Title: | Bayesian Change Point Detection for High-Dimensional Data |
---|---|
Description: | Functions implementing change point detection methods using the maximum pairwise Bayes factor approach. Additionally, the package includes tools for generating simulated datasets for comparing and evaluating change point detection techniques. |
Authors: | JaeHoon Kim [aut, cre], KyoungJae Lee [aut, ths] |
Maintainer: | JaeHoon Kim <[email protected]> |
License: | GPL-3 |
Version: | 1.0.0 |
Built: | 2024-12-25 07:06:31 UTC |
Source: | CRAN |
This function generates simulated datasets that include change points in the covariance matrix for change point detection. Users can specify various parameters to control the dataset size, dimension, size of signal, and change point locations. The generated datasets include datasets with and without change points, allowing for comparisons in simulation studies.
generate_cov_datasets( n, p, signal_size, sparse = TRUE, single_point = round(n/2), multiple_points = c(round(n/4), round(2 * n/4), round(3 * n/4)), type = c(1, 2, 3, 4, 5) )
generate_cov_datasets( n, p, signal_size, sparse = TRUE, single_point = round(n/2), multiple_points = c(round(n/4), round(2 * n/4), round(3 * n/4)), type = c(1, 2, 3, 4, 5) )
n |
Number of observations to generate. |
p |
Number of features or dimensions for each observation. |
signal_size |
Magnitude of the signal applied at change points. |
sparse |
Determines if a sparse covariance structure is used (default is TRUE). |
single_point |
Location of a single change point in the dataset (default is n/2). |
multiple_points |
Locations of multiple change points within the dataset (default is quartiles of n). |
type |
Integer vector specifying the type of dataset to return. Options are as follows: - 1: No change points (H0 data) - 2: Single change point with rare signals - 3: Single change point with many signals - 4: Multiple change points with rare signals - 5: Multiple change points with many signals |
A 3D array containing the generated datasets. Each slice represents a different dataset type.
# Generate a default dataset datasets <- generate_cov_datasets(100, 50, 1) null_data <- datasets[,,1] single_many_data <- datasets[,,3]
# Generate a default dataset datasets <- generate_cov_datasets(100, 50, 1) null_data <- datasets[,,1] single_many_data <- datasets[,,3]
This function generates simulated datasets that include change points in the mean vector for change point detection. Users can specify various parameters to control the dataset size, dimension, size of signal, and change point locations. The generated datasets include datasets with and without change points, allowing for comparisons in simulation studies.
generate_mean_datasets( n = 500, p = 200, signal_size = 1, pre_proportion = 0.4, pre_value = 0.3, single_point = round(n/2), multiple_points = c(round(n/4), round(2 * n/4), round(3 * n/4)), type = c(1, 2, 3, 4, 5) )
generate_mean_datasets( n = 500, p = 200, signal_size = 1, pre_proportion = 0.4, pre_value = 0.3, single_point = round(n/2), multiple_points = c(round(n/4), round(2 * n/4), round(3 * n/4)), type = c(1, 2, 3, 4, 5) )
n |
Number of observations to generate. |
p |
Number of features or dimensions for each observation. |
signal_size |
Magnitude of the signal to apply at change points. |
pre_proportion |
Proportion of the covariance matrix's off-diagonal elements to be set to a pre-defined value (default is 0.4). |
pre_value |
Value assigned to selected off-diagonal elements of the covariance matrix (default is 0.3). |
single_point |
Location of a single change point in the dataset (default is n/2). |
multiple_points |
Locations of multiple change points within the dataset (default is quartiles of n). |
type |
Integer specifying the type of dataset to return. Options are as follows: - 1: No change points (H0 data) - 2: Single change point with rare signals - 3: Single change point with many signals - 4: Multiple change points with rare signals - 5: Multiple change points with many signals The default options are 1, 2, 3, 4, and 5. |
A 3D array containing the generated datasets. Each slice represents a different dataset type.
# Generate a default dataset datasets <- generate_mean_datasets(100, 50, 1) null_data <- datasets[,,1] single_many_data <- datasets[,,3]
# Generate a default dataset datasets <- generate_mean_datasets(100, 50, 1) null_data <- datasets[,,1] single_many_data <- datasets[,,3]
This function implements a majority rule-based post-processing approach to identify common change points across multiple window sizes from mxPBF results.
majority_rule_mxPBF(res_mxPBF)
majority_rule_mxPBF(res_mxPBF)
res_mxPBF |
A list of results from |
A vector of final detected change points that are common across multiple windows based on majority rule.
