
Package: gtfs2gps (via r-universe)
December 8, 2024

Type Package

Title Converting Transport Data from GTFS Format to GPS-Like Records

Version 2.1-2

URL https://github.com/ipeaGIT/gtfs2gps,

https://ipeagit.github.io/gtfs2gps/

BugReports https://github.com/ipeaGIT/gtfs2gps/issues

Description Convert general transit feed specification (GTFS) data to
global positioning system (GPS) records in 'data.table' format.
It also has some functions to subset GTFS data in time and
space and to convert both representations to simple feature
format.

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 3.5)

Suggests rmarkdown, markdown, knitr, testthat, dplyr, bit64

Imports data.table, furrr, future, gtfstools, Rcpp, units, sf, terra,
sfheaders, progressr, lwgeom, checkmate

RoxygenNote 7.3.2

VignetteBuilder knitr

LinkingTo Rcpp

NeedsCompilation yes

Author Rafael H. M. Pereira [aut]
(<https://orcid.org/0000-0003-2125-7465>), Pedro R. Andrade
[aut, cre] (<https://orcid.org/0000-0001-8675-4046>), Joao
Bazzo [aut] (<https://orcid.org/0000-0003-4536-5006>), Daniel
Herszenhut [ctb] (<https://orcid.org/0000-0001-8066-1105>),
Marcin Stepniak [ctb], Marcus Saraiva [ctb]
(<https://orcid.org/0000-0001-6218-2338>), Ipea - Institue for
Applied Economic Research [cph, fnd]

Maintainer Pedro R. Andrade <pedro.andrade@inpe.br>

1

https://github.com/ipeaGIT/gtfs2gps
https://ipeagit.github.io/gtfs2gps/
https://github.com/ipeaGIT/gtfs2gps/issues
https://orcid.org/0000-0003-2125-7465
https://orcid.org/0000-0001-8675-4046
https://orcid.org/0000-0003-4536-5006
https://orcid.org/0000-0001-8066-1105
https://orcid.org/0000-0001-6218-2338

2 adjust_arrival_departure

Repository CRAN

Date/Publication 2024-10-08 07:00:06 UTC

Config/pak/sysreqs libgdal-dev gdal-bin libgeos-dev make libssl-dev
libproj-dev libsqlite3-dev libudunits2-dev

Contents
adjust_arrival_departure . 2
adjust_speed . 3
append_height . 4
filter_single_trip . 5
filter_valid_stop_times . 6
gps_as_sflinestring . 6
gps_as_sfpoints . 7
gtfs2gps . 8
gtfs_shapes_as_sf . 10
gtfs_stops_as_sf . 11
read_gtfs . 11
remove_invalid . 12
simplify_shapes . 13
test_gtfs_freq . 13
write_gtfs . 14

Index 15

adjust_arrival_departure

Adjust the arrival and departure times of a GTFS data

Description

Some GTFS.zip data have issues related to arrival and departure time on stops. This function makes
sure the GTFS has dis/embarking times at each stop. For each stop time row, this function applies
the following steps:

1. If there is ‘arrival_time‘ but no ‘departure_time‘, it creates a departure_time column by summing
the arrival plus a pre-defined ‘min_lag‘.

2. If there is ‘departure_time‘ but no ‘arrival_time‘, it creates an arrival_time column by subtracting
a pre-defined ‘min_lag‘ from the departure.

3. If there is an ‘arrival_time‘ and a ‘departure_time‘ but their difference is smaller than ‘min_lag‘,
it reduces the ‘arrival_time‘ and increases ‘departure_time‘ so that the difference will be exactly
‘min_lag‘.

Usage

adjust_arrival_departure(gtfs_data, min_lag = 20)

adjust_speed 3

Arguments

gtfs_data A GTFS data created with read_gtfs.

min_lag Numeric. Minimum waiting time when a vehicle arrives at a stop. It can be a
numeric or a units value that can be converted to seconds. Default is 20s.

