Heterogeneity & Demographic Analysis

Introduction

Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.

In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting different characteristics found in the target population), and demographic analysis combines the results.

For this example we will use the result from the assessment of a new total hip replacement previously described in vignette("d-non-homogeneous", "heemod").

Population characteristics

The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.

For this example we will use the characteristics of 100 individuals, with varying sex and age, specified in the data frame tab_indiv:

tab_indiv
## # A tibble: 100 × 2
##      age   sex
##    <dbl> <int>
##  1    59     0
##  2    50     0
##  3    53     1
##  4    54     0
##  5    91     1
##  6    58     1
##  7    66     1
##  8    64     1
##  9    41     0
## 10    55     1
## # ℹ 90 more rows
library(ggplot2)
ggplot(tab_indiv, aes(x = age)) +
  geom_histogram(binwidth = 2)

Running the analysis

res_mod, the result we obtained from run_model() in the Time-varying Markov models vignette, can be passed to update() to update the model with the new data and perform the heterogeneity analysis.

res_h <- update(res_mod, newdata = tab_indiv)
## No weights specified in update, using equal weights.
## Updating strategy 'standard'...
## Updating strategy 'np1'...

Interpreting results

The summary() method reports summary statistics for cost, effect and ICER, as well as the result from the combined model.

summary(res_h)
## An analysis re-run on 100 parameter sets.
## 
## * Unweighted analysis.
## 
## * Values distribution:
## 
##                                  Min.      1st Qu.       Median        Mean
## standard - Cost          470.23578695  619.6748473  700.2782575 714.9123509
## standard - Effect          5.05860925   24.4991251   26.7297859  25.7832368
## standard - Cost Diff.               -            -            -           -
## standard - Effect Diff.             -            -            -           -
## standard - Icer                     -            -            -           -
## np1 - Cost               599.19333183  639.5383123  662.7502398 666.8106344
## np1 - Effect               5.07524179   24.8264025   27.1045630  26.0612642
## np1 - Cost Diff.        -163.38052116 -122.7948420  -37.5280177 -48.1017165
## np1 - Effect Diff.         0.01663254    0.2086924    0.2346579   0.2780274
## np1 - Icer              -353.62679735 -327.6476693 -177.2782857 -23.8482711
##                             3rd Qu.        Max.
## standard - Cost         819.1977737  875.943516
## standard - Effect        29.0596426   31.529255
## standard - Cost Diff.             -           -
## standard - Effect Diff.           -           -
## standard - Icer                   -           -
## np1 - Cost              696.4029317  712.562995
## np1 - Effect             29.2683350   31.765192
## np1 - Cost Diff.         19.8634650  128.957545
## np1 - Effect Diff.        0.3747771    0.462014
## np1 - Icer               91.5391332 7753.326597
## 
## * Combined result:
## 
## 2 strategies run for 60 cycles.
## 
## Initial state counts:
## 
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
## 
## Counting method: 'beginning'.
## 
## Values:
## 
##           utility     cost
## standard 25783.24 714912.4
## np1      26061.26 666810.6
## 
## Efficiency frontier:
## 
## np1
## 
## Differences:
## 
##     Cost Diff. Effect Diff.      ICER     Ref.
## np1  -48.10172    0.2780274 -173.0107 standard

The variation of cost or effect can then be plotted.

plot(res_h, result = "effect", binwidth = 5)

plot(res_h, result = "cost", binwidth = 50)

plot(res_h, result = "icer", type = "difference",
     binwidth = 500)

plot(res_h, result = "effect", type = "difference",
     binwidth = .1)

plot(res_h, result = "cost", type = "difference",
     binwidth = 30)

The results from the combined model can be plotted similarly to the results from run_model().

plot(res_h, type = "counts")

Weighted results

Weights can be used in the analysis by including an optional column .weights in the new data to specify the respective weights of each strata in the target population.

tab_indiv_w
## # A tibble: 100 × 3
##      age   sex .weights
##    <dbl> <int>    <dbl>
##  1    58     0    0.373
##  2    69     0    0.980
##  3    69     0    0.101
##  4    51     1    0.157
##  5    52     1    0.880
##  6    55     0    0.574
##  7    49     1    0.928
##  8    59     1    0.364
##  9    64     1    0.549
## 10    61     0    0.995
## # ℹ 90 more rows
res_w <- update(res_mod, newdata = tab_indiv_w)
## Updating strategy 'standard'...
## Updating strategy 'np1'...
res_w
## An analysis re-run on 100 parameter sets.
## 
## * Weights distribution:
## 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.004403 0.253393 0.482372 0.515749 0.807083 0.998088 
## 
## Total weight: 51.57485
## 
## * Values distribution:
## 
##                                  Min.      1st Qu.      Median        Mean
## standard - Cost          470.23578695  592.3687128 621.5892423 684.2078516
## standard - Effect          5.05860925   23.8944033  27.0352021  26.0413267
## standard - Cost Diff.               -            -           -           -
## standard - Effect Diff.             -            -           -           -
## standard - Icer                     -            -           -           -
## np1 - Cost               599.19333183  632.1186231 640.0588497 658.1308286
## np1 - Effect               5.07524179   24.1295078  27.3576776  26.2959986
## np1 - Cost Diff.        -163.38052116  -99.5031416  18.4696074 -26.0770230
## np1 - Effect Diff.         0.01663254    0.1756522   0.2116899   0.2546719
## np1 - Icer              -353.62679735 -304.0330575  83.6463073  18.0332377
##                             3rd Qu.        Max.
## standard - Cost         786.6690449  875.943516
## standard - Effect        29.0596426   31.299481
## standard - Cost Diff.             -           -
## standard - Effect Diff.           -           -
## standard - Icer                   -           -
## np1 - Cost              687.1659033  712.562995
## np1 - Effect             29.2683350   31.532860
## np1 - Cost Diff.         39.7499103  128.957545
## np1 - Effect Diff.        0.3272774    0.462014
## np1 - Icer              226.2989208 7753.326597
## 
## * Combined result:
## 
## 2 strategies run for 60 cycles.
## 
## Initial state counts:
## 
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
## 
## Counting method: 'beginning'.
## 
## Values:
## 
##           utility     cost
## standard 26041.33 684207.9
## np1      26296.00 658130.8
## 
## Efficiency frontier:
## 
## np1
## 
## Differences:
## 
##     Cost Diff. Effect Diff.      ICER     Ref.
## np1  -26.07702    0.2546719 -102.3946 standard

Parallel computing

Updating can be significantly sped up by using parallel computing. This can be done in the following way:

  • Define a cluster with the use_cluster() functions (i.e. use_cluster(4) to use 4 cores).
  • Run the analysis as usual.
  • To stop using parallel computing use the close_cluster() function.

Results may vary depending on the machine, but we found speed gains to be quite limited beyond 4 cores.