Title: | Hierarchical Bayesian Species Distribution Models |
---|---|
Description: | User-friendly and fast set of functions for estimating parameters of hierarchical Bayesian species distribution models (Latimer and others 2006 <doi:10.1890/04-0609>). Such models allow interpreting the observations (occurrence and abundance of a species) as a result of several hierarchical processes including ecological processes (habitat suitability, spatial dependence and anthropogenic disturbance) and observation processes (species detectability). Hierarchical species distribution models are essential for accurately characterizing the environmental response of species, predicting their probability of occurrence, and assessing uncertainty in the model results. |
Authors: | Ghislain Vieilledent [aut, cre] , Matthieu Autier [ctb], Alan E. Gelfand [ctb], Jérôme Guélat [ctb], Marc Kéry [ctb], Andrew M. Latimer [ctb], Cory Merow [ctb], Frédéric Mortier [ctb], John A. Silander Jr. [ctb], Adam M. Wilson [ctb], Shanshan Wu [ctb], CIRAD [cph, fnd] |
Maintainer: | Ghislain Vieilledent <[email protected]> |
License: | GPL-3 |
Version: | 1.4.4 |
Built: | 2024-12-24 06:43:52 UTC |
Source: | CRAN |
hSDM
is an R package for estimating parameters of
hierarchical Bayesian species distribution models. Such models allow
interpreting the observations (occurrence and abundance of a species)
as a result of several hierarchical processes including ecological
processes (habitat suitability, spatial dependence and anthropogenic
disturbance) and observation processes (species
detectability). Hierarchical species distribution models are essential
for accurately characterizing the environmental response of species,
predicting their probability of occurrence, and assessing uncertainty
in the model results.
Package: | hSDM |
Type: | Package |
Version: | 1.4.2 |
Date: | 2019-05-13 |
License: | GPL-3 |
LazyLoad: | yes |
Ghislain Vieilledent <[email protected]> |
Matthieu Autier <[email protected]> |
Alan E. Gelfand <[email protected]> |
Jérôme Guélat <[email protected]> |
Marc Kéry <[email protected]> |
Andrew M. Latimer <[email protected]> |
Cory Merow <[email protected]> |
Frédéric Mortier <[email protected]> |
John A. Silander Jr. <[email protected]> |
Adam M. Wilson <[email protected]> |
Shanshan Wu <[email protected]> |
Data frame with virtual altitudinal data. The data frame is used in the examples of the hSDM package vignette to derive an altitude raster determining species habitat suitability.
altitude
is a data frame with 2500 observations (50 x 50 cells) and 3 variables:
x
coordinates of the center of the cell on the x axis
y
coordinates of the center of the cell on the y axis
altitude
altitude (m)
Data include environmental variables for 36909 one minute by one minute grid cells on the whole South Africa's Cap Floristic Region.
cfr.env
is a data frame with 36909 observations (cells) on the
following six environmental variables.
lon
longitude
lat
latitude
min07
minimum temperature of the coldest month (July)
smdwin
winter soil moisture days
fert3
moderately high fertility (percent of grid cell)
ph1
acidic soil (percent of grid cell)
text1
fine soil texture (percent of grid cell)
text2
moderately fine soil texture (percent of grid cell)
Cory Merow's personal data
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Repeated count data for the Willow tit (Poecile montanus, a pesserine bird) in Switzerland on the period 1999-2003. Data come from the Swiss national breeding bird survey MHB (Monitoring Haüfige Brutvögel).
data.Kery2010
is a data frame with 264 observations (1 km^2 quadrats) and the
following 10 variables.
coordx
quadrat x coordinate
coordy
quadrat y coordinate
elevation
mean quadrat elevation (m)
forest
quadrat forest cover (in %)
count1
count for survey 1
count2
count for survey 2
count3
count for survey 3
juldate1
Julian date of survey 1
juldate2
Julian date of survey 2
juldate3
Julian date of survey 3
Kéry and Royle, 2010, Journal of Animal Ecology, 79, 453-461.
Kéry, M. and Andrew Royle, J. 2010. Hierarchical modelling and estimation of abundance and population trends in metapopulation designs. Journal of Animal Ecology, 79, 453-461.
Data come from a small region including 476 one minute by
one minute grid cells. This region is a small corner of South
Africa's Cape Floristic Region, and includes very high plant species
diversity and a World Biosphere Reserve. The data frame can be used as an example
for several functions in the hSDM
package.
datacells.Latimer2006
is a data frame with 476 observations (cells) on the following 9 variables.
y
the number of times the species was observed to be present in each cell
n
the number of visits or sample locations in each cell (which can be zero)
rough
elevational range or "roughness"
julmint
July minimum temperature
pptcv
interannual variation in precipitation
smdsum
summer soil moisture days
evi
enhanced vegetation or "greenness" index
ph1
percent acidic soil
num
number of neighbors of each cell, this is a sparse representation of the adjacency matrix for the subregion.
Latimer et al. (2006) Ecological Applications, Appendix B
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Counts of the number of frogs in ponds of the Canton Aargau, Switzerland.
A data frame with 481 observations on the following 10 variables.
count1
number of counted frogs during the first visit
count2
number of counted frogs uring the second visit
elevation
elevation, meters above sea level
year
year
fish
presence of fish (1 = present, 0 = absent)
waterarea
area of the water body in square meters
vegetation
indicator of vegetation (1 = vegetation present, 0 = no vegetation present)
pondid
name of the pond, corresponds to observation id
x
x coordinate
y
y coordinate
The amphibian monitoring program started in 1999 and is mainly aimed at surveying population trends of endangered amphibian species. Every year, about 30 water bodies in two or three randomly selected priority areas (out of ten priority areas of high amphibian diversity) are surveyed. Additionally, a random selection of water bodies that potentially are suitable for one of the endangered amphibian species but that do not belong to the priority areas were surveyed. Each water body is surveyed by single trained volunteer during two nocturnal visits per year. Volunteers recorded anurans by walking along the water's edge with precise rules for the duration of a survey taking account of the size of the surveyed water body and noting visual encounters and calls. As fare as possible, encountered individuals of the Pelophylax-complex were identified as Marsh Frog (Pelophylax ridibundus), Pool Frog (P. lessonaea) or hybrids (P. esculentus) based on morphological characteristics or based on their calls. In the given data set, however, these three taxa are lumped together.
The data is provided by Isabelle Floess, Landschaft und Gewaesser, Kanton Aargau.
Schmidt, B. R., 2005: Monitoring the distribution of pond-breeding amphibians, when species are detected imperfectly. - Aquatic conservation: marine and freshwater ecosystems 15: 681-692.
Tanadini, L. G.; Schmidt, B. R., 2011: Population size influences amphibian detection probability: implications for biodiversity monitoring programs. - Plos One 6: e28244.
data(frogs)
data(frogs)
The hSDM.binomial
function performs a Binomial
logistic regression in a Bayesian framework. The function calls
a Gibbs sampler written in C code which uses an adaptive Metropolis
algorithm to estimate the conditional posterior distribution of
model's parameters.
hSDM.binomial(presences, trials, suitability, data, suitability.pred = NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, mubeta = 0, Vbeta = 1e+06, seed = 1234, verbose = 1, save.p = 0)
hSDM.binomial(presences, trials, suitability, data, suitability.pred = NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, mubeta = 0, Vbeta = 1e+06, seed = 1234, verbose = 1, save.p = 0)
presences |
A vector indicating the number of successes (or presences) for each observation. |
trials |
A vector indicating the number of trials for each
observation. |
suitability |
A one-sided formula of the form '~x1+...+xp' with p terms specifying the explicative variables for the suitability process of the model. |
data |
A data frame containing the model's explicative variables. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for beta parameters of the
suitability process. If |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
seed |
The seed for the random number generator. Default to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
We model an ecological process where the presence or absence of the species is explained by habitat suitability.
Ecological process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
theta.pred |
If |
theta.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
## Not run: #============================================== # hSDM.binomial() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation #= Number of sites nsite <- 200 #= Set seed for repeatability seed <- 1234 #= Number of visits associated to each site set.seed(seed) visits<- rpois(nsite,3) visits[visits==0] <- 1 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) logit.theta <- X %*% beta.target theta <- inv.logit(logit.theta) set.seed(seed) Y <- rbinom(nsite,visits,theta) #= Data-sets data.obs <- data.frame(Y,visits,x1,x2) #================================== #== Site-occupancy model mod.hSDM.binomial <- hSDM.binomial(presences=data.obs$Y, trials=data.obs$visits, suitability=~x1+x2, data=data.obs, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=1, beta.start=0, mubeta=0, Vbeta=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.binomial$mcmc) pdf(file="Posteriors_hSDM.binomial.pdf") plot(mod.hSDM.binomial$mcmc) dev.off() #== glm resolution to compare mod.glm <- glm(cbind(Y,visits-Y)~x1+x2,family="binomial",data=data.obs) summary(mod.glm) #= Predictions summary(mod.hSDM.binomial$theta.latent) summary(mod.hSDM.binomial$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.binomial$theta.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.binomial() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation #= Number of sites nsite <- 200 #= Set seed for repeatability seed <- 1234 #= Number of visits associated to each site set.seed(seed) visits<- rpois(nsite,3) visits[visits==0] <- 1 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) logit.theta <- X %*% beta.target theta <- inv.logit(logit.theta) set.seed(seed) Y <- rbinom(nsite,visits,theta) #= Data-sets data.obs <- data.frame(Y,visits,x1,x2) #================================== #== Site-occupancy model mod.hSDM.binomial <- hSDM.binomial(presences=data.obs$Y, trials=data.obs$visits, suitability=~x1+x2, data=data.obs, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=1, beta.start=0, mubeta=0, Vbeta=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.binomial$mcmc) pdf(file="Posteriors_hSDM.binomial.pdf") plot(mod.hSDM.binomial$mcmc) dev.off() #== glm resolution to compare mod.glm <- glm(cbind(Y,visits-Y)~x1+x2,family="binomial",data=data.obs) summary(mod.glm) #= Predictions summary(mod.hSDM.binomial$theta.latent) summary(mod.hSDM.binomial$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.binomial$theta.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.binomial.iCAR
function performs a Binomial
logistic regression model in a hierarchical Bayesian framework. The
suitability process includes a spatial correlation process. The
spatial correlation is modelled using an intrinsic CAR model. The
hSDM.binomial.iCAR
function calls a Gibbs sampler written in C
code which uses an adaptive Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model's
parameters.
hSDM.binomial.iCAR(presences, trials, suitability, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.binomial.iCAR(presences, trials, suitability, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
presences |
A vector indicating the number of successes (or presences) for each observation. |
trials |
A vector indicating the number of trials for each
observation. |
suitability |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
We model an ecological process where the presence or absence of the species is explained by habitat suitability. The ecological process includes an intrinsic conditional autoregressive (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
theta.pred |
If |
theta.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Lichstein, J. W.; Simons, T. R.; Shriner, S. A. & Franzreb, K. E. (2002) Spatial autocorrelation and autoregressive models in ecology Ecological Monographs, 72, 445-463.