Value

A GTFS with adjusted ‘arrival_time‘ and ‘departure_time‘ on data.table ‘stop_times‘.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package="gtfs2gps"))

poa <- adjust_arrival_departure(poa)

adjust_speed Adjust the speeds of a gps-like table created with gtfs2gps

Description

Some GTFS.zip data sets might have quality issues, for example by assuming that a trip speed is
unreasonably high (e.g. an urban bus running over 100 Km/h), or in other cases the ‘timestamp‘
information might be missing for some route segments. This can lead a gps-like table to have ‘NA‘
or unrealistic ‘speed‘ and ‘timestamp‘ values. This function allows the user to adjust the speed
of trips and updates ‘timestamp‘ values accordingly. The user can adjust the problematic speeds
by either setting a custom constant value, or by considering the average of all valid trips speed
(Default). The columns ‘timestamp‘ and ‘cumtime‘ are updated accordingly.

Usage

adjust_speed(
gps_data,
min_speed = 2,
max_speed = 80,
new_speed = NULL,
clone = TRUE

)

Arguments

gps_data A GPS-like data.table created with gtfs2gps.

min_speed Minimum speed to be considered as valid. It can be a numeric (in km/h) or a
units value able to be converted to km/h. Values below minimum speed will be
adjusted. Defaults to 2 km/h.

max_speed Maximum speed to be considered as valid. It can be a numeric (in km/h) or a
units value able to be converted to km/h. Values above maximum speed will be
adjusted. Defaults to 80 km/h.

4 append_height

new_speed Speed to replace missing values as well as values outside min_speed and max_speed
range. It can be a numeric (in km/h) or a units value able to be converted to km/h.
By default, ‘new_speed = NULL‘ and the function considers the average speed
of the entire gps data.

clone Use a copy of the gps_data? Defaults to TRUE.

Value

A GPS-like data with adjusted ‘speed‘ values. The columns ‘timestamp‘ and ‘cumtime‘ are also
updated accordingly.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package="gtfs2gps")) |>
gtfstools::filter_by_shape_id("T2-1") |>
gtfstools::filter_by_weekday(c("monday", "wednesday")) |>
filter_single_trip()

poa_gps <- gtfs2gps(poa)
poa_gps_new <- adjust_speed(poa_gps)

append_height Add a column with height to GPS data

Description

Add a column named height to GPS data using a tif data as reference.

Usage

append_height(gps, heightfile)

Arguments

gps A GPS data created from gtfs2gps().

heightfile The pathname of a tif file with height data.

Value

The GPS data with a new column named height.

filter_single_trip 5

Examples

Not run:
this example takes more than 10s to run

fortaleza <- system.file("extdata/fortaleza.zip", package = "gtfs2gps")
srtmfile <- system.file("extdata/fortaleza-srtm.tif", package = "gtfs2gps")

gtfs <- read_gtfs(fortaleza) |>
gtfstools::filter_by_shape_id("shape836-I") |>
filter_single_trip()

fortaleza_gps <- gtfs2gps(gtfs, spatial_resolution = 500) |> append_height(srtmfile)

End(Not run)

filter_single_trip Filter GTFS trips in order to have one trip per shape_id

Description

Filter a GTFS data by keeping only one trip per shape_id. It also removes the unnecessary routes
and stop_times accordingly.

Usage

filter_single_trip(gtfs_data)

Arguments

gtfs_data A list of data.tables read using gtfs2gps::reag_gtfs().

Value

A filtered GTFS data.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps"))

subset <- filter_single_trip(poa)

6 gps_as_sflinestring

filter_valid_stop_times

Filter GTFS data using valid stop times

Description

Filter a GTFS data read using gtfs2gps::read_gtfs(). It removes stop_times with NA values in
arrival_time, departure_time, and arrival_time_hms. It also filters stops and routes accordingly.

Usage

filter_valid_stop_times(gtfs_data)

Arguments

gtfs_data A list of data.tables read using gtfs2gps::reag_gtfs().

Value

A filtered GTFS data.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps"))

subset <- filter_valid_stop_times(poa)

gps_as_sflinestring Converts a GPS-like data.table to a LineString Simple Feature (sf) ob-
ject

Description

Every interval of GPS data points between stops for each trip_id is converted into a linestring
segment. The output assumes constant average speed between consecutive stops.

Usage

gps_as_sflinestring(gps)

Arguments

gps A data.table with timestamp data.

