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iWeigReg-package A R package for improved methods for causal inference and missing
data problems

Description

Improved methods based on inverse probability weighting and outcome regression for causal infer-
ence and missing data problems.

Details

The R package iWeigReg – version 1.0 can be used for two main tasks:

• to estimate the mean of an outcome in the presence of missing data,

• to estimate the average treatment effect in causal inference.

There are 4 functions provided for the first task:

• mn.lik: the non-calibrated (or non-doubly robust) likelihood estimator in Tan (2006),

• mn.clik: the calibrated (or doubly robust) likelihood estimator in Tan (2010),

• mn.reg: the non-calibrated (or non-doubly robust) regression estimator,

• mn.creg: the calibrated (or doubly robust) regression estimator in Tan (2006).

In parallel, there are also 4 functions for the second task, ate.lik, ate.clik, ate.reg, and
ate.creg. Currently, the treatment is assumed to be binary (i.e., untreated or treated). Extensions
to multi-valued treatments will be incorporated in later versions.

In general, the function recommended to use is the calibrated (or doubly robust) likelihood esti-
mator, mn.clik or ate.clik, which is a two-step procedure with the first step corresponding to
the non-calibrated (or non-doubly robust) likelihood estimator. The calibrated (or doubly robust)
regression estimator, mn.creg or ate.creg, is a close relative to the calibrated likelihood estimator,
but may sometimes yield an estimate lying outside the sample range, for example, outside the unit
interval (0,1) for estimating the mean of a binary outcome.

The package also provides two functions, mn.HT and ate.HT, for the Horvitz-Thompson estimator,
i.e., the unaugmented inverse probability weighted estimator. These functions can be used for
balance checking.

See the vignette for more details.
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ate.clik Calibrated likelihood estimator for the causal-inference setup

Description

This function implements the calibrated (or doubly robust) likelihood estimator of the average treat-
ment effect in causal inference in Tan (2010), Biometrika.

Usage

ate.clik(y, tr, p, g0,g1, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of observed outcomes.

tr A vector of treatment indicators (=1 if treated or 0 if untreated).

p A vector of known or fitted propensity scores.

g0 A matrix of calibration variables for treatment 0 (see the details).

g1 A matrix of calibration variables for treatment 1 (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The two-step procedure in Tan (2010, Section 5.4) is used when dealing with estimated propensity
scores. The first step corresponds to the non-calibrated (or non-doubly robust) likelihood estimator
implemented in ate.lik.

The columns of g0 (or respectively g1) correspond to calibration variables for treatment 0 (or treat-
ment 1), which can be specified to include a constant and the fitted outcome regression function for
treatment 0 (or treatment 1). See the examples below. In general, a calibration variable is a function
of measured covariates selected to exploit the fact that its weighted treatment-specific mean should
equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions in Tan (2013). Alternatively, resampling
methods (e.g., bootstrap) can be used.
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Value

mu The estimated means for treatments 1 and 0.

diff The estimated average treatment effect.

v The estimated variances of mu, if evar=TRUE.

v.diff The estimated variance of diff, if evar=TRUE.

w A matrix of two columns, giving calibrated weights for treatments 1 and 0 re-
spectively.

lam A matrix of two columns, giving lambda maximizing the log-likelihood for
treatments 1 and 0 respectively.

norm A vector of two elements, giving the maximum norm (i.e., L∞ norm) of the gra-
dient of the log-likelihood at the maximum for treatments 1 and 0 respectively.

conv A vector of two elements, giving convergence status from trust for treatments 1
and 0 respectively.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

eta0.glm <- glm(y ~ x, subset=tr==0,
family=y.fam, control=glm.control(maxit=1000))

eta0.hat <- predict.glm(eta0.glm,
newdata=data.frame(x=x), type="response")

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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#ppi.hat treated as known
out.lik <- ate.clik(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))
out.lik$diff
out.lik$v.diff

#ppi.hat treated as estimated (see the details)
out.lik <- ate.clik(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat), X)
out.lik$diff
out.lik$v.diff

ate.creg Calibrated regression estimator for the causal-inference setup

Description

This function implements the calibrated (or doubly robust) regression estimator of the average treat-
ment effect in causal inference in Tan (2006), JASA.

