call threshold with a string argument of the form "XX%" (e.g., "98%"), the threshold will be set at percentile XX. Computing quantiles or running kmeans is expensive for large images, so if approx == TRUE threshold will skip pixels if the total number of pixels is above 10,000. Note that thresholding a colour image will threshold all the colour channels jointly, which may not be the desired behaviour! Use iiply(im,"c",threshold) to find optimal values for each channel separately.
threshold(im, thr = "auto", approx = TRUE, adjust = 1)
threshold(im, thr = "auto", approx = TRUE, adjust = 1)
im |
the image |
thr |
a threshold, either numeric, or "auto", or a string for quantiles |
approx |
Skip pixels when computing quantiles in large images (default TRUE) |
adjust |
use to adjust the automatic threshold: if the auto-threshold is at k, effective threshold will be at adjust*k (default 1) |
a pixset with the selected pixels
Simon Barthelme
im <- load.example("birds") im.g <- grayscale(im) threshold(im.g,"15%") %>% plot threshold(im.g,"auto") %>% plot threshold(im.g,.1) %>% plot #If auto-threshold is too high, adjust downwards or upwards #using "adjust" threshold(im,adjust=.5) %>% plot threshold(im,adjust=1.3) %>% plot
im <- load.example("birds") im.g <- grayscale(im) threshold(im.g,"15%") %>% plot threshold(im.g,"auto") %>% plot threshold(im.g,.1) %>% plot #If auto-threshold is too high, adjust downwards or upwards #using "adjust" threshold(im,adjust=.5) %>% plot threshold(im,adjust=1.3) %>% plot
The Young-van Vliet filter is a fast approximation to a Gaussian filter (order = 0), or Gaussian derivatives (order = 1 or 2).
vanvliet(im, sigma, order = 0L, axis = "x", neumann = FALSE)
vanvliet(im, sigma, order = 0L, axis = "x", neumann = FALSE)
im |
an image |
sigma |
standard deviation of the Gaussian filter |
order |
the order of the filter 0,1,2,3 |
axis |
Axis along which the filter is computed. One of 'x', 'y', 'z', 'c' |
neumann |
If true, use Neumann boundary conditions (default false, Dirichlet) |
From: I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering. IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002. (this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995)
Boundary conditions (only for order 0) using Triggs matrix, from B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet recursive filtering. IEEE Trans. Signal Processing, vol. 54, pp. 2365-2367, 2006.
vanvliet(boats,sigma=2,order=0) %>% plot("Zeroth-order Young-van Vliet along x") vanvliet(boats,sigma=2,order=1) %>% plot("First-order Young-van Vliet along x") vanvliet(boats,sigma=2,order=1) %>% plot("Second-order Young-van Vliet along x") vanvliet(boats,sigma=2,order=1,axis="y") %>% plot("Second-order Young-van Vliet along y")
vanvliet(boats,sigma=2,order=0) %>% plot("Zeroth-order Young-van Vliet along x") vanvliet(boats,sigma=2,order=1) %>% plot("First-order Young-van Vliet along x") vanvliet(boats,sigma=2,order=1) %>% plot("Second-order Young-van Vliet along x") vanvliet(boats,sigma=2,order=1,axis="y") %>% plot("Second-order Young-van Vliet along y")
Warp image
warp(im, warpfield, mode = 0L, interpolation = 1L, boundary_conditions = 0L)
warp(im, warpfield, mode = 0L, interpolation = 1L, boundary_conditions = 0L)
im |
an image |
warpfield |
Warping field. The (x,y,z) fields should be stacked along the colour coordinate. |
mode |
Can be 0=backward-absolute | 1=backward-relative | 2=forward-absolute | 3=forward-relative |
interpolation |
Can be 0=nearest | 1=linear | 2=cubic. |
boundary_conditions |
Boundary conditions. Can be 0=dirichlet | 1=neumann | 2=periodic. |
imwarp for a user-friendly interface
#Shift image via warp warp.x <- imfill(width(boats),height(boats),val=5) warp.y <- imfill(width(boats),height(boats),val=20) warpfield <- list(warp.x,warp.y) %>% imappend("c") warp(boats,warpfield,mode=1) %>% plot
#Shift image via warp warp.x <- imfill(width(boats),height(boats),val=5) warp.y <- imfill(width(boats),height(boats),val=20) warpfield <- list(warp.x,warp.y) %>% imappend("c") warp(boats,warpfield,mode=1) %>% plot
The watershed transform is a label propagation algorithm. The value of non-zero pixels will get propagated to their zero-value neighbours. The propagation is controlled by a priority map. See examples.
watershed(im, priority, fill_lines = TRUE)
watershed(im, priority, fill_lines = TRUE)
im |
an image |
priority |
Priority map. |
fill_lines |
Sets if watershed lines must be filled or not. |
#In our initial image we'll place three seeds #(non-zero pixels) at various locations, with values 1, 2 and 3. #We'll use the watershed algorithm to propagate these values imd <- function(x,y) imdirac(c(100,100,1,1),x,y) im <- imd(20,20)+2*imd(40,40)+3*imd(80,80) layout(t(1:3)) plot(im,main="Seed image") #Now we build an priority map: neighbours of our seeds #should get high priority. #We'll use a distance map for that p <- 1-distance_transform(sign(im),1) plot(p,main="Priority map") watershed(im,p) %>% plot(main="Watershed transform")
#In our initial image we'll place three seeds #(non-zero pixels) at various locations, with values 1, 2 and 3. #We'll use the watershed algorithm to propagate these values imd <- function(x,y) imdirac(c(100,100,1,1),x,y) im <- imd(20,20)+2*imd(40,40)+3*imd(80,80) layout(t(1:3)) plot(im,main="Seed image") #Now we build an priority map: neighbours of our seeds #should get high priority. #We'll use a distance map for that p <- 1-distance_transform(sign(im),1) plot(p,main="Priority map") watershed(im,p) %>% plot(main="Watershed transform")
Return locations in pixel set
where(x)
where(x)
x |
a pixset |
#All pixel locations with value greater than .99 where(boats > .99)
#All pixel locations with value greater than .99 where(boats > .99)