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1 Introduction to (Generalized) Partial Linear Models

The generalized linear model (GLM) is a regression model that can be written as

E(Y |X) = G(XTβ),

where Y is the dependent variable, X a vector of explanatory variables, β the unknown pa-
rameter vector and G(•) a known function (the inverse link function). The generalized partial
linear model (GPLM) extends this GLM by a nonparametric component:

E(Y |X,T ) = G{XTβ +m(T )}.

Here, it is assumed that the explanatory variables split into two vectors, X and T . The vector
X denotes a p-variate random vector which typically covers discrete covariables or variables
that are known to in�uence the index in a linear way. The vector T is a q-variate random vector
of continuous covariables to be modeled in a nonparametric way. As before, β = (β1, . . . , βp)

T

denotes a �nite dimensional unknown parameter, while m(•) is an unknown q-variate smooth
function.

As for the GLM, the dependent variable Y may originate from an exponential family. This
means to assume that the variance Var(Y |X,T ) may depend on the predictor XTβ + m(T )
and on a dispersion parameter σ2, i.e.

Var(Y |X,T ) = σ2V
(
G{XTβ +m(T )}

)
.

Possible distributions for Y are for example (McCullagh and Nelder; 1989):

� discrete distributions: Bernoulli, Binomial, Poisson, Geometric, Negative Binomial,

� continuous distributions: Normal, Exponential, Gamma, Inverse Normal.

It is easy to see that GPLM covers other semi-non-parametric models, as for example:

� the partial linear model (PLM), i.e. Y = XTβ +m(T ) + ε with ε ∼ N(0, σ2) implying
E(Y |X,T ) = XTβ +m(T ) and Var(Y |X,T ) = σ2, (Speckman; 1988; Robinson; 1988).

� the generalized additive model (GAM) with a linear and a single nonparametric component
function, i.e. E(Y |X,T ) = G{XTβ +m(T )} (Hastie and Tibshirani; 1990).

2 Estimation Methods

The estimation approaches for the GPLM are essentially based on the idea that an estimate
β̂ can be found for known m(•), and an estimate m̂(•) can be found for known β. This
section introduces two di�erent estimation methods, a generalized Speckman estimator and
the classical back�tting approach. A more detailed presentation of these methods can be found
in Müller (2001) and Härdle et al. (2004, Chapters 4, 5 and 7).

Recall the �rst two conditional moments of Y are speci�ed as

E(Y |X,T ) = µ = G(η) = G{XTβ +m(T )} ,
Var(Y |X,T ) = σ2V (µ) .
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We will now discuss the estimation of β and m(•) by means of the sample values {yi,xi, ti},
i = 1, . . . , n. It should be pointed out that we focus on the estimation of β and m(•). The
additional scale parameter σ can be obtained from

σ̂2 =
1

n

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
, (1)

when we denote µ̂i = G(η̂i) estimated from η̂i = xT
i β̂ + m̂(ti).

2.1 Speckman Type Estimation

The Speckman estimator (Speckman; 1988) was originally derived for the PLM. In our setup
that means to consider a model with the identity link G and normally distributed error terms:

Y = XTβ +m(T ) + ε , ε ∼ N(0, σ2) .

Taking the conditional expectation w.r.t. T and di�erencing the two equations leads to (Härdle
et al.; 2004, Section 7.1):

Y − E(Y |T )︸ ︷︷ ︸
Ỹ

=
{
X − E(X|T )︸ ︷︷ ︸

X̃

}⊤
β + ε− E(ε|T )︸ ︷︷ ︸

ε̃

,

i.e. a modi�ed regression equation in X̃ and Ỹ that allows to separately estimate the parameter
vector β. The modi�ed variables X̃ and Ỹ are calculated using the fact that the conditional
expectation E(•|T ) can be estimated through a (nonparametric) regression on the explanatory
variable T .

To formulate the estimation procedure we introduce the following terms based on the sample
values {yi,xi, ti}:

y =

 y1
...
yn

 , X =

 x11 . . . x1p
...

. . .
...

xn1 . . . xnp

 , m =

 m(t1)
...

m(tn)


If we denote the regression operator (hat matrix) by S, then Speckman's estimation method
for the PLM can be summarized as follows:

Speckman estimation for the PLM

� calculate
X̃ = (I − S)X and ỹ = (I − S)y

� estimate β
β̂ = (X̃ T X̃ )−1X̃ T ỹ

� estimate m
m̂ = S(y −X β̂)
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Optionally, the estimation steps for β and m can be used as updating step in an iteration up
to convergence.

In case of a Nadaraya�Watson kernel type regression (Härdle et al.; 2004, Section 4.1), we
consider the smoother matrix S with elements

Sij =
Kh(ti − tj)

n∑
k=1

Kh(tk − tj)
, (2)

where K denotes a multidimensional kernel function and h the respective bandwidth vector
(the dimension being equal to the dimension of T ). By Kh we abbreviate the componentwise
rescaled kernel function

Kh(u) =
1

h1· . . . ·hq

K
(
u1

h1

, . . . ,
uq

hq

)
for q-dimensional vectors u and h. (See Subsection 2.3.2 for more details on possible kernel
functions.) For the modi�ed regression terms this leads to the calculation of

x̃j = xj −

n∑
i=1

Kh(ti − tj)xi

n∑
k=1

Kh(tk − tj)
and ỹj = yj −

n∑
i=1

Kh(ti − tj) yi

n∑
k=1

Kh(tk − tj)
for j = 1, . . . , n .