Usage

ate.creg(y, tr, p, g0,g1, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of observed outcomes.

tr A vector of treatment indicators (=1 if treated or 0 if untreated).

p A vector of known or fitted propensity scores.

g0 A matrix of calibration variables for treatment 0 (see the details).

g1 A matrix of calibration variables for treatment 1 (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The columns of g0 (or respectively g1) correspond to calibration variables for treatment 0 (or treat-
ment 1), which can be specified to include a constant and the fitted outcome regression function for
treatment 0 (or treatment 1). See the examples below. In general, a calibration variable is a function
of measured covariates selected to exploit the fact that its weighted treatment-specific mean should
equal to its unweighted population mean.
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To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions in Tan (2013). Alternatively, resampling
methods (e.g., bootstrap) can be used.

Value

mu The estimated means for treatments 1 and 0.

diff The estimated average treatment effect.

v The estimated variances of mu, if evar=TRUE.

v.diff The estimated variance of diff, if evar=TRUE.

b A matrix of two colums, giving the vector of regression coefficients for treat-
ments 1 and 0 respectively.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

eta0.glm <- glm(y ~ x, subset=tr==0,

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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family=y.fam, control=glm.control(maxit=1000))
eta0.hat <- predict.glm(eta0.glm,

newdata=data.frame(x=x), type="response")

#ppi.hat treated as known
out.reg <- ate.creg(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))
out.reg$diff
out.reg$v.diff

#ppi.hat treated as estimated
out.reg <- ate.creg(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat), X)
out.reg$diff
out.reg$v.diff

ate.HT Horvitz-Thompson estimator for the causal-inference setup

Description

This function implements the Horvitz-Thompson estimator of the mean outcome of the average
treatment effect in causal inference.

Usage

ate.HT(y, tr, p, X=NULL, bal=FALSE)

Arguments

y A vector or a matrix of observed outcomes.

tr A vector of treatment indicators (=1 if treated or 0 if untreated).

p A vector of known or fitted propensity scores.

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

bal Logical; if TRUE, the function is used for checking balance (see the details).

Details

Variance estimation is based on asymptotic expansions, allowing for misspecification of the propen-
sity score model.

For balance checking with bal=TRUE, the input y should correpond to the covariates for which
balance is to be checked, and the output mu gives the differences between the Horvitz-Thompson
estimates and the overall sample means for these covariates.
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Value

mu The estimated means for treatments 1 and 0 or, if bal=TRUE, their differences
from the overall sample means.

diff The estimated average treatment effect.

v The estimated variances of mu.

v.diff The estimated variance of diff.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#ppi.hat treated as known
out.HT <- ate.HT(y, tr, ppi.hat)
out.HT$diff
out.HT$v.diff

#ppi.hat treated as estimated
out.HT <- ate.HT(y, tr, ppi.hat, X)
out.HT$diff
out.HT$v.diff

#balance checking
out.HT <- ate.HT(x, tr, ppi.hat, X, bal=TRUE)
out.HT$mu
out.HT$v

out.HT$mu/ sqrt(out.HT$v) #t-statistic
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ate.lik Non-calibrated likelihood estimator for the causal-inference setup

Description

This function implements the non-calibrated (or non-doubly robust) likelihood estimator of the
average treatment effect in causal inference in Tan (2006), JASA.

Usage

ate.lik(y, tr, p, g0,g1, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of observed outcomes.

tr A vector of treatment indicators (=1 if treated or 0 if untreated).

p A vector of known or fitted propensity scores.

g0 A matrix of calibration variables for treatment 0 (see the details).

g1 A matrix of calibration variables for treatment 1 (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The columns of g0 (or respectively g1) correspond to calibration variables for treatment 0 (or treat-
ment 1), which can be specified to include a constant and the fitted outcome regression function for
treatment 0 (or treatment 1). See the examples below. In general, a calibration variable is a function
of measured covariates selected to exploit the fact that its weighted treatment-specific mean should
equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions in Tan (2013). Alternatively, resampling
methods (e.g., bootstrap) can be used.
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Value

mu The estimated means for treatments 1 and 0.

