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1 Introduction

The R package iWeigReg � version 1.0 can be used for two main tasks:

� to estimate the mean of an outcome in the presence of missing data,

� to estimate the average treatment e�ect in causal inference.

There are 4 functions provided for the �rst task:

� mn.lik: the non-calibrated (or non-doubly robust) likelihood estimator in Tan

(2006),

� mn.clik: the calibrated (or doubly robust) likelihood estimator in Tan (2010),

� mn.reg: the non-calibrated (or non-doubly robust) regression estimator,

� mn.creg: the calibrated (or doubly robust) regression estimator in Tan (2006).

In parallel, there are also 4 functions for the second task, ate.lik, ate.clik, ate.reg,

and ate.creg. Currently, the treatment is assumed to be binary (i.e., untreated or

treated). Extensions to multi-valued treatments will be incorporated in later versions.

In general, the function recommended to use is the calibrated (or doubly robust)

likelihood estimator, mn.clik or ate.clik, which is a two-step procedure with the

�rst step corresponding to the non-calibrated (or non-doubly robust) likelihood esti-

mator. The calibrated (or doubly robust) regression estimator, mn.creg or ate.creg,

is a close relative to the calibrated likelihood estimator, but may sometimes yield an

estimate lying outside the sample range, for example, outside the unit interval (0, 1)

for estimating the mean of a binary outcome.
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The package also provides two functions, mn.HT and ate.HT, for the Horvitz-

Thompson estimator, i.e., the unaugmented inverse probability weighted estimator.

These functions can be used for balance checking.

2 An example

We illustrate the use of the package for causal inference on a simulated dataset accord-

ing to Kang & Schafer (2007). The use of the package is similar in the missing-data

setup. The dataset, KS.data, is included as part of the package.

> library(iWeigReg)

> data(KS.data)

> attach(KS.data)

The following shows the �rst 3 rows of the dataset:

> KS.data[1:3,]

y tr z1 z2 z3 z4 x1

1 239.1378 0 1.2629543 -0.2868516 0.444345820 -0.5380638 1.8803861

2 235.9742 1 -0.3262334 1.8411069 0.011929380 0.4965946 0.8494921

3 223.3349 0 1.3297993 -0.1567643 -0.009280045 -1.4419661 1.9442954

x2 x3 x4

1 -0.06324094 0.2411617 0.9192097

2 1.06939334 0.2158319 1.2474323

3 -0.03279393 0.2154673 0.8465168

For the setup of causal inference, suppose that y gives the observed outcome, tr

the treatment indicator, (z1, z2, z3, z4) the covariates leading to correct models,

and (x1, x2, x3, x4) the covariates leading to misspeci�ed models. The true value

of the average treatment e�ect is 0.
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> n=1000

> z=cbind(z1,z2,z3,z4)

> x=cbind(x1,x2,x3,x4)

2.1 Fitting models

Suppose that a misspeci�ed propensity score model is �tted. (A logistic regression

model is assumed to be used, although other types of regression models may be allowed

in later versions of the package.) The model matrix is recorded as X, and the �tted

propensity scores are recorded in ppi.hat.

> ppi.glm <- glm(tr~x, family=binomial(link=logit))

> X <- model.matrix(ppi.glm)

> ppi.hat <- ppi.glm$fitted

Suppose that a correct outcome regression model is �tted, separately in the treated

group (tr==1) and the untreated group (tr==0). The �tted outcome regression func-

tions are recorded as eta1.hat and eta0.hat respectively.

> y.fam <- gaussian(link=identity)

> eta1.glm <- glm(y ~ z, subset=tr==1,

+ family=y.fam, control=glm.control(maxit=1000))

> eta1.hat <- predict.glm(eta1.glm,

+ newdata=data.frame(z=z), type="response")

> eta0.glm <- glm(y ~ z, subset=tr==0,

+ family=y.fam, control=glm.control(maxit=1000))

> eta0.hat <- predict.glm(eta0.glm,

+ newdata=data.frame(z=z), type="response")
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2.2 Checking balance

If the propensity score model is correctly speci�ed, then the treated group is expected

to be similar to (or matched with) the untreated group in terms of the covariates, after

inverse probability weighting. In fact, the weighted distributions of the covariates

within each treatment group are expected to be similar to the unweighted distributions

in the overall sample. This balancing property provides an informative way to check

propensity score models as suggested in Tan (2006).

The function ate.HT can be used to compute the di�erences between the weighted

treatement-speci�c means and the unweighted overall means of the covariates, i.e.,
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where Ri are treatment indicators, π̂i the �tted propensity scores, and Zi the vector

of covariates for which balance is to be checked. Typically, the covariates in Zi are

those entered in the outcome regression models.

> out.HT <- ate.HT(z, tr, ppi.hat, X, bal=TRUE)

> out.HT$mu

mu1 mu0

z1 0.19538500 0.06452627

z2 0.20168063 -0.01549701

z3 -0.20481183 0.13499424

z4 0.02092013 0.05784173

The statistical signi�cance of the di�erences can be assessed by the z-statistics as

follows. There are a relatively large number of z-values exceeding 2 in absolute value,

which (correctly) indicates that the propensity score model used is misspeci�ed.

