rRUM_indept

library(hmcdm)

Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses and response times based on the rRUM model

tau <- numeric(K)
for(k in 1:K){
  tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  for(k in 1:K){
    prereqs <- which(R[k,]==1)
    if(length(prereqs)==0){
      Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
    }
    if(length(prereqs)>0){
      Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
    }
  }
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  28  93 136  75  18
Smats <- matrix(runif(J*K,.1,.3),c(J,K))
Gmats <- matrix(runif(J*K,.1,.3),c(J,K))
# Simulate rRUM parameters
r_stars <- Gmats / (1-Smats)
pi_stars <- apply((1-Smats)^Q_matrix, 1, prod)

Y_sim <- sim_hmcdm(model="rRUM",Alphas,Q_matrix,Design_array,
                   r_stars=r_stars,pi_stars=pi_stars)

(2) Run the MCMC to sample parameters from the posterior distribution

output_rRUM_indept = hmcdm(Y_sim,Q_matrix,"rRUM_indept",Design_array,
                           100,30,R = R)
#> 0
output_rRUM_indept
#> 
#> Model: rRUM_indept 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_rRUM_indept)
#> 
#> Model: rRUM_indept 
#> 
#> Item Parameters:
#>  r_stars1_EAP r_stars2_EAP r_stars3_EAP r_stars4_EAP pi_stars_EAP
#>        0.4773      0.52614       0.5253       0.6395       0.7350
#>        0.6053      0.35360       0.5723       0.5711       0.7642
#>        0.5889      0.67949       0.6601       0.3858       0.7011
#>        0.5993      0.69182       0.2371       0.5625       0.7485
#>        0.4741      0.04227       0.5137       0.5988       0.6526
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    taus_EAP
#> τ1   0.4225
#> τ2   0.4943
#> τ3   0.4618
#> τ4   0.3278
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000 0.09113
#> 0001 0.05084
#> 0010 0.03600
#> 0011 0.06357
#> 0100 0.06196
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 23687.93 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.4988
#> M2:  0.49
#> total scores:  0.6081
a <- summary(output_rRUM_indept)
head(a$r_stars_EAP)
#>           [,1]       [,2]      [,3]      [,4]
#> [1,] 0.4773087 0.52614404 0.5253129 0.6395075
#> [2,] 0.6053046 0.35359546 0.5723301 0.5710974
#> [3,] 0.5888621 0.67949331 0.6600833 0.3858473
#> [4,] 0.5993120 0.69181567 0.2371137 0.5625196
#> [5,] 0.4740937 0.04227164 0.5137391 0.5988094
#> [6,] 0.5273991 0.37205285 0.2451295 0.6669386

(3) Check for parameter estimation accuracy

(cor_pistars <- cor(as.vector(pi_stars),as.vector(a$pi_stars_EAP)))
#> [1] 0.9538903
(cor_rstars <- cor(as.vector(r_stars*Q_matrix),as.vector(a$r_stars_EAP*Q_matrix)))
#> [1] 0.9330186

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8292857 0.8964286 0.9250000 0.9421429 0.9564286

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5028571 0.6457143 0.7485714 0.7971429 0.8342857

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2220.138            NA 18800.54 1856.781 22877.46
#> D(theta_bar)   2151.948            NA 18067.53 1847.506 22066.98
#> DIC            2288.328            NA 19533.55 1866.057 23687.93
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.00 0.04 0.02 0.02 0.00
#> [2,] 0.08 0.80 0.36 0.90 0.62
#> [3,] 0.38 0.78 0.18 0.56 0.36
#> [4,] 0.44 0.42 0.80 0.98 0.24
#> [5,] 0.58 0.98 0.58 0.94 0.96
#> [6,] 0.46 0.98 0.62 0.78 1.00
head(a$PPP_item_means)
#> [1] 0.50 0.48 0.52 0.52 0.48 0.48
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA 0.18 0.36 0.12 0.16 0.52 0.92 0.92 0.88  0.44  0.76  0.80  0.98  0.40
#> [2,]   NA   NA 0.54 0.86 0.50 0.48 0.38 0.48 0.30  0.14  0.86  0.52  0.20  0.12
#> [3,]   NA   NA   NA 0.90 0.50 0.10 0.24 0.60 0.22  0.62  0.20  0.36  0.74  0.96
#> [4,]   NA   NA   NA   NA 0.96 0.46 0.70 0.94 0.62  0.32  0.02  0.22  0.88  0.96
#> [5,]   NA   NA   NA   NA   NA 0.72 0.28 0.40 0.36  0.28  0.38  0.72  0.40  0.06
#> [6,]   NA   NA   NA   NA   NA   NA 0.66 0.70 0.22  0.96  0.56  0.44  0.08  0.72
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.16  0.94  0.90  0.52  0.06  0.76  0.84  0.46  0.64  0.90  0.20  0.26
#> [2,]  0.92  0.38  0.36  0.94  0.36  0.44  0.76  0.40  0.52  0.40  0.36  0.58
#> [3,]  0.06  0.26  0.34  0.54  0.48  0.84  0.66  0.98  0.06  0.54  0.28  0.58
#> [4,]  0.14  0.30  0.36  0.76  0.52  0.84  0.10  0.52  0.82  0.42  0.30  0.28
#> [5,]  0.46  0.92  0.82  0.80  0.24  0.84  0.90  0.90  0.32  0.16  0.28  0.54
#> [6,]  0.00  0.66  0.16  0.24  0.72  0.82  0.14  0.26  0.16  0.76  0.08  0.46
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.20  0.56  0.72  0.02  0.58  0.72  0.26  0.50  0.68  0.22  0.12  0.80
#> [2,]  0.08  0.64  0.44  0.76  0.38  0.22  0.24  0.44  0.04  0.84  0.16  0.18
#> [3,]  0.36  0.92  0.94  0.76  0.70  0.74  0.46  0.86  0.68  0.08  0.84  0.44
#> [4,]  0.38  0.54  0.98  0.10  0.38  0.52  0.42  0.80  0.92  0.66  0.78  0.36
#> [5,]  0.42  0.94  0.40  0.88  0.36  0.60  0.34  0.28  0.86  0.74  0.90  0.52
#> [6,]  0.90  0.98  0.32  0.66  0.70  0.54  0.62  0.98  0.92  0.78  0.52  0.88
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.32  0.52  0.48  0.76  0.50  0.84  0.60  0.40  0.30  0.88  0.60  0.76
#> [2,]  0.08  0.26  0.22  0.08  0.38  0.14  0.98  0.00  0.40  0.24  0.66  0.44
#> [3,]  0.96  0.96  0.50  0.10  1.00  0.54  0.92  0.68  0.50  0.36  0.92  0.30
#> [4,]  0.54  0.22  0.52  0.20  0.24  0.58  0.88  0.24  0.88  0.40  0.96  0.34
#> [5,]  0.24  0.26  0.02  0.16  0.24  0.16  0.22  0.26  0.20  0.22  0.54  0.06
#> [6,]  0.22  0.08  0.70  0.94  0.80  0.88  0.08  0.50  0.58  0.88  0.42  0.48