diff The estimated average treatment effect.

v The estimated variances of mu, if evar=TRUE.

v.diff The estimated variance of diff, if evar=TRUE.

w The vector of calibrated weights.

lam The vector of lambda maximizing the log-likelihood.

norm The maximum norm (i.e., L∞ norm) of the gradient of the log-likelihood at lam.

conv Convergence status from trust.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

eta0.glm <- glm(y ~ x, subset=tr==0,
family=y.fam, control=glm.control(maxit=1000))

eta0.hat <- predict.glm(eta0.glm,
newdata=data.frame(x=x), type="response")

#ppi.hat treated as known
out.lik <- ate.lik(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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out.lik$diff
out.lik$v.diff

#ppi.hat treated as estimated
out.lik <- ate.lik(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat), X)
out.lik$diff
out.lik$v.diff

ate.reg Non-calibrated regression estimator for the causal-inference setup

Description

This function implements the non-calibrated (or non-doubly robust) regression estimator of the
average treatment effect in causal inference.

Usage

ate.reg(y, tr, p, g0,g1, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of observed outcomes.

tr A vector of treatment indicators (=1 if treated or 0 if untreated).

p A vector of known or fitted propensity scores.

g0 A matrix of calibration variables for treatment 0 (see the details).

g1 A matrix of calibration variables for treatment 1 (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The columns of g0 (or respectively g1) correspond to calibration variables for treatment 0 (or treat-
ment 1), which can be specified to include a constant and the fitted outcome regression function for
treatment 0 (or treatment 1). See the examples below. In general, a calibration variable is a function
of measured covariates selected to exploit the fact that its weighted treatment-specific mean should
equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
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from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions similar to those for ate.creg in Tan (2013).
Alternatively, resampling methods (e.g., bootstrap) can be used.

Value

mu The estimated means for treatments 1 and 0.

diff The estimated average treatment effect.

v The estimated variances of mu, if evar=TRUE.

v.diff The estimated variance of diff, if evar=TRUE.

b A matrix of two colums, giving the vector of regression coefficients for treat-
ments 1 and 0 respectively.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

eta0.glm <- glm(y ~ x, subset=tr==0,
family=y.fam, control=glm.control(maxit=1000))

eta0.hat <- predict.glm(eta0.glm,
newdata=data.frame(x=x), type="response")

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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#ppi.hat treated as known
out.reg <- ate.reg(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))
out.reg$diff
out.reg$v.diff

#ppi.hat treated as estimated
out.reg <- ate.reg(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat), X)
out.reg$diff
out.reg$v.diff

histw Weighted histogram

Description

This function plots a weighted histogram.

Usage

histw(x, w, xaxis, xmin, xmax, ymax,
bar=TRUE, add=FALSE, col="black", dens=TRUE)

Arguments

x A data vector.

w A weight vector, which will be rescaled to sum up to one.

xaxis A vector of cut points.

xmin The minimum of x coordinate.

xmax The maximum of x coordinate.

ymax The maximum of y coordinate.

bar bar plot (if TRUE) or line plot.

add if TRUE, the plot is added to an existing plot.

col color of lines.

dens if TRUE, the histogram has a total area of one.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.
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Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, misspecified
ppi.glm <- glm(tr~x, family=binomial(link=logit))

ppi.hat <- ppi.glm$fitted

#outcome regression model, correct
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ z, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

eta0.glm <- glm(y ~ z, subset=tr==0,
family=y.fam, control=glm.control(maxit=1000))

eta0.hat <- predict.glm(eta0.glm,
newdata=data.frame(x=x), type="response")

#causal inference
out.clik <- ate.clik(y, tr, ppi.hat,

g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))