Diez, J. M. & Pulliam, H. R. (2007) Hierarchical analysis of species distributions and abundance across environmental gradients Ecology, 88, 3144-3152.
## Not run: #============================================== # hSDM.binomial.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 1234 #= Landscape xLand <- 30 yLand <- 30 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 250 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) logit.theta <- X %*% beta.target + rho[cells] theta <- inv.logit(logit.theta) set.seed(seed) Y <- rbinom(nsite,visits,theta) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Data-sets data.obs <- data.frame(Y,visits,x1,x2,cell=cells) #================================== #== Site-occupancy model Start <- Sys.time() # Start the clock mod.hSDM.binomial.iCAR <- hSDM.binomial.iCAR(presences=data.obs$Y, trials=data.obs$visits, suitability=~x1+x2, spatial.entity=data.obs$cell, data=data.obs, n.neighbors=n.neighbors, neighbors=adj, suitability.pred=NULL, spatial.entity.pred=NULL, burnin=5000, mcmc=5000, thin=5, beta.start=0, Vrho.start=1, mubeta=0, Vbeta=1.0E6, priorVrho="1/Gamma", shape=0.5, rate=0.0005, seed=1234, verbose=1, save.rho=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.binomial.iCAR$mcmc) pdf("Posteriors_hSDM.binomial.iCAR.pdf") plot(mod.hSDM.binomial.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.binomial.iCAR$theta.latent) summary(mod.hSDM.binomial.iCAR$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.binomial.iCAR$theta.pred) abline(a=0,b=1,col="red") dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.binomial.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.binomial.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.binomial.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 1234 #= Landscape xLand <- 30 yLand <- 30 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 250 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) logit.theta <- X %*% beta.target + rho[cells] theta <- inv.logit(logit.theta) set.seed(seed) Y <- rbinom(nsite,visits,theta) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Data-sets data.obs <- data.frame(Y,visits,x1,x2,cell=cells) #================================== #== Site-occupancy model Start <- Sys.time() # Start the clock mod.hSDM.binomial.iCAR <- hSDM.binomial.iCAR(presences=data.obs$Y, trials=data.obs$visits, suitability=~x1+x2, spatial.entity=data.obs$cell, data=data.obs, n.neighbors=n.neighbors, neighbors=adj, suitability.pred=NULL, spatial.entity.pred=NULL, burnin=5000, mcmc=5000, thin=5, beta.start=0, Vrho.start=1, mubeta=0, Vbeta=1.0E6, priorVrho="1/Gamma", shape=0.5, rate=0.0005, seed=1234, verbose=1, save.rho=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.binomial.iCAR$mcmc) pdf("Posteriors_hSDM.binomial.iCAR.pdf") plot(mod.hSDM.binomial.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.binomial.iCAR$theta.latent) summary(mod.hSDM.binomial.iCAR$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.binomial.iCAR$theta.pred) abline(a=0,b=1,col="red") dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.binomial.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.binomial.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.Nmixture
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a suitability
process (refering to environmental suitability explaining abundance)
and a
observability process
(refering to various ecological and methodological issues explaining
species detection). The
hSDM.Nmixture
function calls a Gibbs
sampler written in C code which uses an adaptive Metropolis algorithm
to estimate the conditional posterior distribution of hierarchical
model's parameters.
hSDM.Nmixture(# Observations counts, observability, site, data.observability, # Habitat suitability, data.suitability, # Predictions suitability.pred = NULL, # Chains burnin = 5000, mcmc = 10000, thin = 10, # Starting values beta.start, gamma.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, # Various seed = 1234, verbose = 1, save.p = 0, save.N = 0)
hSDM.Nmixture(# Observations counts, observability, site, data.observability, # Habitat suitability, data.suitability, # Predictions suitability.pred = NULL, # Chains burnin = 5000, mcmc = 10000, thin = 10, # Starting values beta.start, gamma.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, # Various seed = 1234, verbose = 1, save.p = 0, save.N = 0)
counts |
A vector indicating the count (or abundance) for each observation. |
observability |
A one-sided formula of the form
|
site |
A vector indicating the site identifier (from one to the total number of sites) for each observation. Several observations can occur at one site. A site can be a raster cell for example. |
data.observability |
A data frame containing the model's variables for the observability process. |
suitability |
A one-sided formula of the form
|
data.suitability |
A data frame containing the model's variables for the suitability process. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
save.N |
A switch (0,1) which determines whether or not the
sampled values for the latent count variable N for each observed
cells are saved. Default is 0: the mean (rounded to the closest
integer) is computed and returned in the |
The model integrates two processes, an ecological process associated to the abundance of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one.
Ecological process:
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
lambda.pred |
If |
N.pred |
If |
lambda.latent |
Predictive posterior mean of the abundance associated to the suitability process for each observation. |
delta.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
## Not run: #============================================== # hSDM.Nmixture() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation # Number of observation sites nsite <- 200 #= Set seed for repeatability seed <- 4321 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) # Target parameters log.lambda <- X %*% beta.target lambda <- exp(log.lambda) set.seed(seed) N <- rpois(nsite,lambda) #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) # Target parameters logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,N[sites],delta) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.Nmixture <- hSDM.Nmixture(# Observations counts=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Predictions suitability.pred=NULL, # Chains burnin=5000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, # Various seed=1234, verbose=1, save.p=0, save.N=1) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.Nmixture$mcmc) pdf(file="Posteriors_hSDM.Nmixture.pdf") plot(mod.hSDM.Nmixture$mcmc) dev.off() #= Predictions summary(mod.hSDM.Nmixture$lambda.latent) summary(mod.hSDM.Nmixture$delta.latent) summary(mod.hSDM.Nmixture$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.Nmixture$lambda.pred) abline(a=0,b=1,col="red") dev.off() #= MCMC for latent variable N pdf(file="MCMC_N.pdf") plot(mod.hSDM.Nmixture$N.pred) dev.off() #= Check that Ns are correctly estimated M <- as.matrix(mod.hSDM.Nmixture$N.pred) N.est <- apply(M,2,mean) Y.by.site <- tapply(data.obs$Y,data.obs$site,mean) # Mean by site pdf(file="Check_N.pdf",width=10,height=5) par(mfrow=c(1,2)) plot(Y.by.site, N.est) ## More individuals are expected (N > Y) due to detection process abline(a=0,b=1,col="red") plot(N, N.est) ## N are well estimated abline(a=0,b=1,col="red") cor(N, N.est) ## Very close to 1 dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.Nmixture() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation # Number of observation sites nsite <- 200 #= Set seed for repeatability seed <- 4321 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) # Target parameters log.lambda <- X %*% beta.target lambda <- exp(log.lambda) set.seed(seed) N <- rpois(nsite,lambda) #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) # Target parameters logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,N[sites],delta) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.Nmixture <- hSDM.Nmixture(# Observations counts=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Predictions suitability.pred=NULL, # Chains burnin=5000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, # Various seed=1234, verbose=1, save.p=0, save.N=1) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.Nmixture$mcmc) pdf(file="Posteriors_hSDM.Nmixture.pdf") plot(mod.hSDM.Nmixture$mcmc) dev.off() #= Predictions summary(mod.hSDM.Nmixture$lambda.latent) summary(mod.hSDM.Nmixture$delta.latent) summary(mod.hSDM.Nmixture$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.Nmixture$lambda.pred) abline(a=0,b=1,col="red") dev.off() #= MCMC for latent variable N pdf(file="MCMC_N.pdf") plot(mod.hSDM.Nmixture$N.pred) dev.off() #= Check that Ns are correctly estimated M <- as.matrix(mod.hSDM.Nmixture$N.pred) N.est <- apply(M,2,mean) Y.by.site <- tapply(data.obs$Y,data.obs$site,mean) # Mean by site pdf(file="Check_N.pdf",width=10,height=5) par(mfrow=c(1,2)) plot(Y.by.site, N.est) ## More individuals are expected (N > Y) due to detection process abline(a=0,b=1,col="red") plot(N, N.est) ## N are well estimated abline(a=0,b=1,col="red") cor(N, N.est) ## Very close to 1 dev.off() ## End(Not run)
The hSDM.Nmixture.iCAR
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a suitability
process (refering to environmental suitability explaining abundance)
which takes into account the spatial dependence of the observations,
and a
observability process
(refering to various ecological and methodological issues explaining
the species detection). The
hSDM.Nmixture.iCAR
function calls a
Gibbs sampler written in C code which uses an adaptive Metropolis
algorithm to estimate the conditional posterior distribution of
hierarchical model's parameters.
