ETAs <- ETAmat(K, J, Q_matrix)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055) # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 57 63 85 111 34
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,
RT_itempars_true,taus_true,phi_true,G_version)
output_HMDCM_RT_joint = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint
#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1710 0.1295
#> 0.1940 0.2118
#> 0.1477 0.1207
#> 0.1569 0.2338
#> 0.1490 0.2157
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -2.2729
#> λ1 0.1969
#> λ2 0.1822
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1194
#> 0001 0.1940
#> 0010 0.1550
#> 0011 0.2384
#> 0100 0.1760
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154335
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5276
#> M2: 0.49
#> total scores: 0.6244
a <- summary(output_HMDCM_RT_joint)
a
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1710 0.1295
#> 0.1940 0.2118
#> 0.1477 0.1207
#> 0.1569 0.2338
#> 0.1490 0.2157
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -2.2729
#> λ1 0.1969
#> λ2 0.1822
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1194
#> 0001 0.1940
#> 0010 0.1550
#> 0011 0.2384
#> 0100 0.1760
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154335
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5224
#> M2: 0.49
#> total scores: 0.6256
a$ss_EAP
#> [,1]
#> [1,] 0.17102885
#> [2,] 0.19404185
#> [3,] 0.14766003
#> [4,] 0.15685417
#> [5,] 0.14896812
#> [6,] 0.12506639
#> [7,] 0.14593981
#> [8,] 0.17621620
#> [9,] 0.17066474
#> [10,] 0.10069325
#> [11,] 0.12116787
#> [12,] 0.27147849
#> [13,] 0.21801974
#> [14,] 0.12486518
#> [15,] 0.14086055
#> [16,] 0.26139691
#> [17,] 0.13087620
#> [18,] 0.18395990
#> [19,] 0.14609280
#> [20,] 0.15641872
#> [21,] 0.18588286
#> [22,] 0.16122183
#> [23,] 0.14168650
#> [24,] 0.14484889
#> [25,] 0.16200293
#> [26,] 0.13470972
#> [27,] 0.17277175
#> [28,] 0.19861351
#> [29,] 0.16521466
#> [30,] 0.34259750
#> [31,] 0.17234675
#> [32,] 0.17790487
#> [33,] 0.07655841
#> [34,] 0.18643061
#> [35,] 0.24700725
#> [36,] 0.18402143
#> [37,] 0.23905749
#> [38,] 0.20459515
#> [39,] 0.22533556
#> [40,] 0.19453570
#> [41,] 0.20255444
#> [42,] 0.23265717
#> [43,] 0.19411872
#> [44,] 0.20407748
#> [45,] 0.23176666
#> [46,] 0.15967514
#> [47,] 0.20101965
#> [48,] 0.13378019
#> [49,] 0.18100237
#> [50,] 0.21979400
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1710289
#> [2,] 0.1940419
#> [3,] 0.1476600
#> [4,] 0.1568542
#> [5,] 0.1489681
#> [6,] 0.1250664
(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#> [,1]
#> [1,] 0.7902972
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#> [,1]
#> [1,] 0.9872628
(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#> [,1]
#> [1,] 0.6397967
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#> [,1]
#> [1,] 0.6407548
AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9171429 0.9178571 0.9457143 0.9500000 0.9457143
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7114286 0.7114286 0.8085714 0.8285714 0.8114286
a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 1959.256 132647.9 15069.7 3491.572 153168.4
#> D(theta_bar) 1675.961 132215.4 14750.7 3359.738 152001.8
#> DIC 2242.550 133080.3 15388.7 3623.407 154335.0
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.90 0.38 0.04 0.00 0.12
#> [2,] 0.64 1.00 0.04 0.78 0.16
#> [3,] 0.96 0.36 0.76 0.18 0.32
#> [4,] 0.60 0.26 1.00 0.92 0.98
#> [5,] 0.56 0.56 0.64 0.12 0.60
#> [6,] 0.48 0.82 0.02 0.16 0.18
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.62 0.28 0.20 0.14 0.82
#> [2,] 0.54 0.88 0.20 0.70 0.54
#> [3,] 0.64 0.40 0.58 0.76 0.44
#> [4,] 0.80 0.12 0.54 0.90 0.22
#> [5,] 0.72 0.06 0.40 0.54 0.68
#> [6,] 0.40 0.86 0.44 0.68 0.86
head(a$PPP_item_means)
#> [1] 0.48 0.50 0.44 0.52 0.60 0.50
head(a$PPP_item_mean_RTs)
#> [1] 0.46 0.50 0.44 0.62 0.50 0.58
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.66 0.82 0.54 0.50 0.78 0.52 0.46 0.36 0.70 0.38 0.34 0.86 0.26
#> [2,] NA NA 0.78 0.38 0.82 0.62 0.46 0.72 0.56 0.72 0.36 0.00 0.68 0.00
#> [3,] NA NA NA 0.84 0.82 0.90 0.76 0.92 0.42 0.98 0.92 0.38 0.58 0.44
#> [4,] NA NA NA NA 1.00 0.54 0.98 0.52 0.98 0.82 0.74 0.18 0.96 0.48
#> [5,] NA NA NA NA NA 0.88 0.54 0.50 0.64 0.94 0.64 0.26 0.22 0.70
#> [6,] NA NA NA NA NA NA 0.38 0.84 0.80 0.28 0.28 0.06 0.98 0.62
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.46 0.76 0.86 0.98 0.12 0.44 0.58 0.38 0.34 0.44 0.30 0.10
#> [2,] 0.08 0.52 0.70 0.88 0.90 0.08 0.80 0.94 0.72 0.62 0.46 0.78
#> [3,] 0.66 0.78 0.58 0.54 0.28 0.50 0.08 0.28 0.74 0.18 0.12 0.26
#> [4,] 0.76 0.98 0.86 0.80 0.62 0.92 0.32 0.76 0.84 0.26 0.72 0.52
#> [5,] 0.20 0.66 0.18 0.90 0.22 0.06 0.62 0.78 0.94 0.14 0.76 0.38
#> [6,] 0.68 0.38 0.52 0.50 0.52 0.46 0.98 1.00 0.86 0.62 0.86 0.18
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.52 0.16 0.44 0.86 0.86 0.66 0.40 0.78 0.72 0.56 0.70 0.82
#> [2,] 0.74 0.60 0.88 0.46 0.50 0.88 0.96 0.80 0.48 0.96 0.20 0.62
#> [3,] 0.58 0.00 0.72 0.18 0.40 0.90 0.76 0.92 0.88 0.60 0.78 0.56
#> [4,] 0.74 0.64 0.38 0.62 0.68 0.38 0.68 0.50 0.92 0.30 0.82 0.04
#> [5,] 0.20 0.12 0.54 0.48 0.78 0.56 0.38 0.70 0.62 0.02 0.06 0.36
#> [6,] 0.92 0.42 0.56 0.66 0.94 0.62 0.76 0.94 0.84 0.80 0.64 0.82
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.76 0.94 0.90 0.84 0.92 0.64 0.68 0.76 0.66 0.98 1.00 0.94
#> [2,] 0.68 0.68 0.20 0.24 0.48 0.92 0.60 0.34 0.72 0.98 0.78 0.42
#> [3,] 0.70 0.68 0.94 0.54 0.34 0.94 0.96 0.30 0.46 0.84 0.88 0.34
#> [4,] 0.74 0.88 0.70 0.42 0.40 0.56 0.68 0.98 0.90 0.28 0.50 0.88
#> [5,] 0.98 0.46 0.40 0.90 0.34 0.24 0.60 0.10 0.54 0.12 0.58 0.62
#> [6,] 0.82 1.00 0.38 0.74 0.86 0.70 0.68 0.72 0.40 0.94 0.74 0.74