#balance checking
gp1 <- tr==1
gp0 <- tr==0

par(mfrow=c(2,3))
look <- z1

histw(look[gp1], rep(1,sum(gp1)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)

histw(look[gp0], rep(1,sum(gp0)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

histw(look[gp1], 1/ppi.hat[gp1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)

histw(look[gp0], 1/(1-ppi.hat[gp0]), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

histw(look[gp1], 1/out.clik$w[gp1,1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)

histw(look[gp0], 1/out.clik$w[gp0,2], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

look <- z2
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histw(look[gp1], rep(1,sum(gp1)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)

histw(look[gp0], rep(1,sum(gp0)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

histw(look[gp1], 1/ppi.hat[gp1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)

histw(look[gp0], 1/(1-ppi.hat[gp0]), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

histw(look[gp1], 1/out.clik$w[gp1,1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)

histw(look[gp0], 1/out.clik$w[gp0,2], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

KS.data A simulated dataset

Description

A dataset simulated as in Kang and Schafer (2007).

Usage

data(KS.data)

Format

A data frame containing 1000 rows and 10 columns.

Details

The dataset is generated as follows.

set.seed(0)

n <- 1000

z <- matrix(rnorm(4*n, 0, 1), nrow=n)

ppi.tr <- as.vector( 1/(1+exp(-z%*%c(-1,.5,-.25,-.1))) )
tr <- rbinom(n, 1, ppi.tr)

y.mean <- as.vector( 210+z
y <- y.mean+rnorm(n, 0, 1)

x <- cbind(exp(z[,1]/2), z[,2]/(1+exp(z[,1]))+10,
(z[,1]*z[,3]/25+.6)^3, (z[,2]+z[,4]+20)^2)

x <- t(t(x)/c(1,1,1,400)-c(0,10,0,0))



16 loglik

KS.data <- data.frame(y,tr,z,x)
colnames(KS.data) <-

c("y", "tr", "z1", "z2", "z3", "z4", "x1", "x2", "x3", "x4")

save(KS.data, file="KS.data.rda")

References

Kang, J.D.Y. and Schafer, J.L. (2007) "Demystifying double robustness: A comparison of alter-
native strategies for estimating a population mean from incomplete data," Statistical Science, 22,
523-539.

loglik The non-calibrated objective function ("log-likelihood")

Description

This function computes the objective function, its gradient and its Hessian matrix for the non-
calibrated likelihood estimator in Tan (2006), JASA.

Usage

loglik(lam, tr, h)

Arguments

lam A vector of parameters ("lambda").

tr A vector of non-missing or treatment indicators.

h A constraint matrix.

Value

value The value of the objective function.

gradient The gradient of the objective function.

hessian The Hessian matrix of objective function.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.
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Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))
p <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

#
g1 <- cbind(1,eta1.hat)
h <- cbind(p, (1-p)*g1)

loglik(lam=rep(0,dim(h)[2]-1), tr=tr, h=h)

loglik.g The calibrated objective function ("log-likelihood")

Description

This function computes the objective function, its gradient and its Hessian matrix for the calibrated
likelihood estimator in Tan (2010), Biometrika.

Arguments

lam A vector of parameters ("lambda").

tr A vector of non-missing or treatment indicators.

h A constraint matrix.

pr A vector of fitted propensity scores.

g A matrix of calibration variables.

Value

value The value of the objective function.

gradient The gradient of the objective function.

hessian The Hessian matrix of the objective function.
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References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))
p <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

#
g1 <- cbind(1,eta1.hat)
h <- cbind(p, (1-p)*g1)

loglik.g(lam=rep(0,dim(g1)[2]), tr=tr, h=h, pr=p, g=g1)

mn.clik Calibrated likelihood estimator for the missing-data setup

Description

This function implements the calibrated (or doubly robust) likelihood estimator of the mean out-
come in the presence of missing data in Tan (2010), Biometrika.

Usage

mn.clik(y, tr, p, g, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of outcomes with missing data.

tr A vector of non-missing indicators (=1 if y is observed or 0 if y is missing).

p A vector of known or fitted propensity scores.
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g A matrix of calibration variables (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The two-step procedure in Tan (2010, Section 3.3) is used when dealing with estimated propensity
scores. The first step corresponds to the non-calibrated (or non-doubly robust) likelihood estimator
implemented in mn.lik.