hSDM.Nmixture.iCAR(# Observations counts, observability, site, data.observability, # Habitat suitability, data.suitability, # Spatial structure spatial.entity, n.neighbors, neighbors, # Predictions suitability.pred = NULL, spatial.entity.pred = NULL, # Chains burnin = 5000, mcmc = 10000, thin = 10, # Starting values beta.start, gamma.start, Vrho.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max = 1000, # Various seed = 1234, verbose = 1, save.rho = 0, save.p = 0, save.N = 0)
hSDM.Nmixture.iCAR(# Observations counts, observability, site, data.observability, # Habitat suitability, data.suitability, # Spatial structure spatial.entity, n.neighbors, neighbors, # Predictions suitability.pred = NULL, spatial.entity.pred = NULL, # Chains burnin = 5000, mcmc = 10000, thin = 10, # Starting values beta.start, gamma.start, Vrho.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max = 1000, # Various seed = 1234, verbose = 1, save.rho = 0, save.p = 0, save.N = 0)
counts |
A vector indicating the count (or abundance) for each observation. |
observability |
A one-sided formula of the form
|
site |
A vector indicating the site identifier (from one to the total number of sites) for each observation. Several observations can occur at one site. A site can be a raster cell for example. |
data.observability |
A data frame containing the model's variables for the observability process. |
suitability |
A one-sided formula of the form
|
data.suitability |
A data frame containing the model's variables for the suitability process. The number of rows of the data frame should be equal to the total number of spatial entities. |
spatial.entity |
A vector (of length 'nsite') indicating the spatial entity identifier for each site. Values must be between 1 and the total number of spatial entities. Several sites can be found in one spatial entity. A spatial entity can be a raster cell for example. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for
variables with which to predict. If NULL, the data frame
|
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
save.N |
A switch (0,1) which determines whether or not the
sampled values for the latent count variable N for each observed
cells are saved. Default is 0: the mean (rounded to the closest
integer) is computed and returned in the |
The model integrates two processes, an ecological process associated to the abundance of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one. The ecological process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the abundance of the species at one site depends on the abundance of the species on neighboring sites.
Ecological process:
: spatial random effect
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
lambda.pred |
If |
N.pred |
If |
lambda.latent |
Predictive posterior mean of the abundance associated to the suitability process for each observation. |
delta.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
## Not run: #============================================== # hSDM.Nmixture.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 4321 #= Landscape xLand <- 20 yLand <- 20 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 150 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) log.lambda <- X %*% beta.target + rho[cells] lambda <- exp(log.lambda) set.seed(seed) N <- rpois(nsite,lambda) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,N[sites],delta) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2,cell=cells) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.Nmixture.iCAR <- hSDM.Nmixture.iCAR(# Observations counts=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Spatial structure spatial.entity=data.suit$cell, n.neighbors=n.neighbors, neighbors=adj, # Predictions suitability.pred=NULL, spatial.entity.pred=NULL, # Chains burnin=5000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, Vrho.start=1, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, priorVrho="1/Gamma", shape=0.5, rate=0.005, Vrho.max=10, # Various seed=1234, verbose=1, save.rho=1, save.p=0, save.N=1) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.Nmixture.iCAR$mcmc) pdf(file="Posteriors_hSDM.Nmixture.iCAR.pdf") plot(mod.hSDM.Nmixture.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.Nmixture.iCAR$lambda.latent) summary(mod.hSDM.Nmixture.iCAR$delta.latent) summary(mod.hSDM.Nmixture.iCAR$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.Nmixture.iCAR$lambda.pred) abline(a=0,b=1,col="red") dev.off() #= MCMC for latent variable N pdf(file="MCMC_N.pdf") plot(mod.hSDM.Nmixture.iCAR$N.pred) dev.off() #= Check that Ns are corretly estimated M <- as.matrix(mod.hSDM.Nmixture.iCAR$N.pred) N.est <- apply(M,2,mean) Y.by.site <- tapply(data.obs$Y,data.obs$site,mean) # Mean by site pdf(file="Check_N.pdf",width=10,height=5) par(mfrow=c(1,2)) plot(Y.by.site, N.est) ## More individuals are expected (N > Y) due to detection process abline(a=0,b=1,col="red") plot(N, N.est) ## N are well estimated abline(a=0,b=1,col="red") cor(N, N.est) ## Very close to 1 dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.Nmixture.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.Nmixture.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.Nmixture.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 4321 #= Landscape xLand <- 20 yLand <- 20 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 150 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) log.lambda <- X %*% beta.target + rho[cells] lambda <- exp(log.lambda) set.seed(seed) N <- rpois(nsite,lambda) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,N[sites],delta) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2,cell=cells) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.Nmixture.iCAR <- hSDM.Nmixture.iCAR(# Observations counts=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Spatial structure spatial.entity=data.suit$cell, n.neighbors=n.neighbors, neighbors=adj, # Predictions suitability.pred=NULL, spatial.entity.pred=NULL, # Chains burnin=5000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, Vrho.start=1, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, priorVrho="1/Gamma", shape=0.5, rate=0.005, Vrho.max=10, # Various seed=1234, verbose=1, save.rho=1, save.p=0, save.N=1) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.Nmixture.iCAR$mcmc) pdf(file="Posteriors_hSDM.Nmixture.iCAR.pdf") plot(mod.hSDM.Nmixture.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.Nmixture.iCAR$lambda.latent) summary(mod.hSDM.Nmixture.iCAR$delta.latent) summary(mod.hSDM.Nmixture.iCAR$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.Nmixture.iCAR$lambda.pred) abline(a=0,b=1,col="red") dev.off() #= MCMC for latent variable N pdf(file="MCMC_N.pdf") plot(mod.hSDM.Nmixture.iCAR$N.pred) dev.off() #= Check that Ns are corretly estimated M <- as.matrix(mod.hSDM.Nmixture.iCAR$N.pred) N.est <- apply(M,2,mean) Y.by.site <- tapply(data.obs$Y,data.obs$site,mean) # Mean by site pdf(file="Check_N.pdf",width=10,height=5) par(mfrow=c(1,2)) plot(Y.by.site, N.est) ## More individuals are expected (N > Y) due to detection process abline(a=0,b=1,col="red") plot(N, N.est) ## N are well estimated abline(a=0,b=1,col="red") cor(N, N.est) ## Very close to 1 dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.Nmixture.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.Nmixture.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.Nmixture.K
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a suitability
process (refering to environmental suitability explaining abundance)
and a
observability process
(refering to various ecological and methodological issues explaining
species detection). The
hSDM.Nmixture.K
function calls a Gibbs
sampler written in C code which uses an adaptive Metropolis algorithm
to estimate the conditional posterior distribution of hierarchical
model's parameters. K is the maximal theoretical abundance sensus
Royle 2004.
hSDM.Nmixture.K(# Observations counts, observability, site, data.observability, # Habitat suitability, data.suitability, # Predictions suitability.pred = NULL, # Chains burnin = 5000, mcmc = 10000, thin = 10, # Starting values beta.start, gamma.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, # Various K, seed = 1234, verbose = 1, save.p = 0)
hSDM.Nmixture.K(# Observations counts, observability, site, data.observability, # Habitat suitability, data.suitability, # Predictions suitability.pred = NULL, # Chains burnin = 5000, mcmc = 10000, thin = 10, # Starting values beta.start, gamma.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, # Various K, seed = 1234, verbose = 1, save.p = 0)
counts |
A vector indicating the count (or abundance) for each observation. |
observability |
A one-sided formula of the form
|
site |
A vector indicating the site identifier (from one to the total number of sites) for each observation. Several observations can occur at one site. A site can be a raster cell for example. |
data.observability |
A data frame containing the model's variables for the observability process. |
suitability |
A one-sided formula of the form
|
data.suitability |
A data frame containing the model's variables for the suitability process. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
K |
Maximal theoretical abundance sensus Royle 2004. It corresponds to the integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with K. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the abundance of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one.
Ecological process:
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
lambda.pred |
If |
lambda.latent |
Predictive posterior mean of the abundance associated to the suitability process for each observation. |
delta.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
## Not run: #============================================== # hSDM.Nmixture.K() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation # Number of observation sites nsite <- 200 #= Set seed for repeatability seed <- 4321 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) # Target parameters log.lambda <- X %*% beta.target lambda <- exp(log.lambda) set.seed(seed) N <- rpois(nsite,lambda) #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) # Target parameters logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,N[sites],delta) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.Nmixture.K <- hSDM.Nmixture.K(# Observations counts=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Predictions suitability.pred=NULL, # Chains burnin=5000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, # Various K=max(data.obs$Y)*2, seed=1234, verbose=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.Nmixture.K$mcmc) pdf(file="Posteriors_hSDM.Nmixture.K.pdf") plot(mod.hSDM.Nmixture.K$mcmc) dev.off() #= Predictions summary(mod.hSDM.Nmixture.K$lambda.latent) summary(mod.hSDM.Nmixture.K$delta.latent) summary(mod.hSDM.Nmixture.K$lambda.pred) pdf(file="Pred-Init.K.pdf") plot(lambda,mod.hSDM.Nmixture.K$lambda.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.Nmixture.K() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation # Number of observation sites nsite <- 200 #= Set seed for repeatability seed <- 4321 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) # Target parameters log.lambda <- X %*% beta.target lambda <- exp(log.lambda) set.seed(seed) N <- rpois(nsite,lambda) #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) # Target parameters logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,N[sites],delta) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.Nmixture.K <- hSDM.Nmixture.K(# Observations counts=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Predictions suitability.pred=NULL, # Chains burnin=5000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, # Various K=max(data.obs$Y)*2, seed=1234, verbose=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.Nmixture.K$mcmc) pdf(file="Posteriors_hSDM.Nmixture.K.pdf") plot(mod.hSDM.Nmixture.K$mcmc) dev.off() #= Predictions summary(mod.hSDM.Nmixture.K$lambda.latent) summary(mod.hSDM.Nmixture.K$delta.latent) summary(mod.hSDM.Nmixture.K$lambda.pred) pdf(file="Pred-Init.K.pdf") plot(lambda,mod.hSDM.Nmixture.K$lambda.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.poisson
function performs a Poisson log
regression in a Bayesian framework. The function calls a Gibbs sampler
written in C code which uses an adaptive Metropolis algorithm to
estimate the conditional posterior distribution of model's
parameters.
hSDM.poisson(counts, suitability, data, suitability.pred = NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, mubeta = 0, Vbeta = 1e+06, seed = 1234, verbose = 1, save.p = 0)
hSDM.poisson(counts, suitability, data, suitability.pred = NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, mubeta = 0, Vbeta = 1e+06, seed = 1234, verbose = 1, save.p = 0)
counts |
A vector indicating the count (or abundance) for each observation. |
suitability |
A one-sided formula of the form '~x1+...+xp' with p terms specifying the explicative covariates for the suitability process of the model. |
data |
A data frame containing the model's explicative variables. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for beta parameters of the
suitability process. If |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
seed |
The seed for the random number generator. Default to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
We model the abundance of the species as a function of environmental variables.