Value

A simple feature (sf) object with LineString data.

gps_as_sfpoints 7

Examples

library(gtfs2gps)

poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps"))
poa_subset <- gtfstools::filter_by_shape_id(poa, c("T2-1", "A141-1")) |>

filter_single_trip()

poa_gps <- gtfs2gps(poa_subset)

poa_gps_sf <- gps_as_sflinestring(poa_gps)

gps_as_sfpoints Convert GPS-like data.table to a Simple Feature points object

Description

Convert a GPS data stored in a data.table into Simple Feature points.

Usage

gps_as_sfpoints(gps, crs = 4326)

Arguments

gps A data.table with timestamp data.

crs A Coordinate Reference System. The default value is 4326 (latlong WGS84).

Value

A simple feature (sf) object with point data.

Examples

library(gtfs2gps)

fortaleza <- read_gtfs(system.file("extdata/fortaleza.zip", package = "gtfs2gps"))
srtmfile <- system.file("extdata/fortaleza-srtm.tif", package="gtfs2gps")

subset <- fortaleza |>
gtfstools::filter_by_weekday(c("monday", "wednesday")) |>
filter_single_trip() |>
gtfstools::filter_by_shape_id("shape806-I")

for_gps <- gtfs2gps(subset)
for_gps_sf_points <- gps_as_sfpoints(for_gps)

8 gtfs2gps

gtfs2gps Convert GTFS to GPS-like data given a spatial resolution

Description

Convert GTFS data to GPS format by sampling points using a given spatial resolution. This function
creates additional points in order to guarantee that two points in a same trip will have at most a
given distance, indicated as a spatial resolution. It is possible to use future package to parallelize
the execution (or use argument plan). This function also uses progressr internally to show progress
bars. See the example below on how to show a progress bar while executing this function.

Usage

gtfs2gps(
gtfs_data,
spatial_resolution = 100,
parallel = TRUE,
ncores = NULL,
strategy = NULL,
filepath = NULL,
compress = FALSE,
snap_method = "nearest2",
continue = FALSE,
quiet = FALSE

)

Arguments

gtfs_data A path to a GTFS file to be converted to GPS, or a GTFS data represented as a
list of data.tables.

spatial_resolution

The spatial resolution in meters. Default is 100m. This function only creates
points in order to guarantee that the minimum distance between two consecutive
points will be at most the spatial_resolution. If a given shape has two consecu-
tive points with a distance lower than the spatial resolution, the algorithm will
not remove such points.

parallel Decides whether the function should run in parallel. Defaults is FALSE. When
TRUE, it will use all cores available minus one using future::plan() with strategy
"multisession" internally. Note that it is possible to create your own plan before
calling gtfs2gps(). In this case, do not use this argument.

ncores Number of cores to be used in parallel execution. When ‘parallel = FALSE‘,
this argument is ignored. When ‘parallel = TRUE‘, then by default the function
uses all available cores minus one.

strategy This argument is deprecated. Please use argument plan instead or use future::plan()
directly.

gtfs2gps 9

filepath Output file path. As default, the output is returned when gtfs2gps finishes. When
this argument is set, each route is saved into a txt file within filepath, with the
name equals to its id. In this case, no output is returned. See argument compress
for another option.

compress Argument that can be used only with filepath. When TRUE, it compresses the
output files by saving them using rds format. Default value is FALSE. Note that
compress guarantees that the data saved will be read in the same way as it was
created in R. If not compress, the txt extension requires the data to be converted
from ITime to string, and therefore they need to manually converted back to
ITime to be properly handled by gtfs2gps.

snap_method The method used to snap stops to the route geometry. There are two available
methods: ‘nearest1‘ and ‘nearest2‘. Defaults to ‘nearest2‘. See details for more
info.

continue Argument that can be used only with filepath. When TRUE, it skips process-
ing the shape identifiers that were already saved into files. It is useful to con-
tinue processing a GTFS file that was stopped for some reason. Default value is
FALSE.

quiet Hide messages while processing the data? Defaults to FALSE.

