NIDA_indept

library(hmcdm)

Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses and response times based on the NIDA model

tau <- numeric(K)
for(k in 1:K){
  tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  for(k in 1:K){
    prereqs <- which(R[k,]==1)
    if(length(prereqs)==0){
      Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
    }
    if(length(prereqs)>0){
      Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
    }
  }
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  25  87 134  85  19
Svec <- runif(K,.1,.3)
Gvec <- runif(K,.1,.3)

Y_sim <- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
                   Svec=Svec,Gvec=Gvec)

(2) Run the MCMC to sample parameters from the posterior distribution

output_NIDA_indept = hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
                           100, 30, R = R)
#> 0
output_NIDA_indept
#> 
#> Model: NIDA_indept 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#> 
#> Model: NIDA_indept 
#> 
#> Item Parameters:
#>  ss_EAP gs_EAP
#>  0.1179 0.1536
#>  0.1055 0.1847
#>  0.2685 0.2227
#>  0.1978 0.2309
#> 
#> Transition Parameters:
#>    taus_EAP
#> τ1   0.4406
#> τ2   0.4746
#> τ3   0.4706
#> τ4   0.4106
#> 
#> Class Probabilities:
#>       pis_EAP
#> 0000 0.060862
#> 0001 0.027853
#> 0010 0.057665
#> 0011 0.006243
#> 0100 0.121910
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 21311.64 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.4756
#> M2:  0.49
#> total scores:  0.6103
a <- summary(output_NIDA_indept)
head(a$ss_EAP)
#>           [,1]
#> [1,] 0.1178531
#> [2,] 0.1055205
#> [3,] 0.2685189
#> [4,] 0.1977739

(3) Check for parameter estimation accuracy

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8678571 0.9085714 0.9407143 0.9621429 0.9742857

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5742857 0.6857143 0.7828571 0.8600000 0.9057143

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2066.194            NA 16754.42 1846.428 20667.04
#> D(theta_bar)   2000.635            NA 16183.89 1837.928 20022.45
#> DIC            2131.753            NA 17324.96 1854.928 21311.64
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.12 0.34 0.56 0.14 0.00
#> [2,] 0.64 0.54 0.08 0.26 0.18
#> [3,] 0.92 0.20 0.48 0.10 0.88
#> [4,] 0.18 0.78 0.34 0.60 1.00
#> [5,] 0.68 0.88 0.30 0.86 0.70
#> [6,] 0.32 0.10 0.06 1.00 0.08
head(a$PPP_item_means)
#> [1] 0.76 0.46 0.32 0.48 0.22 0.74
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA 0.62 0.38 0.24 0.60 0.06 0.30 0.78 0.28  0.12  0.54  0.24  0.80  0.72
#> [2,]   NA   NA 0.56 0.64 0.70 0.82 0.14 0.74 0.94  0.82  0.66  0.32  0.38  0.74
#> [3,]   NA   NA   NA 0.44 0.78 0.48 0.00 0.18 0.96  0.42  0.58  0.36  0.20  0.34
#> [4,]   NA   NA   NA   NA 0.22 0.38 0.30 0.12 0.38  0.82  0.32  0.20  0.60  0.88
#> [5,]   NA   NA   NA   NA   NA 0.54 0.02 0.92 0.82  0.44  0.24  0.08  0.86  0.68
#> [6,]   NA   NA   NA   NA   NA   NA 0.48 0.24 0.42  0.16  0.22  0.54  0.16  0.26
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.70  0.36  0.58  0.72  0.66  0.28  0.00  0.64  0.44  0.82  0.82  0.74
#> [2,]  0.46  0.16  0.38  0.44  0.62  0.20  0.28  0.42  0.16  0.28  0.12  0.14
#> [3,]  0.58  0.52  0.22  0.24  0.34  0.00  0.68  0.08  0.40  0.00  0.06  0.16
#> [4,]  0.30  0.36  0.58  0.42  0.40  0.94  0.86  0.54  0.38  0.78  0.82  0.42
#> [5,]  0.80  0.82  0.58  0.64  0.68  0.26  0.72  0.74  0.40  0.46  0.22  0.68
#> [6,]  0.80  0.14  0.38  0.20  0.20  0.54  0.46  0.74  0.00  0.28  0.00  0.60
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.60  0.94  0.26  0.88  0.74  0.92  0.16  0.34  0.54  0.92  0.68  0.86
#> [2,]  0.02  0.38  0.38  0.36  0.40  0.60  0.72  0.04  0.48  0.08  0.40  0.32
#> [3,]  0.06  0.26  0.60  0.06  0.40  0.72  1.00  0.26  0.20  0.92  0.10  0.54
#> [4,]  0.16  0.58  0.10  0.74  0.58  0.08  0.96  0.50  0.62  0.46  0.56  0.70
#> [5,]  0.14  0.58  0.76  0.40  0.38  0.66  0.30  0.24  0.08  0.88  0.62  0.48
#> [6,]  0.06  0.70  0.74  0.08  0.64  0.10  0.08  0.24  0.78  0.60  0.46  0.98
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.54  0.68  0.96  0.14  0.52  0.06  0.06  0.26  0.70  0.16  0.12  0.50
#> [2,]  0.66  0.18  0.48  0.90  0.26  0.62  0.96  0.32  1.00  0.16  0.46  0.56
#> [3,]  0.12  0.52  0.68  0.12  0.60  0.02  0.48  0.02  0.44  0.12  0.18  0.70
#> [4,]  0.60  0.20  0.68  0.46  0.56  0.50  0.10  0.52  0.40  0.52  0.96  0.78
#> [5,]  0.42  0.34  0.98  0.64  0.08  0.10  0.38  0.06  0.44  0.16  0.22  0.84
#> [6,]  0.50  0.06  0.26  0.22  0.18  0.38  0.46  0.76  0.42  0.44  0.98  0.78