Ecological process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
lambda.pred |
If |
lambda.latent |
Predictive posterior mean of the abundance associated to the suitability process for each observation. |
Ghislain Vieilledent <[email protected]>
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
## Not run: #============================================== # hSDM.poisson() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation #= Number of sites nsite <- 200 #= Set seed for repeatability seed <- 1234 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) log.lambda <- X %*% beta.target lambda <- exp(log.lambda) set.seed(seed) Y <- rpois(nsite,lambda) #= Data-sets data.obs <- data.frame(Y,x1,x2) #================================== #== Site-occupancy model mod.hSDM.poisson <- hSDM.poisson(counts=data.obs$Y, suitability=~x1+x2, data=data.obs, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=1, beta.start=0, mubeta=0, Vbeta=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.poisson$mcmc) pdf(file="Posteriors_hSDM.poisson.pdf") plot(mod.hSDM.poisson$mcmc) dev.off() #== glm resolution to compare mod.glm <- glm(Y~x1+x2,family="poisson",data=data.obs) summary(mod.glm) #= Predictions summary(mod.hSDM.poisson$lambda.latent) summary(mod.hSDM.poisson$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.poisson$lambda.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.poisson() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation #= Number of sites nsite <- 200 #= Set seed for repeatability seed <- 1234 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) log.lambda <- X %*% beta.target lambda <- exp(log.lambda) set.seed(seed) Y <- rpois(nsite,lambda) #= Data-sets data.obs <- data.frame(Y,x1,x2) #================================== #== Site-occupancy model mod.hSDM.poisson <- hSDM.poisson(counts=data.obs$Y, suitability=~x1+x2, data=data.obs, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=1, beta.start=0, mubeta=0, Vbeta=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.poisson$mcmc) pdf(file="Posteriors_hSDM.poisson.pdf") plot(mod.hSDM.poisson$mcmc) dev.off() #== glm resolution to compare mod.glm <- glm(Y~x1+x2,family="poisson",data=data.obs) summary(mod.glm) #= Predictions summary(mod.hSDM.poisson$lambda.latent) summary(mod.hSDM.poisson$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.poisson$lambda.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.poisson.iCAR
function performs a Poisson
log regression in a hierarchical Bayesian framework. The
suitability process includes a spatial correlation process. The
spatial correlation is modelled using an intrinsic CAR model. The
hSDM.poisson.iCAR
function calls a Gibbs sampler written in C
code which uses an adaptive Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model's
parameters.
hSDM.poisson.iCAR(counts, suitability, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.poisson.iCAR(counts, suitability, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
counts |
A vector indicating the count (or abundance) for each observation. |
suitability |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
We model an ecological process where the abundance of the species is explained by habitat suitability. The ecological process includes an intrinsic conditional autoregressive (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
lambda.pred |
If |
lambda.latent |
Predictive posterior mean of the abundance associated to the suitability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Lichstein, J. W.; Simons, T. R.; Shriner, S. A. & Franzreb, K. E. (2002) Spatial autocorrelation and autoregressive models in ecology Ecological Monographs, 72, 445-463.
Diez, J. M. & Pulliam, H. R. (2007) Hierarchical analysis of species distributions and abundance across environmental gradients Ecology, 88, 3144-3152.
## Not run: #============================================== # hSDM.poisson.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 1234 #= Landscape xLand <- 30 yLand <- 30 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 250 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) log.lambda <- X %*% beta.target + rho[cells] lambda <- exp(log.lambda) set.seed(seed) Y <- rpois(nsite,lambda) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Data-sets data.obs <- data.frame(Y,x1,x2,cell=cells) #================================== #== Site-occupancy model Start <- Sys.time() # Start the clock mod.hSDM.poisson.iCAR <- hSDM.poisson.iCAR(counts=data.obs$Y, suitability=~x1+x2, spatial.entity=data.obs$cell, data=data.obs, n.neighbors=n.neighbors, neighbors=adj, suitability.pred=NULL, spatial.entity.pred=NULL, burnin=5000, mcmc=5000, thin=5, beta.start=0, Vrho.start=1, mubeta=0, Vbeta=1.0E6, priorVrho="1/Gamma", shape=0.5, rate=0.0005, seed=1234, verbose=1, save.rho=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.poisson.iCAR$mcmc) pdf("Posteriors_hSDM.poisson.iCAR.pdf") plot(mod.hSDM.poisson.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.poisson.iCAR$lambda.latent) summary(mod.hSDM.poisson.iCAR$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.poisson.iCAR$lambda.pred) abline(a=0,b=1,col="red") dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.poisson.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.poisson.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.poisson.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 1234 #= Landscape xLand <- 30 yLand <- 30 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 250 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) log.lambda <- X %*% beta.target + rho[cells] lambda <- exp(log.lambda) set.seed(seed) Y <- rpois(nsite,lambda) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Data-sets data.obs <- data.frame(Y,x1,x2,cell=cells) #================================== #== Site-occupancy model Start <- Sys.time() # Start the clock mod.hSDM.poisson.iCAR <- hSDM.poisson.iCAR(counts=data.obs$Y, suitability=~x1+x2, spatial.entity=data.obs$cell, data=data.obs, n.neighbors=n.neighbors, neighbors=adj, suitability.pred=NULL, spatial.entity.pred=NULL, burnin=5000, mcmc=5000, thin=5, beta.start=0, Vrho.start=1, mubeta=0, Vbeta=1.0E6, priorVrho="1/Gamma", shape=0.5, rate=0.0005, seed=1234, verbose=1, save.rho=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.poisson.iCAR$mcmc) pdf("Posteriors_hSDM.poisson.iCAR.pdf") plot(mod.hSDM.poisson.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.poisson.iCAR$lambda.latent) summary(mod.hSDM.poisson.iCAR$lambda.pred) pdf(file="Pred-Init.pdf") plot(lambda,mod.hSDM.poisson.iCAR$lambda.pred) abline(a=0,b=1,col="red") dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.poisson.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.poisson.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.siteocc
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a suitability
process (refering to environmental suitability) and a
observability process (refering
to various ecological and methodological issues explaining the species
detection). The
hSDM.siteocc
function calls a Gibbs sampler
written in C code which uses a Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model's
parameters.
hSDM.siteocc(# Observations presence, observability, site, data.observability, # Habitat suitability, data.suitability, # Predictions suitability.pred = NULL, # Chains burnin = 1000, mcmc = 1000, thin = 1, # Starting values beta.start, gamma.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, # Various seed = 1234, verbose = 1, save.p = 0)
hSDM.siteocc(# Observations presence, observability, site, data.observability, # Habitat suitability, data.suitability, # Predictions suitability.pred = NULL, # Chains burnin = 1000, mcmc = 1000, thin = 1, # Starting values beta.start, gamma.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, # Various seed = 1234, verbose = 1, save.p = 0)
presence |
A vector indicating the presence/absence for each observation. |
observability |
A one-sided formula of the form
|
site |
A vector indicating the site identifier (from one to the total number of sites) for each observation. Several observations can occur at one site. A site can be a raster cell for example. |
data.observability |
A data frame containing the model's variables for the observability process. |
suitability |
A one-sided formula of the form
|
data.suitability |
A data frame containing the model's variables for the suitability process. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one.
Ecological process:
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
theta.pred |
If |
theta.latent |
Predictive posterior mean of the probability associated to the suitability process for each site. |
delta.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
## Not run: #============================================== # hSDM.siteocc() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation #= Number of observation sites nsite <- 200 #= Set seed for repeatability seed <- 4321 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) # Target parameters logit.theta <- X %*% beta.target theta <- inv.logit(logit.theta) set.seed(seed) Z <- rbinom(nsite,1,theta) #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) # Target parameters logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,1,delta*Z[sites]) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2) #================================ #== Parameter inference with hSDM #================================== Start <- Sys.time() # Start the clock mod.hSDM.siteocc <- hSDM.siteocc(# Observations presence=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Predictions suitability.pred=NULL, # Chains burnin=2000, mcmc=2000, thin=2, # Starting values beta.start=0, gamma.start=0, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, # Various seed=1234, verbose=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.siteocc$mcmc) pdf(file="Posteriors_hSDM.siteocc.pdf") plot(mod.hSDM.siteocc$mcmc) dev.off() #= Predictions summary(mod.hSDM.siteocc$theta.latent) summary(mod.hSDM.siteocc$delta.latent) summary(mod.hSDM.siteocc$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.siteocc$theta.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.siteocc() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) #================== #== Data simulation #= Number of observation sites nsite <- 200 #= Set seed for repeatability seed <- 4321 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) # Target parameters logit.theta <- X %*% beta.target theta <- inv.logit(logit.theta) set.seed(seed) Z <- rbinom(nsite,1,theta) #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) # Target parameters logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,1,delta*Z[sites]) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2) #================================ #== Parameter inference with hSDM #================================== Start <- Sys.time() # Start the clock mod.hSDM.siteocc <- hSDM.siteocc(# Observations presence=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Predictions suitability.pred=NULL, # Chains burnin=2000, mcmc=2000, thin=2, # Starting values beta.start=0, gamma.start=0, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, # Various seed=1234, verbose=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.siteocc$mcmc) pdf(file="Posteriors_hSDM.siteocc.pdf") plot(mod.hSDM.siteocc$mcmc) dev.off() #= Predictions summary(mod.hSDM.siteocc$theta.latent) summary(mod.hSDM.siteocc$delta.latent) summary(mod.hSDM.siteocc$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.siteocc$theta.pred) abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.siteocc.iCAR
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a suitability
process (refering to environmental suitability) which takes into
account the spatial dependence of the observations, and a
observability process (refering
to various ecological and methodological issues explaining the species
detection). The
hSDM.siteocc.iCAR
function calls a Gibbs
sampler written in C code which uses an adaptive Metropolis algorithm
to estimate the conditional posterior distribution of hierarchical
model's parameters.