Details

After creating geometry points for a given shape id, the ‘gtfs2gps()‘ function snaps the stops to
the route geometry. Two strategies are implemented to do this. - The ‘nearest2‘ method (default)
triangulates the distance between each stop and the two nearest points in the route geometry to
decide which point the stop should be snapped to. If there is any stop that is further away to the route
geometry than ‘spatial_resolution‘, the algorithm recursively doubles the ‘spatial_resolution‘ to do
the search/snap of all stops. - The ‘nearest1‘ method traverses the geometry points computing their
distances to the first stop. Whenever it finds a distance to the stop smaller than ‘spatial_resolution‘,
then the stop will be snapped to such point. The algorithm then applies the same strategy to the next
stop until the vector of stops end.

The ‘speed‘, ‘cumdist‘, and ‘cumtime‘ are based on the difference of distance and time between the
current and previous row of the same trip. It means that the first data point at the first stop of each
trip represens a stationary vehicle. The ‘adjust_speed()‘ function can be used to post-process the
output to replace eventual ‘NA‘ values in the ‘speed‘ column.

Each stop is presented as two data points for each trip in the output. The ‘timestamp‘ value in
the first data point represents the time when the vehicle arrived at that stop (corresponding the
‘arrival_time‘ column in the ‘stop_times.txt‘ file), while the ‘timestamp‘ in the second data point
represents the time when the vehicle departured from that stop (corresponding the ‘departure_time‘
column in the ‘stop_times.txt‘ file). The second point considers that the vehicle is stationary at the
stop, immediately before departing.

Some GTFS feeds do not report embark/disembark times (so ‘arrival_time‘ and ‘departure_time‘
are identical at the same stop). In this case, the user can call the ‘adjust_arrival_departure()‘ function
to set the minimum time each vehicle will spend at stops to embark/disembark passengers.

To avoid division by zero, the minimum speed of vehicles in the output is 1e-12 Km/h, so that
vehicles are never completely stopped.

10 gtfs_shapes_as_sf

Value

A ‘data.table‘, where each row represents a GPS point. The following columns are returned (units
of measurement in parenthesis): dist and cumdist (meters), cumtime (seconds), shape_pt_lon and
shape_pt_lat (degrees), speed (km/h), timestamp (hh:mm:ss).

Examples

library(gtfs2gps)

gtfs <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps")) |>
gtfstools::filter_by_shape_id("T2-1") |>
filter_single_trip()

poa_gps <- progressr::with_progress(gtfs2gps(gtfs, quiet=TRUE))

gtfs_shapes_as_sf Convert GTFS shapes to simple feature object

Description

Convert a GTFS shapes data loaded using gtfs2gps::read_gtf() into a line simple feature (sf).

Usage

gtfs_shapes_as_sf(gtfs, crs = 4326)

Arguments

gtfs A GTFS data.

crs The coordinate reference system represented as an EPSG code. The default
value is 4326 (latlong WGS84)

Value

A simple feature (sf) object.

Examples

poa <- read_gtfs(system.file("extdata/saopaulo.zip", package = "gtfs2gps"))
poa_sf <- gtfs_shapes_as_sf(poa)

gtfs_stops_as_sf 11

gtfs_stops_as_sf Convert GTFS stops to simple feature object

Description

Convert a GTFS stops data loaded using gtfs2gps::read_gtf() into a point simple feature (sf).

Usage

gtfs_stops_as_sf(gtfs, crs = 4326)

Arguments

gtfs A GTFS data.

crs The coordinate reference system represented as an EPSG code. The default
value is 4326 (latlong WGS84)

Value

A simple feature (sf) object.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps"))
poa_shapes <- gtfs_shapes_as_sf(poa)
poa_stops <- gtfs_stops_as_sf(poa)

read_gtfs Read GTFS data into a list of data.tables

Description

Read files of a zipped GTFS feed and load them to memory as a list of data.tables. It will load the
following files: "shapes.txt", "stop_times.txt", "stops.txt", "trips.txt", "agency.txt", "calendar.txt",
"routes.txt", and "frequencies.txt", with this last four being optional. If one of the mandatory files
does not exit, this function will stop with an error message.

Usage

read_gtfs(gtfszip, quiet = FALSE)

Arguments

gtfszip A zipped GTFS data.

quiet A logical. Whether to hide log messages and progress bars. Defaults to ‘FALSE‘.