The columns of g correspond to calibration variables, which can be specified to include a constant
and the fitted outcome regression function. See the examples below. In general, a calibration
variable is a function of measured covariates selected to exploit the fact that its weighted mean
among "responders" should equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions in Tan (2013). Alternatively, resampling
methods (e.g., bootstrap) can be used.

Value

mu The estimated mean.

v The estimated variance of mu, if evar=TRUE.

w The vector of calibrated weights.

lam The vector of lambda maximizing the log-likelihood.

norm The maximum norm (i.e., L∞ norm) of the gradient of the log-likelihood at lam.

conv Convergence status from trust.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#missing data
y[tr==0] <- 0

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

#ppi.hat treated as known
out.lik <- mn.clik(y, tr, ppi.hat, g=cbind(1,eta1.hat))
out.lik$mu
out.lik$v

#ppi.hat treated as estimated
out.lik <- mn.clik(y, tr, ppi.hat, g=cbind(1,eta1.hat), X)
out.lik$mu
out.lik$v

mn.creg Calibrated regression estimator for the missing-data setup

Description

This function implements the calibrated (or doubly robust) likelihood estimator of the mean out-
come in the presence of missing data in Tan (2006), JASA.

Usage

mn.creg(y, tr, p, g, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of outcomes with missing data.

tr A vector of non-missing indicators (=1 if y is observed or 0 if y is missing).
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p A vector of known or fitted propensity scores.

g A matrix of calibration variables (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The columns of g correspond to calibration variables, which can be specified to include a constant
and the fitted outcome regression function. See the examples below. In general, a calibration
variable is a function of measured covariates selected to exploit the fact that its weighted mean
among "responders" should equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions in Tan (2013). Alternatively, resampling
methods (e.g., bootstrap) can be used.

Value

mu The estimated mean.

v The estimated variance of mu, if evar=TRUE.

b The vector of regression coefficients.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#missing data
y[tr==0] <- 0

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

#ppi.hat treated as known
out.reg <- mn.creg(y, tr, ppi.hat, g=cbind(1,eta1.hat))
out.reg$mu
out.reg$v

#ppi.hat treated as estimated
out.reg <- mn.creg(y, tr, ppi.hat, g=cbind(1,eta1.hat), X)
out.reg$mu
out.reg$v

mn.HT Horvitz-Thompson estimator for the missing-data setup

Description

This function implements the Horvitz-Thompson estimator of the mean outcome in the presence of
missing data.

Usage

mn.HT(y, tr, p, X=NULL, bal=FALSE)

Arguments

y A vector or a matrix of outcomes with missing data.

tr A vector of non-missing indicators (=1 if y is observed or 0 if y is missing).

p A vector of known or fitted propensity scores.

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

bal Logical; if TRUE, the function is used for checking balance (see the details).
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Details

Variance estimation is based on asymptotic expansions, allowing for misspecification of the propen-
sity score model.

For balance checking with bal=TRUE, the input y should correpond to the covariates for which
balance is to be checked, and the output mu gives the differences between the Horvitz-Thompson
estimates and the overall sample means for these covariates.

Value

mu The estimated mean(s) or, if bal=TRUE, their differences from the overall sample
means.

v The estimated variance(s) of mu.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#missing data
y[tr==0] <- 0

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#ppi.hat treated as known
out.HT <- mn.HT(y, tr, ppi.hat)
out.HT$mu
out.HT$v

#ppi.hat treated as estimated
out.HT <- mn.HT(y, tr, ppi.hat, X)
out.HT$mu
out.HT$v

#balance checking
out.HT <- mn.HT(x, tr, ppi.hat, X, bal=TRUE)
out.HT$mu
out.HT$v
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out.HT$mu/ sqrt(out.HT$v) #t-statistic

mn.lik Non-calibrated likelihood estimator for the missing-data setup

Description

This function implements the non-calibrated (or non-doubly robust) likelihood estimator of the
mean outcome in the presence of missing data in Tan (2006), JASA.

Usage

mn.lik(y, tr, p, g, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of outcomes with missing data.

tr A vector of non-missing indicators (=1 if y is observed or 0 if y is missing).

p A vector of known or fitted propensity scores.

g A matrix of calibration variables (see the details).