hSDM.siteocc.iCAR(# Observations presence, observability, site, data.observability, # Habitat suitability, data.suitability, # Spatial structure spatial.entity, n.neighbors, neighbors, # Predictions suitability.pred = NULL, spatial.entity.pred = NULL, # Chains burnin = 1000, mcmc = 1000, thin = 1, # Starting values beta.start, gamma.start, Vrho.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max = 1000, # Various seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.siteocc.iCAR(# Observations presence, observability, site, data.observability, # Habitat suitability, data.suitability, # Spatial structure spatial.entity, n.neighbors, neighbors, # Predictions suitability.pred = NULL, spatial.entity.pred = NULL, # Chains burnin = 1000, mcmc = 1000, thin = 1, # Starting values beta.start, gamma.start, Vrho.start, # Priors mubeta = 0, Vbeta = 1.0E6, mugamma = 0, Vgamma = 1.0E6, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max = 1000, # Various seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
presence |
A vector indicating the presence/absence for each observation. |
observability |
A one-sided formula of the form
|
site |
A vector indicating the site identifier (from one to the total number of sites) for each observation. Several observations can occur at one site. A site can be a raster cell for example. |
data.observability |
A data frame containing the model's variables for the observability process. |
suitability |
A one-sided formula of the form
|
data.suitability |
A data frame containing the model's variables for the suitability process. |
spatial.entity |
A vector (of length 'nsite') indicating the spatial entity identifier for each site. Values must be between 1 and the total number of spatial entities. Several sites can be found in one spatial entity. A spatial entity can be a raster cell for example. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one. The ecological process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
theta.pred |
If |
theta.latent |
Predictive posterior mean of the probability associated to the suitability process for each site. |
delta.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Diez, J. M. & Pulliam, H. R. (2007) Hierarchical analysis of species distributions and abundance across environmental gradients Ecology, 88, 3144-3152.
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Lichstein, J. W.; Simons, T. R.; Shriner, S. A. & Franzreb, K. E. (2002) Spatial autocorrelation and autoregressive models in ecology Ecological Monographs, 72, 445-463.
MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
## Not run: #============================================== # hSDM.siteocc.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 1234 #= Landscape xLand <- 30 yLand <- 30 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 250 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) logit.theta <- X %*% beta.target + rho[cells] theta <- inv.logit(logit.theta) set.seed(seed) Z <- rbinom(nsite,1,theta) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,1,delta*Z[sites]) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2,cell=cells) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.siteocc.iCAR <- hSDM.siteocc.iCAR(# Observations presence=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Spatial structure spatial.entity=data.suit$cell, n.neighbors=n.neighbors, neighbors=adj, # Predictions suitability.pred=NULL, spatial.entity.pred=NULL, # Chains burnin=10000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, Vrho.start=1, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, priorVrho="Uniform", Vrho.max=10, # Various seed=1234, verbose=1, save.rho=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.siteocc.iCAR$mcmc) pdf("Posteriors_hSDM.siteocc.iCAR.pdf") plot(mod.hSDM.siteocc.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.siteocc.iCAR$theta.latent) summary(mod.hSDM.siteocc.iCAR$delta.latent) summary(mod.hSDM.siteocc.iCAR$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.siteocc.iCAR$theta.pred) abline(a=0,b=1,col="red") dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.siteocc.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.siteocc.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.siteocc.iCAR() # Example with simulated data #============================================== #================= #== Load libraries library(hSDM) library(raster) library(sp) #=================================== #== Multivariate normal distribution rmvn <- function(n, mu = 0, V = matrix(1), seed=1234) { p <- length(mu) if (any(is.na(match(dim(V), p)))) { stop("Dimension problem!") } D <- chol(V) set.seed(seed) t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p))) } #================== #== Data simulation #= Set seed for repeatability seed <- 1234 #= Landscape xLand <- 30 yLand <- 30 Landscape <- raster(ncol=xLand,nrow=yLand,crs='+proj=utm +zone=1') Landscape[] <- 0 extent(Landscape) <- c(0,xLand,0,yLand) coords <- coordinates(Landscape) ncells <- ncell(Landscape) #= Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncells), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] #= Generate symmetric adjacency matrix, A A <- matrix(0,ncells,ncells) index.start <- 1 for (i in 1:ncells) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } #= Spatial effects Vrho.target <- 5 d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero #= Raster and plot spatial effects r.rho <- rasterFromXYZ(cbind(coords,rho)) plot(r.rho) #= Sample the observation sites in the landscape nsite <- 250 set.seed(seed) x.coord <- runif(nsite,0,xLand) set.seed(2*seed) y.coord <- runif(nsite,0,yLand) sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord)) cells <- extract(Landscape,sites.sp,cell=TRUE)[,1] #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) beta.target <- c(-1,1,-1) logit.theta <- X %*% beta.target + rho[cells] theta <- inv.logit(logit.theta) set.seed(seed) Z <- rbinom(nsite,1,theta) #= Relative importance of spatial random effects RImp <- mean(abs(rho[cells])/abs(X %*% beta.target)) RImp #= Number of visits associated to each observation point set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 # Vector of observation points sites <- vector() for (i in 1:nsite) { sites <- c(sites,rep(i,visits[i])) } #= Observation process (detectability) nobs <- sum(visits) set.seed(seed) w1 <- rnorm(nobs,0,1) set.seed(2*seed) w2 <- rnorm(nobs,0,1) W <- cbind(rep(1,nobs),w1,w2) gamma.target <- c(-1,1,-1) logit.delta <- W %*% gamma.target delta <- inv.logit(logit.delta) set.seed(seed) Y <- rbinom(nobs,1,delta*Z[sites]) #= Data-sets data.obs <- data.frame(Y,w1,w2,site=sites) data.suit <- data.frame(x1,x2,cell=cells) #================================ #== Parameter inference with hSDM Start <- Sys.time() # Start the clock mod.hSDM.siteocc.iCAR <- hSDM.siteocc.iCAR(# Observations presence=data.obs$Y, observability=~w1+w2, site=data.obs$site, data.observability=data.obs, # Habitat suitability=~x1+x2, data.suitability=data.suit, # Spatial structure spatial.entity=data.suit$cell, n.neighbors=n.neighbors, neighbors=adj, # Predictions suitability.pred=NULL, spatial.entity.pred=NULL, # Chains burnin=10000, mcmc=5000, thin=5, # Starting values beta.start=0, gamma.start=0, Vrho.start=1, # Priors mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, priorVrho="Uniform", Vrho.max=10, # Various seed=1234, verbose=1, save.rho=1, save.p=0) Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference #= Computation time Time.hSDM #========== #== Outputs #= Parameter estimates summary(mod.hSDM.siteocc.iCAR$mcmc) pdf("Posteriors_hSDM.siteocc.iCAR.pdf") plot(mod.hSDM.siteocc.iCAR$mcmc) dev.off() #= Predictions summary(mod.hSDM.siteocc.iCAR$theta.latent) summary(mod.hSDM.siteocc.iCAR$delta.latent) summary(mod.hSDM.siteocc.iCAR$theta.pred) pdf(file="Pred-Init.pdf") plot(theta,mod.hSDM.siteocc.iCAR$theta.pred) abline(a=0,b=1,col="red") dev.off() #= Summary plots for spatial random effects # rho.pred rho.pred <- apply(mod.hSDM.siteocc.iCAR$rho.pred,2,mean) r.rho.pred <- rasterFromXYZ(cbind(coords,rho.pred)) # plot pdf(file="Summary_hSDM.siteocc.iCAR.pdf") par(mfrow=c(2,2)) # rho target plot(r.rho, main="rho target") plot(sites.sp,add=TRUE) # rho estimated plot(r.rho.pred, main="rho estimated") # correlation and "shrinkage" Levels.cells <- sort(unique(cells)) plot(rho[-Levels.cells],rho.pred[-Levels.cells], xlim=range(rho), ylim=range(rho), xlab="rho target", ylab="rho estimated") points(rho[Levels.cells],rho.pred[Levels.cells],pch=16,col="blue") legend(x=-3,y=4,legend="Visited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") dev.off() ## End(Not run)
The hSDM.ZIB
function can be used to
model species distribution including different processes in a
hierarchical Bayesian framework: a
suitability process (refering to
environmental suitability) and a
observability process (refering to various ecological and
methodological issues explaining the species detection). The
hSDM.ZIB
function calls a Gibbs sampler written in C
code which uses a Metropolis algorithm to estimate the conditional
posterior distribution of hierarchical model's parameters.
hSDM.ZIB(presences, trials, suitability, observability, data, suitability.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, seed = 1234, verbose = 1, save.p = 0)
hSDM.ZIB(presences, trials, suitability, observability, data, suitability.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, seed = 1234, verbose = 1, save.p = 0)
presences |
A vector indicating the number of successes (or presences) for each observation. |
trials |
A vector indicating the number of trials for each
observation. |
suitability |
A one-sided formula of the form
|
observability |
A one-sided formula of the form
|
data |
A data frame containing the model's variables. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one.
