class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N)
lambdas_true = c(-1, 1.8, .277, .055)
Alphas <- sim_alphas(model="HO_sep",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 34 42 83 145 46
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Test_order = Test_order, Test_versions = Test_versions,
chain_length=100,burn_in=30,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Design_array,
chain_length=100,burn_in=30,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM
#>
#> Model: DINA_HO
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 30
summary(output_HMDCM)
#>
#> Model: DINA_HO
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1583 0.1214
#> 0.1033 0.1939
#> 0.2095 0.1673
#> 0.1634 0.1891
#> 0.1586 0.2067
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.4218
#> λ1 2.3065
#> λ2 0.1990
#> λ3 0.1273
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1932
#> 0001 0.2080
#> 0010 0.1540
#> 0011 0.2187
#> 0100 0.1493
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 18662.77
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5051
#> M2: 0.49
#> total scores: 0.6271
a <- summary(output_HMDCM)
a$ss_EAP
#> [,1]
#> [1,] 0.15825283
#> [2,] 0.10334640
#> [3,] 0.20948117
#> [4,] 0.16339135
#> [5,] 0.15862398
#> [6,] 0.18991916
#> [7,] 0.15445880
#> [8,] 0.10103082
#> [9,] 0.16882064
#> [10,] 0.15113708
#> [11,] 0.20433357
#> [12,] 0.19807978
#> [13,] 0.20800023
#> [14,] 0.09660672
#> [15,] 0.16522923
#> [16,] 0.18308455
#> [17,] 0.09583899
#> [18,] 0.13756038
#> [19,] 0.11376633
#> [20,] 0.14134252
#> [21,] 0.15827191
#> [22,] 0.22390574
#> [23,] 0.16612060
#> [24,] 0.23959900
#> [25,] 0.13678979
#> [26,] 0.14653933
#> [27,] 0.12716318
#> [28,] 0.24993782
#> [29,] 0.15482670
#> [30,] 0.10495696
#> [31,] 0.13307867
#> [32,] 0.16903655
#> [33,] 0.20043167
#> [34,] 0.16831519
#> [35,] 0.13242000
#> [36,] 0.13125061
#> [37,] 0.28603996
#> [38,] 0.14735152
#> [39,] 0.11615620
#> [40,] 0.16212220
#> [41,] 0.12047219
#> [42,] 0.13108897
#> [43,] 0.25809179
#> [44,] 0.15365442
#> [45,] 0.15914937
#> [46,] 0.14922763
#> [47,] 0.15424291
#> [48,] 0.08147976
#> [49,] 0.13937486
#> [50,] 0.06673718
a$lambdas_EAP
#> [,1]
#> λ0 -1.4218310
#> λ1 2.3064813
#> λ2 0.1990276
#> λ3 0.1272570
mean(a$PPP_total_scores)
#> [1] 0.6277714
mean(upper.tri(a$PPP_item_ORs))
#> [1] 0.49
mean(a$PPP_item_means)
#> [1] 0.5245714
a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2041.133 NA 14541.86 1265.925 17848.92
#> D(theta_bar) 1726.881 NA 14083.72 1224.472 17035.08
#> DIC 2355.386 NA 15000.01 1307.378 18662.77
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.1285714 0.5285714 0.8285714 0.8000000 0.80000000
#> [2,] 0.4571429 0.5857143 0.6000000 0.8000000 0.05714286
#> [3,] 0.2857143 0.5142857 0.7571429 0.8428571 0.40000000
#> [4,] 0.6285714 0.9428571 0.3285714 1.0000000 0.80000000
#> [5,] 0.4714286 0.1142857 0.3428571 0.3000000 0.80000000
#> [6,] 0.5857143 0.7857143 0.8000000 0.8000000 0.41428571
head(a$PPP_item_means)
#> [1] 0.4142857 0.4714286 0.4714286 0.5714286 0.4571429 0.5857143
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] NA 0.7857143 0.7857143 0.4428571 0.7857143 0.4000000 0.7428571 0.5285714
#> [2,] NA NA 0.9571429 0.5571429 0.7428571 0.7571429 0.3142857 0.5285714
#> [3,] NA NA NA 0.2857143 0.8285714 0.8571429 0.8714286 0.6571429
#> [4,] NA NA NA NA 0.3428571 0.5571429 0.7142857 0.8285714
#> [5,] NA NA NA NA NA 0.7000000 0.5142857 0.9285714
#> [6,] NA NA NA NA NA NA 0.5285714 0.3714286
#> [,9] [,10] [,11] [,12] [,13] [,14] [,15]
#> [1,] 0.5142857 0.3714286 0.40000000 0.4428571 0.9714286 0.90000000 0.9285714
#> [2,] 0.7571429 0.4714286 0.08571429 0.8428571 1.0000000 0.80000000 0.8000000