X The model matrix for the propensity score model, assumed to be logistic (set
X=NULL if p is known or treated to be so).

evar Logical; if FALSE, no variance estimation.

inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Details

The columns of g correspond to calibration variables, which can be specified to include a constant
and the fitted outcome regression function. See the examples below. In general, a calibration
variable is a function of measured covariates selected to exploit the fact that its weighted mean
among "responders" should equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions in Tan (2013). Alternatively, resampling
methods (e.g., bootstrap) can be used.
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Value

mu The estimated mean.

v The estimated variance of mu, if evar=TRUE.

w The vector of calibrated weights.

lam The vector of lambda maximizing the log-likelihood.

norm The maximum norm (i.e., L∞ norm) of the gradient of the log-likelihood at lam.

conv Convergence status from trust.

References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#missing data
y[tr==0] <- 0

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

#ppi.hat treated as known
out.lik <- mn.lik(y, tr, ppi.hat, g=cbind(1,eta1.hat))
out.lik$mu
out.lik$v

#ppi.hat treated as estimated
out.lik <- mn.lik(y, tr, ppi.hat, g=cbind(1,eta1.hat), X)
out.lik$mu

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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out.lik$v

mn.reg Non-calibrated regression estimator for the missing-data setup

Description

This function implements the non-calibrated (or non-doubly robust) likelihood estimator of the
mean outcome in the presence of missing data.

Usage

mn.reg(y, tr, p, g, X=NULL, evar=TRUE, inv="solve")

Arguments

y A vector of outcomes with missing data.
tr A vector of non-missing indicators (=1 if y is observed or 0 if y is missing).
p A vector of known or fitted propensity scores.
g A matrix of calibration variables (see the details).
X The model matrix for the propensity score model, assumed to be logistic (set

X=NULL if p is known or treated to be so).
evar Logical; if FALSE, no variance estimation.
inv Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used

in the case of computational singularity).

Details

The columns of g correspond to calibration variables, which can be specified to include a constant
and the fitted outcome regression function. See the examples below. In general, a calibration
variable is a function of measured covariates selected to exploit the fact that its weighted mean
among "responders" should equal to its unweighted population mean.

To estimate the propensity scores, a logistic regression model is assumed. The model matrix X does
not need to be provided and can be set to NULL, in which case the estimated propensity scores are
treated as known in the estimation. If the model matrix X is provided, then the "score," (tr-p)X,
from the logistic regression is used to generate additional calibration constraints in the estima-
tion. This may sometimes lead to unreliable estimates due to multicollinearity, as discussed in Tan
(2006). Therefore, this option should be used with caution.

Variance estimation is based on asymptotic expansions similar to those for mn.creg in Tan (2013).
Alternatively, resampling methods (e.g., bootstrap) can be used.

Value

mu The estimated mean.
v The estimated variance of mu, if evar=TRUE.
b The vector of regression coefficients.
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References

Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of
the American Statistical Association, 101, 1619-1637.

Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika,
97, 661-682.

Tan, Z. (2013) "Variance estimation under misspecified models," unpublished manuscript, http:
//www.stat.rutgers.edu/~ztan.

Examples

data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)

#missing data
y[tr==0] <- 0

#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))

X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted

#outcome regression model, misspecified
y.fam <- gaussian(link=identity)

eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))

eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")

#ppi.hat treated as known
out.reg <- mn.reg(y, tr, ppi.hat, g=cbind(1,eta1.hat))
out.reg$mu
out.reg$v

#ppi.hat treated as estimated
out.reg <- mn.reg(y, tr, ppi.hat, g=cbind(1,eta1.hat), X)
out.reg$mu
out.reg$v

myinv Inverse of a matrix

Description

This function returns the inverse or generalized inverse of a matrix.

http://www.stat.rutgers.edu/~ztan
http://www.stat.rutgers.edu/~ztan
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Usage

myinv(A, type = "solve")

Arguments

A A matrix to be inverted.

type Type of matrix inversion, set to "solve" (default) or "ginv" (which can be used
in the case of computational singularity).

Value

The inverse of the given matrix A.
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