Ecological process:
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
## Not run: #============================================== # hSDM.ZIB() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Number of observations nobs <- 1000 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) # Covariates for "suitability" process set.seed(seed) X1 <- rnorm(n=nobs,0,1) set.seed(2*seed) X2 <- rnorm(n=nobs,0,1) X <- cbind(rep(1,nobs),X1,X2) # Covariates for "observability" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta.1 <- X %*% beta.target theta.1 <- inv.logit(logit.theta.1) set.seed(seed) y.1 <- rbinom(nobs,1,theta.1) # Observability set.seed(seed) trials <- rpois(nobs,5) # Number of trial associated to each observation trials[trials==0] <- 1 logit.theta.2 <- W %*% gamma.target theta.2 <- inv.logit(logit.theta.2) set.seed(seed) y.2 <- rbinom(nobs,trials,theta.2) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,trials,X1,X2) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,trials,X1,X2,W1,W2) #================================== #== ZIB model mod.hSDM.ZIB <- hSDM.ZIB(presences=Data$Y, trials=Data$trials, suitability=~X1+X2, observability=~1, #=~1+W1+W2 if covariates data=Data, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=5, beta.start=0, gamma.start=0, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs pdf(file="Posteriors_hSDM.ZIB.pdf") plot(mod.hSDM.ZIB$mcmc) dev.off() summary(mod.hSDM.ZIB$prob.p.latent) summary(mod.hSDM.ZIB$prob.q.latent) summary(mod.hSDM.ZIB$prob.p.pred) ## End(Not run)
## Not run: #============================================== # hSDM.ZIB() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Number of observations nobs <- 1000 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) # Covariates for "suitability" process set.seed(seed) X1 <- rnorm(n=nobs,0,1) set.seed(2*seed) X2 <- rnorm(n=nobs,0,1) X <- cbind(rep(1,nobs),X1,X2) # Covariates for "observability" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta.1 <- X %*% beta.target theta.1 <- inv.logit(logit.theta.1) set.seed(seed) y.1 <- rbinom(nobs,1,theta.1) # Observability set.seed(seed) trials <- rpois(nobs,5) # Number of trial associated to each observation trials[trials==0] <- 1 logit.theta.2 <- W %*% gamma.target theta.2 <- inv.logit(logit.theta.2) set.seed(seed) y.2 <- rbinom(nobs,trials,theta.2) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,trials,X1,X2) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,trials,X1,X2,W1,W2) #================================== #== ZIB model mod.hSDM.ZIB <- hSDM.ZIB(presences=Data$Y, trials=Data$trials, suitability=~X1+X2, observability=~1, #=~1+W1+W2 if covariates data=Data, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=5, beta.start=0, gamma.start=0, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs pdf(file="Posteriors_hSDM.ZIB.pdf") plot(mod.hSDM.ZIB$mcmc) dev.off() summary(mod.hSDM.ZIB$prob.p.latent) summary(mod.hSDM.ZIB$prob.q.latent) summary(mod.hSDM.ZIB$prob.p.pred) ## End(Not run)
The hSDM.ZIB.iCAR
function can be used to
model species distribution including different processes in a
hierarchical Bayesian framework: a
suitability process (refering to
environmental suitability) which takes into account the spatial
dependence of the observations, and a
observability process (refering to
various ecological and methodological issues explaining the species
detection). The
hSDM.ZIB.iCAR
function calls a Gibbs
sampler written in C code which uses an adaptive Metropolis algorithm
to estimate the conditional posterior distribution of hierarchical
model's parameters.
hSDM.ZIB.iCAR(presences, trials, suitability, observability, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.ZIB.iCAR(presences, trials, suitability, observability, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
presences |
A vector indicating the number of successes (or presences) for each observation. |
trials |
A vector indicating the number of trials for each
observation. |
suitability |
A one-sided formula of the form
|
observability |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one. The ecological process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
## Not run: #============================================== # hSDM.ZIB.iCAR() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Covariates for "observability" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta.1 <- vector() for (n in 1:nobs) { logit.theta.1[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta.1 <- inv.logit(logit.theta.1) set.seed(seed) y.1 <- rbinom(nobs,1,theta.1) # Observability set.seed(seed) trials <- rpois(nobs,5) # Number of trial associated to each observation trials[trials==0] <- 1 logit.theta.2 <- W%*%gamma.target theta.2 <- inv.logit(logit.theta.2) set.seed(seed) y.2 <- rbinom(nobs,trials,theta.2) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,trials,cells,X1,X2) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== Site-occupancy model mod.hSDM.ZIB.iCAR <- hSDM.ZIB.iCAR(presences=Data$Y, trials=Data$trials, suitability=~X1+X2, observability=~1, spatial.entity=Data$cells, data=Data, n.neighbors=n.neighbors, neighbors=adj, ## suitability.pred=NULL, ## spatial.entity.pred=NULL, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIB.iCAR$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIB.iCAR.pdf") plot(mod.hSDM.ZIB.iCAR$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIB.iCAR.pdf") plot(mod.hSDM.ZIB.iCAR$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIB.iCAR$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- 1 # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIB.iCAR$prob.p.pred pdf(file="Summary_hSDM.ZIB.iCAR.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and presences") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Proba of presence") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.ZIB.iCAR() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Covariates for "observability" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta.1 <- vector() for (n in 1:nobs) { logit.theta.1[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta.1 <- inv.logit(logit.theta.1) set.seed(seed) y.1 <- rbinom(nobs,1,theta.1) # Observability set.seed(seed) trials <- rpois(nobs,5) # Number of trial associated to each observation trials[trials==0] <- 1 logit.theta.2 <- W%*%gamma.target theta.2 <- inv.logit(logit.theta.2) set.seed(seed) y.2 <- rbinom(nobs,trials,theta.2) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,trials,cells,X1,X2) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== Site-occupancy model mod.hSDM.ZIB.iCAR <- hSDM.ZIB.iCAR(presences=Data$Y, trials=Data$trials, suitability=~X1+X2, observability=~1, spatial.entity=Data$cells, data=Data, n.neighbors=n.neighbors, neighbors=adj, ## suitability.pred=NULL, ## spatial.entity.pred=NULL, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIB.iCAR$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIB.iCAR.pdf") plot(mod.hSDM.ZIB.iCAR$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIB.iCAR.pdf") plot(mod.hSDM.ZIB.iCAR$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIB.iCAR$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- 1 # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIB.iCAR$prob.p.pred pdf(file="Summary_hSDM.ZIB.iCAR.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and presences") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Proba of presence") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
The hSDM.ZIB.iCAR.alteration
function can be
used to model species distribution including different processes in a
hierarchical Bayesian framework: (i) a
suitability process (refering to
environmental suitability) which takes into account the spatial
dependence of the observations, (ii) an alteration process (refering
to anthropogenic disturbances), and (iii) a
observability process (refering to
various ecological and methodological issues explaining the species
detection). The
hSDM.ZIB.iCAR.alteration
function calls a
Gibbs sampler written in C code which uses an adaptive Metropolis
algorithm to estimate the conditional posterior distribution of
hierarchical model's parameters.
hSDM.ZIB.iCAR.alteration(presences, trials, suitability, observability, spatial.entity, alteration, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.ZIB.iCAR.alteration(presences, trials, suitability, observability, spatial.entity, alteration, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
presences |
A vector indicating the number of successes (or presences) for each observation. |
trials |
A vector indicating the number of trials for each
observation. |
suitability |
A one-sided formula of the form
|
observability |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
alteration |
A vector indicating the proportion of area in the spatial cell which is transformed (by anthropogenic activities for example) for each observation. Must be between 0 and 1. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one. The ecological process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
## Not run: #============================================== # hSDM.ZIB.iCAR.alteration() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Alteration U <- runif(n=nobs,min=0,max=1) # Covariates for "observability" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta.1 <- vector() for (n in 1:nobs) { logit.theta.1[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta.1 <- inv.logit(logit.theta.1) set.seed(seed) y.1 <- rbinom(nobs,1,theta.1) # Alteration u <- rbinom(nobs,1,U) # Observability set.seed(seed) trials <- rpois(nobs,5) # Number of trial associated to each observation trials[trials==0] <- 1 logit.theta.2 <- W%*%gamma.target theta.2 <- inv.logit(logit.theta.2) set.seed(seed) y.2 <- rbinom(nobs,trials,theta.2) #== Simulating response variable Y <- y.2*(1-u)*y.1 #== Data-set Data <- data.frame(Y,trials,cells,X1,X2,U) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2,U) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== Site-occupancy model mod.hSDM.ZIB.iCAR.alteration <- hSDM.ZIB.iCAR.alteration(presences=Data$Y, trials=Data$trials, suitability=~X1+X2, observability=~1, spatial.entity=Data$cells, alteration=Data$U, data=Data, n.neighbors=n.neighbors, neighbors=adj, ## suitability.pred=NULL, ## spatial.entity.pred=NULL, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIB.iCAR.alteration$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIB.iCAR.alteration.pdf") plot(mod.hSDM.ZIB.iCAR.alteration$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIB.iCAR.alteration.pdf") plot(mod.hSDM.ZIB.iCAR.alteration$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIB.iCAR.alteration$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- 1 # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIB.iCAR.alteration$prob.p.pred pdf(file="Summary_hSDM.ZIB.iCAR.alteration.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and presences") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Proba of presence") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.ZIB.iCAR.alteration() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Alteration U <- runif(n=nobs,min=0,max=1) # Covariates for "observability" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta.1 <- vector() for (n in 1:nobs) { logit.theta.1[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta.1 <- inv.logit(logit.theta.1) set.seed(seed) y.1 <- rbinom(nobs,1,theta.1) # Alteration u <- rbinom(nobs,1,U) # Observability set.seed(seed) trials <- rpois(nobs,5) # Number of trial associated to each observation trials[trials==0] <- 1 logit.theta.2 <- W%*%gamma.target theta.2 <- inv.logit(logit.theta.2) set.seed(seed) y.2 <- rbinom(nobs,trials,theta.2) #== Simulating response variable Y <- y.2*(1-u)*y.1 #== Data-set Data <- data.frame(Y,trials,cells,X1,X2,U) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2,U) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== Site-occupancy model mod.hSDM.ZIB.iCAR.alteration <- hSDM.ZIB.iCAR.alteration(presences=Data$Y, trials=Data$trials, suitability=~X1+X2, observability=~1, spatial.entity=Data$cells, alteration=Data$U, data=Data, n.neighbors=n.neighbors, neighbors=adj, ## suitability.pred=NULL, ## spatial.entity.pred=NULL, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIB.iCAR.alteration$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIB.iCAR.alteration.pdf") plot(mod.hSDM.ZIB.iCAR.alteration$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIB.iCAR.alteration.pdf") plot(mod.hSDM.ZIB.iCAR.alteration$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIB.iCAR.alteration$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- 1 # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIB.iCAR.alteration$prob.p.pred pdf(file="Summary_hSDM.ZIB.iCAR.alteration.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and presences") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Proba of presence") plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
The hSDM.ZIP
function can be used to model species
distribution including different processes in a hierarchical Bayesian
framework: a suitability process
(refering to various ecological variables explaining environmental
suitability or not) and a
abundance
process (refering to various ecological variables explaining the
species abundance when the habitat is suitable). The
hSDM.ZIP
function calls a Gibbs sampler written in C code which uses a
Metropolis algorithm to estimate the conditional posterior
distribution of hierarchical model's parameters.