The nonparametric component function of the PLM is thus estimated by

m̂j = m̂(tj) =

n∑
i=1

Kh(ti − tj) (yi − xT
i β̂)

n∑
i=1

Kh(ti − tj)
⇐⇒ m̂ = S(y −X β̂) . (3)

In an analogous way, estimates ofm(•) can be calculated at arbitrary design points by replacing
tj in (3).

In the context of a generalized partial linear model (GPLM) we have to take the function G
(inverse link function) and the distribution of Y into account. The estimation method thus
combines the estimation algorithm in a GLM (IRLS = iteratively reweighted least squares, see
McCullagh and Nelder; 1989; Müller; 2012, Chapter III.24) and the Speckman approach for the
PLM.

Generalized linear models (GLMs) are estimated by maximum likelihood (or equivalently min-
imum deviance) estimation. We now denote the individual log-likelihood in a GPLM by

ℓ(µi, yi) = ℓ
(
G
{
xT
i β +m(ti)

}
, yi

)
such that estimating for the full sample means to maximize ℓ(µ,y) =

∑n
i=1 ℓ(µi, yi) . The

di�erence between the GLM and the GPLM is just the nonparametric part m(ti).

In a GLM, the parameter vector β would be estimated by the IRLS algorithm through an
iterative updating β̂

new
= (X TWX )−1X TWz, where z denotes the adjusted dependent variable

vector z = X β̂+W−1v. The vector v denotes the vector of the �rst derivatives of ℓ(µ,y) w.r.t.

the indices ηi = x⊤
i β evaluated at xT

i β̂. Analogously, W = diag(w11, . . . , wnn) is the diagonal
matrix containing the corresponding second derivatives.
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In the case of a GPLM, the adjusted dependent variable is extended by the nonparametric
component:

z = X β̂ + m̂−W−1v, (4)

where v and W are de�ned as before but now evaluated at xT
i β̂ + m̂i. The elements of the

smoother matrix S have to be modi�ed to

Sij =
KH(ti − tj)wii
n∑

i=1

KH(ti − tj)wii

, (5)

where we recall that wii is the i-th diagonal element of W .

The iterative Speckman type estimation algorithm for the GPLM can then be summarized by
the following calculation in each iteration step:

Generalized Speckman estimation for the GPLM

� calculate (in each step)

X̃ = (I − S)X and z̃ = X̃ β̂ −W−1v

� updating step for β

β̂
new

=
(
X̃ TWX̃

)−1

X̃ TWz̃

� updating step for m

m̂new = S
(
z̃ −X β̂

new
)

It is easy to see, that Speckman's method for the PLM is a special case of this generalized
algorithm: In the case of a PLM with normal errors ε ∼ N(0, σ2) we �nd the derivatives of the
log-likelihoods as vi = −(yi − xT

i β −mj)/σ
2 and wii ≡ −1/σ2. Thus the adjusted dependent

variable z̃ equals ỹ and the elements of W cancel out in β̂
new

and S.
Some further calculations (e.g. Müller; 2001) show that X β̂ + m̂ = RSz with

RS = X̃
(
X̃ TWX̃

)−1

X̃ TW(I − S) + S. (6)

where all terms are evaluated at the estimates at convergence. This means that the estimation
method is linear (in z), thus the trace of the hat matrix RS can be used to approximate the
degrees of freedom of the model estimate:

df res = n− trace
(
RS

)
(see e.g. Hastie and Tibshirani; 1990, for an analogous calculation in the back�tting case).

2.2 Back�tting Estimation

The back�tting method has been suggested as an iterative algorithm to �t an additive model
(see Buja et al.; 1989; Hastie and Tibshirani; 1990). Its main idea is to regress the additive
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components separately on partial residuals. The PLM is a again special case, consisting of only
two additive functions. We denote now by P the projection matrix P = X (X TX )−1X T from
a linear regression model and by S the smoother matrix as before. Then back�tting means to
resolve

X β̂ = P(y − m̂)

m̂ = S(y −X β̂)

as y − m̂ are the residuals from a nonparametric �t and y − X β̂ the residuals from a linear
regression. In this simple case an iteration is not necessary (Hastie and Tibshirani; 1990, Section
5.3) and the explicit solution is

β̂ = {X T (I − S)X}−1X T (I − S)y,
m̂ = S(y −X β̂).