#> [3,] 0.7285714 0.9428571 0.91428571 0.4285714 0.8714286 0.72857143 0.9000000
#> [4,] 0.8285714 0.7857143 0.71428571 0.1571429 0.8428571 0.34285714 0.7142857
#> [5,] 0.9285714 0.8142857 0.68571429 0.7000000 1.0000000 0.97142857 0.9142857
#> [6,] 0.2000000 0.3000000 0.08571429 0.3285714 0.7571429 0.02857143 0.2857143
#> [,16] [,17] [,18] [,19] [,20] [,21] [,22]
#> [1,] 0.88571429 0.4714286 0.9285714 0.85714286 0.97142857 0.6428571 0.7285714
#> [2,] 0.74285714 0.7857143 0.6571429 0.54285714 1.00000000 0.6571429 0.5714286
#> [3,] 0.78571429 0.7428571 0.1714286 0.88571429 0.47142857 0.3857143 0.3142857
#> [4,] 0.31428571 0.2857143 0.2000000 0.48571429 0.21428571 1.0000000 0.6142857
#> [5,] 0.95714286 1.0000000 0.8428571 1.00000000 0.98571429 0.7285714 0.4571429
#> [6,] 0.08571429 0.2000000 0.2428571 0.05714286 0.04285714 0.9857143 0.1000000
#> [,23] [,24] [,25] [,26] [,27] [,28] [,29]
#> [1,] 0.6857143 0.6428571 0.9000000 0.4142857 0.7428571 0.8285714 0.4000000
#> [2,] 0.7428571 0.3857143 0.9714286 0.3428571 0.4142857 0.9142857 0.9714286
#> [3,] 0.3142857 0.3142857 0.5000000 0.5285714 0.4857143 0.7857143 0.7571429
#> [4,] 0.7142857 0.9428571 0.5000000 0.5000000 0.9857143 1.0000000 1.0000000
#> [5,] 0.6857143 0.8285714 0.7857143 0.8714286 0.8714286 0.7857143 0.9857143
#> [6,] 0.1428571 0.6142857 0.6571429 0.8142857 0.2571429 0.9857143 0.9857143
#> [,30] [,31] [,32] [,33] [,34] [,35] [,36]
#> [1,] 0.8285714 0.15714286 0.1000000 0.4428571 0.6857143 0.6714286 0.07142857
#> [2,] 0.8428571 0.70000000 0.1857143 0.1714286 0.6000000 0.5857143 0.27142857
#> [3,] 0.1142857 0.74285714 0.9285714 0.6142857 0.4857143 0.4857143 0.40000000
#> [4,] 0.4428571 0.07142857 0.9142857 0.3571429 0.7142857 0.3000000 0.25714286
#> [5,] 0.6428571 0.72857143 0.5285714 0.8714286 0.1857143 0.7428571 0.77142857
#> [6,] 0.5714286 0.27142857 0.2142857 0.3000000 0.0000000 0.1428571 0.04285714
#> [,37] [,38] [,39] [,40] [,41] [,42] [,43]
#> [1,] 0.5142857 0.0000000 0.84285714 0.2428571 1.0000000 0.7714286 0.5428571
#> [2,] 0.4428571 0.4285714 0.75714286 0.4428571 0.8714286 0.9000000 0.7571429
#> [3,] 0.9142857 0.6857143 0.62857143 0.9714286 0.4428571 0.2571429 0.3428571
#> [4,] 0.8571429 0.6285714 0.31428571 0.9285714 0.9428571 0.8714286 0.9714286
#> [5,] 0.7857143 0.4571429 1.00000000 0.6571429 0.9857143 0.8428571 0.6000000
#> [6,] 0.1142857 0.3285714 0.05714286 0.1571429 0.3000000 0.4428571 0.1142857
#> [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.3714286 0.7571429 0.4571429 0.3857143 0.1571429 0.5285714 0.2571429
#> [2,] 0.8285714 0.9714286 0.9571429 0.9285714 0.7714286 0.9857143 0.9428571
#> [3,] 0.9428571 0.6428571 0.5000000 0.5285714 0.7714286 0.8571429 0.3000000
#> [4,] 0.4571429 0.7428571 0.3285714 0.7857143 0.8857143 0.7428571 0.7000000
#> [5,] 0.6857143 0.9857143 0.2285714 0.5571429 0.3000000 0.3571429 0.2857143
#> [6,] 0.5714286 0.2571429 0.2000000 0.1000000 0.2142857 0.4571429 0.4285714
library(bayesplot)
pp_check(output_HMDCM)
Checking convergence of the two independent MCMC chains with
different initial values using coda
package.
# output_HMDCM1 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
# chain_length=100, burn_in=30,
# theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
# output_HMDCM2 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
# chain_length=100, burn_in=30,
# theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
#
# library(coda)
#
# x <- mcmc.list(mcmc(t(rbind(output_HMDCM1$ss, output_HMDCM1$gs, output_HMDCM1$lambdas))),
# mcmc(t(rbind(output_HMDCM2$ss, output_HMDCM2$gs, output_HMDCM2$lambdas))))
#
# gelman.diag(x, autoburnin=F)