hSDM.ZIP(counts, suitability, abundance, data, suitability.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, seed = 1234, verbose = 1, save.p = 0)
hSDM.ZIP(counts, suitability, abundance, data, suitability.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, seed = 1234, verbose = 1, save.p = 0)
counts |
A vector indicating the count for each observation. |
suitability |
A one-sided formula of the form
|
abundance |
A one-sided formula of the form
|
data |
A data frame containing the model's variables. |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to habitat suitability (habitat is suitable or not for the species) and an abundance process that takes into account ecological variables explaining the species abundance when the habitat is suitable.
Suitability process:
Abundance process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the abundance process for each observation. |
Ghislain Vieilledent [email protected]
Flores, O.; Rossi, V. and Mortier, F. (2009) Autocorrelation offsets zero-inflation in models of tropical saplings density. Ecological Modelling, 220, 1797-1809.
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
## Not run: #============================================== # hSDM.ZIP() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Number of observations nobs <- 1000 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the abundance process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) # Covariates for "suitability" process set.seed(seed) X1 <- rnorm(n=nobs,0,1) set.seed(2*seed) X2 <- rnorm(n=nobs,0,1) X <- cbind(rep(1,nobs),X1,X2) # Covariates for "abundance" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the abundance process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta <- X %*% beta.target theta <- inv.logit(logit.theta) set.seed(seed) y.1 <- rbinom(nobs,1,theta) # Abundance set.seed(seed) log.lambda <- W %*% gamma.target lambda <- exp(log.lambda) set.seed(seed) y.2 <- rpois(nobs,lambda) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,X1,X2) ## Uncomment if you want covariates on the abundance process ## Data <- data.frame(Y,X1,X2,W1,W2) #================================== #== ZIP model mod.hSDM.ZIP <- hSDM.ZIP(counts=Data$Y, suitability=~X1+X2, abundance=~1, #=~1+W1+W2 if covariates data=Data, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=5, beta.start=0, gamma.start=0, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs pdf(file="Posteriors_hSDM.ZIP.pdf") plot(mod.hSDM.ZIP$mcmc) dev.off() summary(mod.hSDM.ZIP$prob.p.latent) summary(mod.hSDM.ZIP$prob.q.latent) summary(mod.hSDM.ZIP$prob.p.pred) ## End(Not run)
## Not run: #============================================== # hSDM.ZIP() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Number of observations nobs <- 1000 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the abundance process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) # Covariates for "suitability" process set.seed(seed) X1 <- rnorm(n=nobs,0,1) set.seed(2*seed) X2 <- rnorm(n=nobs,0,1) X <- cbind(rep(1,nobs),X1,X2) # Covariates for "abundance" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the abundance process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta <- X %*% beta.target theta <- inv.logit(logit.theta) set.seed(seed) y.1 <- rbinom(nobs,1,theta) # Abundance set.seed(seed) log.lambda <- W %*% gamma.target lambda <- exp(log.lambda) set.seed(seed) y.2 <- rpois(nobs,lambda) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,X1,X2) ## Uncomment if you want covariates on the abundance process ## Data <- data.frame(Y,X1,X2,W1,W2) #================================== #== ZIP model mod.hSDM.ZIP <- hSDM.ZIP(counts=Data$Y, suitability=~X1+X2, abundance=~1, #=~1+W1+W2 if covariates data=Data, suitability.pred=NULL, burnin=1000, mcmc=1000, thin=5, beta.start=0, gamma.start=0, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, seed=1234, verbose=1, save.p=0) #========== #== Outputs pdf(file="Posteriors_hSDM.ZIP.pdf") plot(mod.hSDM.ZIP$mcmc) dev.off() summary(mod.hSDM.ZIP$prob.p.latent) summary(mod.hSDM.ZIP$prob.q.latent) summary(mod.hSDM.ZIP$prob.p.pred) ## End(Not run)
The hSDM.ZIP.iCAR
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a suitability
process (refering to various ecological variables explaining
environmental suitability or not) which takes into account the spatial
dependence of the observations, and a
abundance process (refering to various ecological variables explaining
the species abundance when the habitat is suitable). The
hSDM.ZIP.iCAR
function calls a Gibbs sampler written in C code
which uses an adaptive Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model's
parameters.
hSDM.ZIP.iCAR(counts, suitability, abundance, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.ZIP.iCAR(counts, suitability, abundance, spatial.entity, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
counts |
A vector indicating the count for each observation. |
suitability |
A one-sided formula of the form
|
abundance |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to habitat suitability (habitat is suitable or not for the species) and an abundance process that takes into account ecological variables explaining the species abundance when the habitat is suitable. The suitability process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the suitability at one site depends on the suitability on neighboring sites.
Suitability process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
Abundance process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Flores, O.; Rossi, V. and Mortier, F. (2009) Autocorrelation offsets zero-inflation in models of tropical saplings density. Ecological Modelling, 220, 1797-1809.
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
## Not run: #============================================== # hSDM.ZIP.iCAR() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Covariates for "abundance" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta <- vector() for (n in 1:nobs) { logit.theta[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta <- inv.logit(logit.theta) set.seed(seed) y.1 <- rbinom(nobs,1,theta) # Abundance set.seed(seed) log.lambda <- W %*% gamma.target lambda <- exp(log.lambda) set.seed(seed) y.2 <- rpois(nobs,lambda) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,cells,X1,X2) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,cells,X1,X2,W1,W2) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== ZIP model with CAR mod.hSDM.ZIP.iCAR <- hSDM.ZIP.iCAR(counts=Data$Y, suitability=~X1+X2, abundance=~1, spatial.entity=Data$cells, data=Data, n.neighbors=n.neighbors, neighbors=adj, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIP.iCAR$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIP.iCAR.pdf") plot(mod.hSDM.ZIP.iCAR$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIP.iCAR.pdf") plot(mod.hSDM.ZIP.iCAR$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIP.iCAR$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean) # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIP.iCAR$prob.p.pred pdf(file="Summary_hSDM.ZIP.iCAR.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and counts") plot(Data,add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Predicted counts") plot(Data,add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.ZIP.iCAR() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Covariates for "abundance" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta <- vector() for (n in 1:nobs) { logit.theta[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta <- inv.logit(logit.theta) set.seed(seed) y.1 <- rbinom(nobs,1,theta) # Abundance set.seed(seed) log.lambda <- W %*% gamma.target lambda <- exp(log.lambda) set.seed(seed) y.2 <- rpois(nobs,lambda) #== Simulating response variable Y <- y.2*y.1 #== Data-set Data <- data.frame(Y,cells,X1,X2) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,cells,X1,X2,W1,W2) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== ZIP model with CAR mod.hSDM.ZIP.iCAR <- hSDM.ZIP.iCAR(counts=Data$Y, suitability=~X1+X2, abundance=~1, spatial.entity=Data$cells, data=Data, n.neighbors=n.neighbors, neighbors=adj, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIP.iCAR$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIP.iCAR.pdf") plot(mod.hSDM.ZIP.iCAR$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIP.iCAR.pdf") plot(mod.hSDM.ZIP.iCAR$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIP.iCAR$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean) # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIP.iCAR$prob.p.pred pdf(file="Summary_hSDM.ZIP.iCAR.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and counts") plot(Data,add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Predicted counts") plot(Data,add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
The hSDM.ZIP.iCAR.alteration
function can be used to
model species distribution including different processes in a
hierarchical Bayesian framework: (i) a
suitability process (refering to
various ecological variables explaining environmental suitability or
not) which takes into account the spatial dependence of the
observations, (ii) an alteration process (refering to anthropogenic
disturbances), and (iii) a
abundance
process (refering to various ecological variables explaining the
species abundance when the habitat is suitable). The
hSDM.ZIP.iCAR.alteration
function calls a Gibbs sampler written
in C code which uses an adaptive Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model's
parameters.
hSDM.ZIP.iCAR.alteration(counts, suitability, abundance, spatial.entity, alteration, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
hSDM.ZIP.iCAR.alteration(counts, suitability, abundance, spatial.entity, alteration, data, n.neighbors, neighbors, suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
counts |
A vector indicating the count for each observation. |
suitability |
A one-sided formula of the form
|
abundance |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
alteration |
A vector indicating the proportion of area in the spatial cell which is transformed (by anthropogenic activities for example) for each observation. Must be between 0 and 1. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one. The ecological process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
: spatial random effect
: index of the spatial entity for observation
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
: mean of
in the
neighborhood of
.