12 remove_invalid

Value

A list of data.tables, where each index represents the respective GTFS file name.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps"))

remove_invalid Remove invalid objects from GTFS data

Description

Remove all objects from GTFS data that are not used in all relations that they are required to be.
That is, agency-routes relation (agency_id), routes-trips relation (route_id), trips-shapes relation
(shape_id), trips-frequencies relation (trip_id), trips-stop_times relation (trip_id), stop_times-stops
relation (stop_id), and trips-calendar relation (service_id), recursively, until GTFS data does not
reduce its size anymore. For example, if one agency_id belongs to routes but not to agency will be
removed. This might cause one cascade removal of objects in other relations that originally did not
have any inconsistency.

Usage

remove_invalid(gtfs_data, only_essential = TRUE, prompt_invalid = FALSE)

Arguments

gtfs_data A list of data.tables read using gtfs2gps::reag_gtfs().

only_essential Remove only the essential files? The essential files are all but agency, calendar,
and routes. Default is TRUE, which means that agency-routes, routes-trips, and
trips-calendar relations will not be processed as restrictions to remove objects.

prompt_invalid Show the invalid objects. Default is FALSE.

Value

A subset of the input GTFS data.

Examples

poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps"))
object.size(poa)
subset <- remove_invalid(poa)
object.size(subset)

simplify_shapes 13

simplify_shapes Simplify shapes of a GTFS file

Description

Remove points from the shapes of a GTFS file in order to reduce its size. It uses Douglas-Peucker
algorithm internally.

Usage

simplify_shapes(gtfs_data, tol = 0)

Arguments

gtfs_data A list of data.tables read using gtfs2gps::read_gtfs().

tol Numerical tolerance value to be used by the Douglas-Peucker algorithm. The
default value is 0, which means that no data will be lost.

Value

A GTFS data whose shapes is a subset of the input data.

test_gtfs_freq Test whether a GTFS feed is frequency based

Description

Test whether a GTFS feed is frequency based or whether it presents detailed time table for all routes
and trip ids.

Usage

test_gtfs_freq(gtfs)

Arguments

gtfs A GTFS data set stored in memory as a list of data.tables/data.frames.

Value

A string "frequency" or "simple".

14 write_gtfs

write_gtfs Write GTFS data into a zip file

Description

Write GTFS stored in memory as a list of data.tables into a zipped GTFS feed. This function
overwrites the zip file if it exists.

Usage

write_gtfs(gtfs, zipfile, overwrite = TRUE, quiet = FALSE)

Arguments

gtfs A GTFS data set stored in memory as a list of data.tables/data.frames.

zipfile The pathname of a .zip file to be saved with the GTFS data.

overwrite A logical. Whether to overwrite an existing .zip file. Defaults to TRUE.

quiet A logical. Whether to hide log messages and progress bars. Defaults to TRUE.

Value

The status value returned by the external zip command, invisibly.

Examples

read a gtfs.zip to memory
poa <- read_gtfs(system.file("extdata/poa.zip", package = "gtfs2gps")) |>

gtfstools::filter_by_shape_id("T2-1") |>
filter_single_trip()

write GTFS data into a zip file
write_gtfs(poa, paste0(tempdir(), "/mypoa.zip"))

Index

adjust_arrival_departure, 2
adjust_speed, 3
append_height, 4

filter_single_trip, 5
filter_valid_stop_times, 6

gps_as_sflinestring, 6
gps_as_sfpoints, 7
gtfs2gps, 3, 8
gtfs_shapes_as_sf, 10
gtfs_stops_as_sf, 11

read_gtfs, 3, 11
remove_invalid, 12

simplify_shapes, 13

test_gtfs_freq, 13

write_gtfs, 14

15

	adjust_arrival_departure
	adjust_speed
	append_height
	filter_single_trip
	filter_valid_stop_times
	gps_as_sflinestring
	gps_as_sfpoints
	gtfs2gps
	gtfs_shapes_as_sf
	gtfs_stops_as_sf
	read_gtfs
	remove_invalid
	simplify_shapes
	test_gtfs_freq
	write_gtfs
	Index