n <- 500 p <- 200 signal_size <- 1 pre_value <- 0.3 pre_proportion <- 0.4 given_data <- generate_mean_datasets(n, p, signal_size, pre_proportion, pre_value, single_point = 250, multiple_points = c(150,300,350), type = 5) nws <- c(25, 60, 100) alps <- seq(1,10,0.05) res_mxPBF <- mxPBF_mean(given_data, nws, alps) majority_rule_mxPBF(res_mxPBF)
n <- 500 p <- 200 signal_size <- 1 pre_value <- 0.3 pre_proportion <- 0.4 given_data <- generate_mean_datasets(n, p, signal_size, pre_proportion, pre_value, single_point = 250, multiple_points = c(150,300,350), type = 5) nws <- c(25, 60, 100) alps <- seq(1,10,0.05) res_mxPBF <- mxPBF_mean(given_data, nws, alps) majority_rule_mxPBF(res_mxPBF)
Generates random numbers from a multivariate normal distribution with specified mean and covariance matrix using a C++ implementation.
mvrnorm_cpp(n = 1, mu, Sigma)
mvrnorm_cpp(n = 1, mu, Sigma)
n |
The number of random samples to generate. Defaults to 1. |
mu |
The mean vector of the distribution. |
Sigma |
The covariance matrix of the distribution. |
A numeric matrix where each row is a random sample from the multivariate normal distribution.
# Example usage mu <- c(0, 0) Sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2) mvrnorm_cpp(5, mu, Sigma)
# Example usage mu <- c(0, 0) Sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2) mvrnorm_cpp(5, mu, Sigma)
This function detects change points in both mean and covariance structure of multivariate Gaussian data using the Maximum Pairwise Bayes Factor (mxPBF). The function selects alpha that controls the empirical False Positive Rate (FPR), as suggested in the paper. The function conducts a multiscale approach using the function.
mxPBF_combined( given_data, nws, alps, a0 = 0.01, b0 = 0.01, FPR_want = 0.05, n_sample = 300, n_cores = 1 )
mxPBF_combined( given_data, nws, alps, a0 = 0.01, b0 = 0.01, FPR_want = 0.05, n_sample = 300, n_cores = 1 )
given_data |
An |
nws |
A set of window sizes for change point detection. |
alps |
A grid of alpha values used in the empirical False Positive Rate (FPR) method. |
a0 |
A hyperparameter |
b0 |
A hyperparameter |
FPR_want |
Desired False Positive Rate for selecting alpha, used in the empirical FPR method (default: 0.05). |
n_sample |
Number of simulated samples to estimate the empirical FPR, used in the empirical FPR method (default: 300). |
n_cores |
Number of threads for parallel execution via OpenMP (default: 1). |
A list provided. Each element in the list contains:
A list result from the mxPBF_cov()
function.
A list result from the mxPBF_mean()
function applied to each segmented data.
Locations of detected change points identified by mxPBF_cov()
function.
Locations of detected change points identified by mxPBF_mean()
function.
nws <- c(25, 60, 100) alps <- seq(1,10,0.05) ## H0 data mu1 <- rep(0,10) sigma1 <- diag(10) X <- mvrnorm_cpp(500, mu1, sigma1) res1 <- mxPBF_combined(X, nws, alps) ## H1 data mu2 <- rep(1,10) sigma2 <- diag(10) for (i in 1:10) { for (j in i:10) { if (i == j) { next } else { cov_value <- rnorm(1, 1, 1) sigma2[i, j] <- cov_value sigma2[j, i] <- cov_value } } } sigma2 <- sigma2 + (abs(min(eigen(sigma2)$value))+0.1)*diag(10) # Make it nonsingular Y1 <- mvrnorm_cpp(150, mu1, sigma1) Y2 <- mvrnorm_cpp(150, mu2, sigma1) Y3 <- mvrnorm_cpp(200, mu2, sigma2) Y <- rbind(Y1, Y2, Y3) res2 <- mxPBF_combined(Y, nws, alps)
nws <- c(25, 60, 100) alps <- seq(1,10,0.05) ## H0 data mu1 <- rep(0,10) sigma1 <- diag(10) X <- mvrnorm_cpp(500, mu1, sigma1) res1 <- mxPBF_combined(X, nws, alps) ## H1 data mu2 <- rep(1,10) sigma2 <- diag(10) for (i in 1:10) { for (j in i:10) { if (i == j) { next } else { cov_value <- rnorm(1, 1, 1) sigma2[i, j] <- cov_value sigma2[j, i] <- cov_value } } } sigma2 <- sigma2 + (abs(min(eigen(sigma2)$value))+0.1)*diag(10) # Make it nonsingular Y1 <- mvrnorm_cpp(150, mu1, sigma1) Y2 <- mvrnorm_cpp(150, mu2, sigma1) Y3 <- mvrnorm_cpp(200, mu2, sigma2) Y <- rbind(Y1, Y2, Y3) res2 <- mxPBF_combined(Y, nws, alps)
This function detects change points in the covariance structure of multivariate Gaussian data using the Maximum Pairwise Bayes Factor (mxPBF).
The function selects alpha that controls the empirical False Positive Rate (FPR), as suggested in the paper.