: variance of the spatial random effects.
: number of neighbors for spatial entity
.
Observation process:
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Ghislain Vieilledent [email protected]
Flores, O.; Rossi, V. and Mortier, F. (2009) Autocorrelation offsets zero-inflation in models of tropical saplings density. Ecological Modelling, 220, 1797-1809.
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
## Not run: #============================================== # hSDM.ZIP.iCAR.alteration() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Alteration U <- runif(n=nobs,min=0,max=1) # Covariates for "abundance" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta <- vector() for (n in 1:nobs) { logit.theta[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta <- inv.logit(logit.theta) set.seed(seed) y.1 <- rbinom(nobs,1,theta) # Alteration u <- rbinom(nobs,1,U) # Abundance set.seed(seed) log.lambda <- W %*% gamma.target lambda <- exp(log.lambda) set.seed(seed) y.2 <- rpois(nobs,lambda) #== Simulating response variable Y <- y.2*(1-u)*y.1 #== Data-set Data <- data.frame(Y,cells,X1,X2,U) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,cells,X1,X2,W1,W2,U) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== Site-occupancy model mod.hSDM.ZIP.iCAR.alteration <- hSDM.ZIP.iCAR.alteration(counts=Data$Y, suitability=~X1+X2, abundance=~1, spatial.entity=Data$cells, alteration=Data$U, data=Data, n.neighbors=n.neighbors, neighbors=adj, ## suitability.pred=NULL, ## spatial.entity.pred=NULL, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIP.iCAR.alteration$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIP.iCAR.alteration.pdf") plot(mod.hSDM.ZIP.iCAR.alteration$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIP.iCAR.alteration.pdf") plot(mod.hSDM.ZIP.iCAR.alteration$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIP.iCAR.alteration$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean) # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIP.iCAR.alteration$prob.p.pred pdf(file="Summary_hSDM.ZIP.iCAR.alteration.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and counts") plot(Data,add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Predicted counts") plot(Data,add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
## Not run: #============================================== # hSDM.ZIP.iCAR.alteration() # Example with simulated data #============================================== #============ #== Preambule library(hSDM) library(raster) library(sp) library(mvtnorm) #================== #== Data simulation # Set seed for repeatability seed <- 1234 # Target parameters beta.target <- matrix(c(0.2,0.5,0.5),ncol=1) gamma.target <- matrix(c(1),ncol=1) ## Uncomment if you want covariates on the observability process ## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1) Vrho.target <- 1 # Spatial Variance # Landscape Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1') ncell <- ncell(Landscape) # Neighbors neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE) n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2] adj <- neighbors.mat[,2] # Generate symmetric adjacency matrix, A A <- matrix(0,ncell,ncell) index.start <- 1 for (i in 1:ncell) { index.end <- index.start+n.neighbors[i]-1 A[i,adj[c(index.start:index.end)]] <- 1 index.start <- index.end+1 } # Spatial effects d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular covrho <- Vrho.target*solve(Q) # Covariance of rhos set.seed(seed) rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects rho <- rho-mean(rho) # Centering rhos on zero # Visited cells n.visited <- 150 # Compare with 400, 350 and 100 for example set.seed(seed) visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random notvisited.cells <- c(1:ncell)[-visited.cells] # Number of observations nobs <- 300 # Cell vector set.seed(seed) cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE)) coords <- xyFromCell(Landscape,cells) # Get coordinates # Covariates for "suitability" process set.seed(seed) X1.cell <- rnorm(n=ncell,0,1) set.seed(2*seed) X2.cell <- rnorm(n=ncell,0,1) X1 <- X1.cell[cells] X2 <- X2.cell[cells] X <- cbind(rep(1,nobs),X1,X2) # Alteration U <- runif(n=nobs,min=0,max=1) # Covariates for "abundance" process W <- cbind(rep(1,nobs)) ## Uncomment if you want covariates on the observability process ## set.seed(3*seed) ## W1 <- rnorm(n=nobs,0,1) ## set.seed(4*seed) ## W2 <- rnorm(n=nobs,0,1) ## W <- cbind(rep(1,nobs),W1,W2) #== Simulating latent variables # Suitability logit.theta <- vector() for (n in 1:nobs) { logit.theta[n] <- X[n,]%*%beta.target+rho[cells[n]] } theta <- inv.logit(logit.theta) set.seed(seed) y.1 <- rbinom(nobs,1,theta) # Alteration u <- rbinom(nobs,1,U) # Abundance set.seed(seed) log.lambda <- W %*% gamma.target lambda <- exp(log.lambda) set.seed(seed) y.2 <- rpois(nobs,lambda) #== Simulating response variable Y <- y.2*(1-u)*y.1 #== Data-set Data <- data.frame(Y,cells,X1,X2,U) ## Uncomment if you want covariates on the observability process ## Data <- data.frame(Y,cells,X1,X2,W1,W2,U) Data <- SpatialPointsDataFrame(coords=coords,data=Data) plot(Data) #== Data-set for predictions (suitability on each spatial cell) Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell)) #================================== #== Site-occupancy model mod.hSDM.ZIP.iCAR.alteration <- hSDM.ZIP.iCAR.alteration(counts=Data$Y, suitability=~X1+X2, abundance=~1, spatial.entity=Data$cells, alteration=Data$U, data=Data, n.neighbors=n.neighbors, neighbors=adj, ## suitability.pred=NULL, ## spatial.entity.pred=NULL, suitability.pred=Data.pred, spatial.entity.pred=Data.pred$cells, burnin=5000, mcmc=5000, thin=5, beta.start=0, gamma.start=0, Vrho.start=10, priorVrho="1/Gamma", #priorVrho="Uniform", #priorVrho=10, mubeta=0, Vbeta=1.0E6, mugamma=0, Vgamma=1.0E6, shape=0.5, rate=0.0005, #Vrho.max=1000, seed=1234, verbose=1, save.rho=1, save.p=0) #========== #== Outputs #= Parameter estimates summary(mod.hSDM.ZIP.iCAR.alteration$mcmc) #= MCMC and posteriors pdf(file="Posteriors_hSDM.ZIP.iCAR.alteration.pdf") plot(mod.hSDM.ZIP.iCAR.alteration$mcmc) dev.off() pdf(file="Posteriors.rho_hSDM.ZIP.iCAR.alteration.pdf") plot(mod.hSDM.ZIP.iCAR.alteration$rho.pred) dev.off() #= Summary plots # rho r.rho <- r.rho.pred <- r.visited <- Landscape r.rho[] <- rho rho.pred <- apply(mod.hSDM.ZIP.iCAR.alteration$rho.pred,2,mean) r.rho.pred[] <- rho.pred r.visited[] <- 0 r.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean) # prob.p r.prob.p <- Landscape r.prob.p[] <- mod.hSDM.ZIP.iCAR.alteration$prob.p.pred pdf(file="Summary_hSDM.ZIP.iCAR.alteration.pdf") par(mfrow=c(3,2)) plot(r.rho, main="rho target") plot(r.visited,main="Visited cells and counts") plot(Data,add=TRUE,pch=16,cex=0.5) plot(r.rho.pred, main="rho estimated") plot(rho[visited.cells],rho.pred[visited.cells], xlab="rho target", ylab="rho estimated") points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue") legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n") abline(a=0,b=1,col="red") plot(r.prob.p,main="Predicted counts") plot(Data,add=TRUE,pch=16,cex=0.5) dev.off() ## End(Not run)
Compute generalized logit and generalized inverse logit functions.
logit(x, min = 0, max = 1) inv.logit(x, min = 0, max = 1)
logit(x, min = 0, max = 1) inv.logit(x, min = 0, max = 1)
x |
value(s) to be transformed |
min |
Lower end of logit interval |
max |
Upper end of logit interval |
The generalized logit function takes values on [min, max] and transforms them to span [-Inf,Inf] it is defined as:
where
The generized inverse logit function provides the inverse transformation:
where
Transformed value(s).
Gregory R. Warnes <[email protected]>
## Not run: x <- seq(0,10, by=0.25) xt <- logit(x, min=0, max=10) cbind(x,xt) y <- inv.logit(xt, min=0, max=10) cbind(x,xt,y) ## End(Not run)
## Not run: x <- seq(0,10, by=0.25) xt <- logit(x, min=0, max=10) cbind(x,xt) y <- inv.logit(xt, min=0, max=10) cbind(x,xt,y) ## End(Not run)
Data come from a small region including 476 one minute by
one minute grid cells. This region is is a small corner of South
Africa's Cape Floristic Region, and includes very high plant species
diversity and a World Biosphere Reserve. The data frame can be used as
an example for several functions in the hSDM
package.
neighbors.Latimer2006
is a vector of 3542 integers indicating
the neighbors (adjacent cells) of each spatial cell. The vector is of
the form c(neighbors of cell 1, neighbors of cell 2, ... , neighbors
of the last cell).
Latimer et al. (2006) Ecological Applications, Appendix B
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Predicted values for models fitted with hSDM
## S3 method for class 'hSDM' predict(object,newdata=NULL,type="mean",probs=c(0.025,0.975),...)
## S3 method for class 'hSDM' predict(object,newdata=NULL,type="mean",probs=c(0.025,0.975),...)
object |
An object of class |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used. |
type |
Type of prediction. Can be |
probs |
Numeric vector of probabilities with values in [0,1] and used when |
... |
Further arguments passed to or from other methods. |
Return a vector for the predictive posterior mean when type="mean"
, a data-frame with the mean and quantiles when type="quantile"
or an mcmc
object (see coda
package) with posterior distribution for each prediction when type="posterior"
.
Ghislain Vieilledent [email protected]
The species data were collected by the Protea Atlas Project of South Africa’s National Botanical Institute.
cfr.env
is a data frame with 2934 presence-absence observation points.
Occurrence
presence (1) or absence (0) of the species
lon
longitude
lat
latitude
Cory Merow's personal data
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.