ETAs <- ETAmat(K, J, Q_matrix)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055) # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 63 55 80 123 29
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,
RT_itempars_true,taus_true,phi_true,G_version)
output_HMDCM_RT_joint = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint
#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1903 0.16441
#> 0.1134 0.08322
#> 0.1505 0.11822
#> 0.1970 0.12669
#> 0.1585 0.09306
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.69340
#> λ1 0.34885
#> λ2 0.04409
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1644
#> 0001 0.1782
#> 0010 0.1719
#> 0011 0.2198
#> 0100 0.2147
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 147146.5
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5228
#> M2: 0.49
#> total scores: 0.6286
a <- summary(output_HMDCM_RT_joint)
a
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1903 0.16441
#> 0.1134 0.08322
#> 0.1505 0.11822
#> 0.1970 0.12669
#> 0.1585 0.09306
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.69340
#> λ1 0.34885
#> λ2 0.04409
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1644
#> 0001 0.1782
#> 0010 0.1719
#> 0011 0.2198
#> 0100 0.2147
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 147146.5
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5084
#> M2: 0.49
#> total scores: 0.6258
a$ss_EAP
#> [,1]
#> [1,] 0.1902648
#> [2,] 0.1134500
#> [3,] 0.1504925
#> [4,] 0.1969962
#> [5,] 0.1584564
#> [6,] 0.1710181
#> [7,] 0.1577528
#> [8,] 0.2121778
#> [9,] 0.1919964
#> [10,] 0.1601210
#> [11,] 0.2444938
#> [12,] 0.1830459
#> [13,] 0.1930814
#> [14,] 0.1384920
#> [15,] 0.1005799
#> [16,] 0.2426967
#> [17,] 0.1702931
#> [18,] 0.1974680
#> [19,] 0.2610128
#> [20,] 0.1751736
#> [21,] 0.1599600
#> [22,] 0.1294046
#> [23,] 0.1409712
#> [24,] 0.2216429
#> [25,] 0.1991619
#> [26,] 0.1420381
#> [27,] 0.1621668
#> [28,] 0.2168071
#> [29,] 0.1632738
#> [30,] 0.2137082
#> [31,] 0.1908028
#> [32,] 0.1146509
#> [33,] 0.1420352
#> [34,] 0.1391447
#> [35,] 0.2316326
#> [36,] 0.1548822
#> [37,] 0.1935073
#> [38,] 0.1058896
#> [39,] 0.1333153
#> [40,] 0.1563167
#> [41,] 0.1877872
#> [42,] 0.1566914
#> [43,] 0.1938008
#> [44,] 0.2142208
#> [45,] 0.1220436
#> [46,] 0.1857346
#> [47,] 0.1569584
#> [48,] 0.1927644
#> [49,] 0.1677976
#> [50,] 0.2483323
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1902648
#> [2,] 0.1134500
#> [3,] 0.1504925
#> [4,] 0.1969962
#> [5,] 0.1584564
#> [6,] 0.1710181
(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#> [,1]
#> [1,] 0.8254132
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#> [,1]
#> [1,] 0.9895209
(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#> [,1]
#> [1,] 0.728508
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#> [,1]
#> [1,] 0.7073186
AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9407143 0.9521429 0.9564286 0.9657143 0.9600000
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7971429 0.8257143 0.8428571 0.8685714 0.8514286
a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2367.07 126098.6 14779.49 2987.256 146232.4
#> D(theta_bar) 2126.19 125667.3 14706.49 2818.264 145318.3
#> DIC 2607.95 126529.8 14852.48 3156.247 147146.5
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.80 0.28 0.14 0.96 0.38
#> [2,] 0.62 0.52 0.26 0.60 0.96
#> [3,] 0.84 0.84 0.76 0.74 1.00
#> [4,] 0.86 0.62 0.48 0.64 0.80
#> [5,] 0.44 0.38 0.52 0.46 0.12
#> [6,] 0.38 0.48 0.58 0.54 0.74
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.08 0.56 0.42 0.48 0.38
#> [2,] 0.52 0.26 0.74 0.96 0.68
#> [3,] 0.14 0.18 0.98 0.36 0.34
#> [4,] 0.28 0.86 0.58 0.00 0.84
#> [5,] 0.22 0.60 0.96 0.26 0.34
#> [6,] 0.38 0.94 0.72 0.40 0.06
head(a$PPP_item_means)
#> [1] 0.58 0.48 0.34 0.58 0.52 0.50
head(a$PPP_item_mean_RTs)
#> [1] 0.68 0.40 0.92 0.44 0.66 0.62
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.66 0.72 0.28 0.50 0.98 0.36 0.42 0.22 0.62 0.72 1.00 0.96 0.52
#> [2,] NA NA 0.06 0.44 0.76 0.96 0.34 0.72 0.96 0.60 0.78 0.90 0.94 0.88
#> [3,] NA NA NA 0.68 0.60 0.10 0.26 0.80 0.38 0.22 0.02 0.40 0.56 0.34
#> [4,] NA NA NA NA 0.24 0.66 0.30 0.14 0.72 0.74 0.56 0.18 0.68 0.14
#> [5,] NA NA NA NA NA 0.58 0.50 0.66 0.58 0.40 0.46 0.82 0.40 0.54
#> [6,] NA NA NA NA NA NA 0.42 0.36 0.70 0.36 0.90 0.44 0.64 0.76
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.70 0.84 1.00 0.92 0.90 0.54 0.96 0.62 0.50 0.74 0.90 0.94
#> [2,] 0.86 0.28 0.94 0.90 1.00 0.86 0.26 0.02 0.86 0.80 0.76 0.16
#> [3,] 0.54 0.34 0.20 0.62 0.98 0.20 0.40 0.74 0.18 0.42 0.62 0.96
#> [4,] 0.42 0.68 0.34 0.52 0.98 0.56 0.24 0.38 0.66 0.18 0.44 0.48
#> [5,] 0.20 0.34 0.24 0.50 0.96 0.10 0.48 0.14 0.68 0.10 1.00 0.86
#> [6,] 0.06 0.66 0.74 0.82 0.84 0.62 0.74 0.38 0.48 0.30 0.88 0.30
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.86 0.62 0.94 0.96 0.66 0.44 0.88 0.94 0.76 0.74 0.54 0.84
#> [2,] 0.22 0.84 0.24 0.78 0.10 0.94 0.58 0.68 0.22 0.98 0.64 0.02
#> [3,] 0.80 0.76 0.48 0.12 0.66 0.90 0.62 0.52 0.76 0.26 0.62 0.46
#> [4,] 0.84 0.34 0.48 0.82 0.92 0.80 0.66 0.90 0.32 0.74 0.24 0.20
#> [5,] 0.26 0.58 0.48 0.32 0.22 0.66 0.70 0.32 0.66 0.42 0.12 0.28
#> [6,] 0.78 0.82 0.28 0.44 0.38 0.54 0.56 0.64 0.22 0.80 0.24 0.10
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.54 0.74 0.96 0.18 0.52 0.94 0.90 0.48 0.42 0.78 0.44 0.4
#> [2,] 0.30 0.74 0.28 0.48 0.12 0.98 0.60 0.10 0.04 0.74 0.30 0.5
#> [3,] 0.86 0.42 0.76 0.42 0.10 0.60 0.68 0.92 0.64 0.30 0.88 0.9
#> [4,] 0.84 0.18 0.40 0.68 0.60 0.86 0.68 0.68 1.00 0.92 0.96 0.9
#> [5,] 0.36 0.78 0.10 0.38 0.18 0.78 0.32 0.44 0.20 0.44 0.44 0.2
#> [6,] 0.60 0.74 0.16 0.18 0.02 0.70 0.48 0.00 0.02 0.14 0.32 0.3