One can conduct a multiscale approach using the function majority_rule_mxPBF()
.
mxPBF_cov( given_data, nws, alps, a0 = 0.01, b0 = 0.01, FPR_want = 0.05, n_sample = 300, n_cores = 1 )
mxPBF_cov( given_data, nws, alps, a0 = 0.01, b0 = 0.01, FPR_want = 0.05, n_sample = 300, n_cores = 1 )
given_data |
An |
nws |
A set of window sizes for change point detection. |
alps |
A grid of alpha values used in the empirical False Positive Rate (FPR) method. |
a0 |
A hyperparameter |
b0 |
A hyperparameter |
FPR_want |
Desired False Positive Rate for selecting alpha, used in the empirical FPR method (default: 0.05). |
n_sample |
Number of simulated samples to estimate the empirical FPR, used in the empirical FPR method (default: 300). |
n_cores |
Number of threads for parallel execution via OpenMP (default: 1). |
A list of length equal to the number of window sizes provided. Each element in the list contains:
Locations of detected change points.
Vector of calculated Bayes Factors for each middle points.
Optimal alpha value selected based on the method that controls the empirical FPR.
Window size used for change point detection.
nws <- c(25, 60, 100) alps <- seq(1,10,0.05) ## H0 data mu <- rep(0,10) sigma1 <- diag(10) X <- mvrnorm_cpp(500, mu, sigma1) res1 <- mxPBF_cov(X, nws, alps) ## H1 data mu <- rep(0,10) sigma2 <- diag(10) for (i in 1:10) { for (j in i:10) { if (i == j) { next } else { cov_value <- rnorm(1, 1, 1) sigma2[i, j] <- cov_value sigma2[j, i] <- cov_value } } } sigma2 <- sigma2 + (abs(min(eigen(sigma2)$value))+0.1)*diag(10) # Make it nonsingular Y1 <- mvrnorm_cpp(250, mu, sigma1) Y2 <- mvrnorm_cpp(250, mu, sigma2) Y <- rbind(Y1, Y2) res2 <- mxPBF_cov(Y, nws, alps)
nws <- c(25, 60, 100) alps <- seq(1,10,0.05) ## H0 data mu <- rep(0,10) sigma1 <- diag(10) X <- mvrnorm_cpp(500, mu, sigma1) res1 <- mxPBF_cov(X, nws, alps) ## H1 data mu <- rep(0,10) sigma2 <- diag(10) for (i in 1:10) { for (j in i:10) { if (i == j) { next } else { cov_value <- rnorm(1, 1, 1) sigma2[i, j] <- cov_value sigma2[j, i] <- cov_value } } } sigma2 <- sigma2 + (abs(min(eigen(sigma2)$value))+0.1)*diag(10) # Make it nonsingular Y1 <- mvrnorm_cpp(250, mu, sigma1) Y2 <- mvrnorm_cpp(250, mu, sigma2) Y <- rbind(Y1, Y2) res2 <- mxPBF_cov(Y, nws, alps)
This function detects change points in the mean structure of multivariate Gaussian data using the Maximum Pairwise Bayes Factor (mxPBF).
The function selects alpha that controls the empirical False Positive Rate (FPR), as suggested in the paper.
One can conduct a multiscale approach using the function majority_rule_mxPBF()
.
mxPBF_mean(given_data, nws, alps, FPR_want = 0.05, n_sample = 300, n_cores = 1)
mxPBF_mean(given_data, nws, alps, FPR_want = 0.05, n_sample = 300, n_cores = 1)
given_data |
An |
nws |
A set of window sizes for change point detection. |
alps |
A grid of alpha values used in the empirical False Positive Rate (FPR) method. |
FPR_want |
Desired False Positive Rate for selecting alpha, used in the empirical FPR method (default: 0.05). |
n_sample |
Number of simulated samples to estimate the empirical FPR, used in the empirical FPR method (default: 300). |
n_cores |
Number of threads for parallel execution via OpenMP (default: 1). |
A list of length equal to the number of window sizes provided. Each element in the list contains:
Locations of detected change points.
Vector of calculated Bayes Factors for each middle points.
Optimal alpha value selected based on the method that controls the empirical FPR.
Window size used for change point detection.
nws <- c(25, 60, 100) alps <- seq(1,10,0.05) ## H0 data mu1 <- rep(0,10) sigma <- diag(10) X <- mvrnorm_cpp(500, mu1, sigma) res1 <- mxPBF_mean(X, nws, alps) ## H1 data mu2 <- rep(1,10) sigma <- diag(10) Y <- rbind(mvrnorm_cpp(250,mu1,sigma), mvrnorm_cpp(250,mu2,sigma)) res2 <- mxPBF_mean(Y, nws, alps)
nws <- c(25, 60, 100) alps <- seq(1,10,0.05) ## H0 data mu1 <- rep(0,10) sigma <- diag(10) X <- mvrnorm_cpp(500, mu1, sigma) res1 <- mxPBF_mean(X, nws, alps) ## H1 data mu2 <- rep(1,10) sigma <- diag(10) Y <- rbind(mvrnorm_cpp(250,mu1,sigma), mvrnorm_cpp(250,mu2,sigma)) res2 <- mxPBF_mean(Y, nws, alps)