> out.HT$mu/ sqrt(out.HT$v)
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Figure 1: Unweighted and weighted histograms (black: treated group, red: untreated

group), with a misspeci�ed propensity score model and a correct outcome regression

model.
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mu1 mu0

z1 1.0634099 2.8036871

z2 2.8913106 -0.9982941

z3 -2.6421169 3.8847479

z4 0.7401349 2.7844917

For graphical comparisons, the function histw can be used to generate weighted

hitograms (and also unweighted histograms) of the covariates for the two treatment

groups, as illustrated in Figure 1. To save space, the following code corresponds only
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to the �rst two plots in the �rst row of Figure 1. There are appreciable di�erences in

the HT-weighted histograms between the two treatment groups (see the right tail of

z1 and the values of z2 near 1), although these di�erences are not as substantial as

those in the unweighted histograms.

> gp1 <- tr==1

> gp0 <- tr==0

> par(mfrow=c(2,3))

> look <- z1

> histw(look[gp1], rep(1,sum(gp1)), xaxis=seq(-3.5,3.5,.25),

+ xmin=-3.5, xmax=3.5, ymax=.8)

> histw(look[gp0], rep(1,sum(gp0)), xaxis=seq(-3.5,3.5,.25),

+ xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

> title(main="unweighted", ylab="z1")

> histw(look[gp1], 1/ppi.hat[gp1], xaxis=seq(-3.5,3.5,.25),

+ xmin=-3.5, xmax=3.5, ymax=.8)

> histw(look[gp0], 1/(1-ppi.hat[gp0]), xaxis=seq(-3.5,3.5,.25),

+ xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

> title(main="HT weighted", ylab="z1")

2.3 Applying the calibrated likelihood method

If balance checking suggests possible model misspeci�cation, then it is usually ad-

visable to revise the propensity score model by, for example, introducing additional

terms. This process of model building and checking needs to be carefully done in real

data analysis. Nevertheless, we proceed to apply the calibrated likelihood estimator

based on the given propensity score model and outcome regression model.

> out.clik <- ate.clik(y, tr, ppi.hat,

+ g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))
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The weighted histograms based on out.clik are also shown in Figure 1. To save

space, the following code corresponds to the third plot in the �rst row of Figure 1.

Remarkably, the di�erences between the weighted treatment-speci�c histograms based

on out.clik appear to be considerably reduced, compared with the HT-weighted

histograms. Therefore, the calibrated likelihood method can be seen to (partially)

correct for misspeci�cation of the propensity score model. This e�ect can persist even

if misspeci�ed outcome regression models are used (see Section 2.4).

> look <- z1

> histw(look[gp1], 1/out.clik$w[gp1,1], xaxis=seq(-3.5,3.5,.25),

+ xmin=-3.5, xmax=3.5, ymax=.8)

> histw(look[gp0], 1/out.clik$w[gp0,2], xaxis=seq(-3.5,3.5,.25),

+ xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")

> title(main="clik weighted", ylab="z1")

The following code gives the estimated treatment means and their standard errors.

The true values of the two treatment means are both 210.

> out.clik$mu

treat 1 treat 0

210.1775 210.2444

> sqrt(out.clik$v)

treat 1 treat 0

1.122953 1.121321

The next code gives the estimated average treatment e�ect and its standard error.

The true value of the average treatment e�ect is 0.

> out.clik$diff
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[1] -0.0669473

> sqrt(out.clik$v.diff)

[1] 0.0760788

The vectors of calibration variables, g0 and g1, can be speci�ed in other ways as

shown in the following example. Double robustness is achieved provided that the

�tted outcome regression function for treatment 0 and 1 is contained in the linear

span generated by the columns of g0 and g1 respectively.

> out.clik2 <- ate.clik(y, tr, ppi.hat,

+ g0=cbind(1,z),g1=cbind(1,z))

By the calibrated likelihood method, the weighted treatment-speci�c means of

each calibration variable are equal to the overall unweighted mean.

> apply(z, 2, mean)

z1 z2 z3 z4

-0.015829573 -0.024786443 0.068142732 0.002485961

> apply(z[gp1,]/out.clik2$w[gp1,1], 2, sum)/n

z1 z2 z3 z4

-0.015829567 -0.024786450 0.068142733 0.002485964

> apply(z[gp0,]/out.clik2$w[gp0,2], 2, sum)/n

z1 z2 z3 z4

-0.015829725 -0.024786396 0.068142489 0.002485977
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2.4 Additional illustration

Now suppose that a misspeci�ed outcome regression model is �tted.

> eta1.glm <- glm(y ~ x, subset=tr==1,

+ family=y.fam, control=glm.control(maxit=1000))

> eta1.hat <- predict.glm(eta1.glm,

+ newdata=data.frame(x=x), type="response")

> eta0.glm <- glm(y ~ x, subset=tr==0,

+ family=y.fam, control=glm.control(maxit=1000))

> eta0.hat <- predict.glm(eta0.glm,

+ newdata=data.frame(x=x), type="response")

The calibrated likelihood method is applied next.

> out.clik <- ate.clik(y, tr, ppi.hat,

+ g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))

Figure 2 shows the weighted treatment-speci�c histograms of (z1,z2) based on the

new results, out.clik, as the third plot in each row. The �rst two plots included in

each row are the same as in Figure 1. There appears to be much smaller di�erences in

the weighted treatment-speci�c histograms based on the calibrated likelihood method

than those in the HT-weighted histograms, even though both the propensity score

model and the outcome regresion model are misspeci�ed.
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Figure 2: Unweighted and weighted histograms (black: treated group, red: untreated

group), with a misspeci�ed propensity score model and a misspeci�ed outcome re-

gression model.
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