Package 'heterocop'

Title: Semi-Parametric Estimation with Gaussian Copula
Description: A method for generating random vectors which are linked by a Gaussian copula. It also enables to estimate the correlation matrix of the Gaussian copula in order to identify independencies within the data.
Authors: Julie Cartier [aut], Florence Jaffrezic [aut], Gildas Mazo [aut], Ekaterina Tomilina [aut, cre]
Maintainer: Ekaterina Tomilina <[email protected]>
License: GPL (>= 3)
Version: 0.1.0.0
Built: 2024-12-07 06:59:11 UTC
Source: CRAN

Help Index


CopulaSim

Description

This function enables the user to simulate data from a Gaussian copula and arbitrary marginal quantile functions

Usage

CopulaSim(n, R, qdist, random = FALSE)

Arguments

n

the number of observations

R

a correlation matrix of size dxd

qdist

a vector containing the names of the marginal quantile functions as well as the number of times they are present in the dataset

random

a boolean defining whether the order of the correlation coefficients should be randomized

Value

a list containing an nxd data frame, the shuffled correlation matrix R, and the permutation leading to the new correlation matrix

Examples

M <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
CopulaSim(20,M,c(rep("qnorm(0,1)",6),rep("qexp(0.5)",4),rep("qbinom(4,0.8)",2)),random=TRUE)

cor_network_graph

Description

This function enables the user to plot the graph corresponding to the correlations of the Gaussian copula

Usage

cor_network_graph(R, TS, binary = TRUE, legend)

Arguments

R

a correlation matrix of size dxd (d is the number of variables)

TS

a threshold for the absolute values of the correlation matrix coefficients

binary

a boolean specifying whether the coefficients should be binarized, TRUE by defaut (zero if the coefficient is less than the threshold in absolute value, 1 otherwise). If FALSE, the edge width is proportional to the coefficient value.

legend

a vector containing the type of each variable used to color the vertices

Value

a graph representing the correlations between the latent Gaussian variables

Examples

R <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
data <- CopulaSim(20,R,c(rep("qnorm(0,1)",6),rep("qexp(0.5)",4),
rep("qbinom(4,0.8)",2)),random=FALSE)[[1]]
cor_network_graph(R,TS=0.3,binary=TRUE,legend=c(rep("Normal",6),
rep("Exponential",4),rep("Binomial",2)))

diag_block_matrix

Description

This function enables the user to generate a diagonal block-matrix with homogeneous blocks

Usage

diag_block_matrix(blocks, coeff)

Arguments

blocks

a vector containing the sizes of the blocks

coeff

a vector containing the coefficient corresponding to each block, the coefficients must be between 0 and 1

Value

a diagonal block-matrix containing the specified coefficients

Examples

diag_block_matrix(c(3,4,5),c(0.3,0.4,0.8))

gauss_gen

Description

This function enables the user to generate gaussian vectors with correlation matrix R

Usage

gauss_gen(R, n)

Arguments

R

a correlation matrix of size dxd

n

the number of observations

Value

a nxd data frame containing n observations of the d variables

Examples

M <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
gauss_gen(M,20)

ICGC dataset

Description

Dataset containing RNA counts, protein expression and mutations measured on breast cancer tumors.

Usage

icgc_data

Format

A dataframe of 15 variables and 250 observations containing the following:

ACACA, AKT1S1, ANLN,ANXA1,AR

RNA counts (discrete)

ACACA_P, AKT1S1_P, ANLN_P,ANXA_P,AR_P

protein expression measurements (discrete)

MU5219,MU4468,MU7870,MU4842,MU6962

5 mutations (binary)


matrix_cor_ts

Description

This function enables the user to threshold matrix coefficients

Usage

matrix_cor_ts(R, TS, binary = TRUE)

Arguments

R

a correlation matrix

TS

a threshold

binary

a boolean specifying whether the coefficients should be binarized, TRUE by defaut (zero if the coefficient is less than the threshold in absolute value, 1 otherwise)

Value

the thresholded input matrix

Examples

M <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
matrix_cor_ts(M,0.5)

matrix_gen

Description

This function enables the user to generate a sparse, nonnegative definite correlation matrix via the Cholesky decomposition

Usage

matrix_gen(d, gamma)

Arguments

d

the number of variables

gamma

an initial sparsity parameter for the lower triangular matrices in the Cholesky decomposition, must be between 0 and 1

Value

a list containing the generated correlation matrix and its final sparsity parameter (ie the proportion of zeros)

Examples

matrix_gen(15,0.81)

rho_estim

Description

This function enables the user to estimate the correlation matrix of the Gaussian copula for a given dataset

Usage

rho_estim(data, Type, parallel = FALSE)

Arguments

data

an nxd data frame containing n observations of d variables

Type

a vector containing the type of the variables, "C" for continuous and "D" for discrete

parallel

a boolean encoding whether the computations should be parallelized

Value

the dxd estimated correlation matrix of the Gaussian copula

Examples

M <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
data <- CopulaSim(20,M,c(rep("qnorm(0,1)",6),rep("qexp(0.5)",4),
rep("qbinom(4,0.8)",2)),random=FALSE)[[1]]
rho_estim(data,c(rep("C",10),rep("D",2)))