These estimators di�er from the Speckman estimators in only a subtle detail: the Speckman
estimator for β shows (I − S)⊤(I − S) instead of (I − S).
The extension of the PLM estimation method to the GPLM follows the same idea as in the
Speckman case: apply the PLM approach using a weighted smoother matrix on the adjusted
dependent variable (Hastie and Tibshirani; 1990, Section 6.7):

Back�tting estimation for the GPLM

� calculate (in each step)

X̃ = (I − S)X and z̃ = X̃ β̂ −W−1v

� updating step for β

β̂
new

=
(
X TWX̃

)−1

X TWz̃,

� updating step for m

m̂
new = S

(
z̃ −X β̂

new
)

As for the generalized Speckman estimation, we also �nd here a linear hat matrix X β̂ + m̂ =
RBz, this time

RB = X̃
(
X TWX̃

)−1

X TW(I − S) + S, (7)

(cf. Hastie and Tibshirani; 1990, Section 6.15).

2.3 Computational Aspects

The estimation approaches presented in Section 2 are implemented in the R package gplm. We
refer to some general computational issues here while speci�c examples can be found in the
following sections.
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2.3.1 GPLM Iteration

� Smoother matrix S
The choice of the matrix determines the way of smoothing that is used to estimate the non-
parametric component function m(•). Even though we have used the Nadaraya�Watson
type smoother for Section 2 any in R available linear smoother (that is able to incorporate
weights) can be used instead. The gplm package covers two possible smoothers:

• kgplm using Nadaraya�Watson type smoothing:

The Speckman and back�tting estimation methods require to compute terms of the
form

n∑
i=1

δiKH(ti − t), (8)

where the δi may be the yi or the weight values wii. This computation has to be
done at least for all sample observations tj (j = 1, . . . , n) since updated values
of m(•) at all observations are required in the updating step for β. Thus O(n2)
operations are necessary. In addition, for example for presentation purposes it can
be useful to estimate the function m(•) on an additional grid. The gplm package
provides the function convol to calculate (8). Di�erent kernel functions are possible:
product or spherical kernels based on triangle, uniform (rectangular), Epanechnikov,
biweight (quartic), triweight and Gaussian (normal) univariate kernel function (see
Subsection 2.3.2).

• sgplm1 using spline smoothing:

This routine uses the smooth.spline function in R, a linear spline smoother which
allows the above mentioned incorporation of weights. In contrast to the kernel
smoother, only O(n) operations for the smoother plus O(n log(n)) for sorting the
data are necessary. On the other hand, this function does only allow for one-
dimensional smoothing.

� Initialization
The presented iterative algorithms (for the GPLM) require �rst an initialization step.
Di�erent strategies to initialize the iterative algorithm are possible:

• Start with β̃, m̃(•) from a parametric (GLM) �t.

• Alternatively, start with β = 0 and m(tj) = G−1(yj) (for example with the adjust-
ment mj = G−1{(yj + 0.5)/2} for binary responses).

• Back�tting procedures often use β = 0 and m(tj) ≡ G−1(y).

In practice, we do not �nd large di�erences between the approaches. kgplm and sgplm1

use the third variant. It is however possible to set the initial values in a di�erent manner
by using the optional parameter b.start and m.start.

2.3.2 Kernel Functions

The R functions kde (kernel density estimation), kreg (kernel regression) and kgplm use mul-
tidimensional kernel functions to implement the smoothing procedure.

� Product kernel functions
The q-dimensional product kernels are obtained by multiplying one-dimensional kernel
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functions K:
K(u) = K(u1)· . . . ·K(uq) .

� Spherical kernel functions
The q-dimensional spherical (or radially symmetric) kernels are obtained by applying a
one-dimensional kernel functions on the Euclidean norm ∥u∥ of the vector u:

K(u) = cK,q K(∥u∥) .

The constant cK,q is a scaling factor that ensures that the resulting function is a density,
i.e. integrates to 1.

The following table shows the kernel functions implemented in the package gplm. The function
I(•) denotes the indicator function and the constant vq denotes the volume of the q-dimensional
unit sphere:

vq =
πq/2

Γ (1 + q/2)
.

one-dimensional spherical q-dimensional
K(u) K(u)

triangle (1− |u|) I(|u| ≤ 1)
q + 1

vq
(1− ∥u∥) I(∥u∥ ≤ 1)

uniform
1

2
I(|u| ≤ 1)

1

vq
I(∥u∥ ≤ 1)

epanechnikov
3

4
(1− u2) I(|u| ≤ 1)

q + 2

2 vq
(1− ∥u∥2) I(∥u∥ ≤ 1)

biweight
15

16
(1− u2)2 I(|u| ≤ 1)

(q + 2)(q + 4)

8 vq
(1− ∥u∥2)2 I(∥u∥ ≤ 1)

triweight
35

32
(1− u2)3 I(|u| ≤ 1)

(q + 2)(q + 4)(q + 6)

48 vq
(1− ∥u∥2)3 I(∥u∥ ≤ 1)

gaussian
1√
2π

exp(−u2/2)
1

(2π)q/2
exp(−∥u∥2/2)

Note that in the case of a Gaussian kernel the q-dimensional product and spherical kernels
coincide. For references on these kernel functions see for example Silverman (1986, Section
4.2), Fahrmeir and Hamerle (1984, Section 2.5) and Wand and Jones (1995, Section 4.5 and
Appendix B).
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3 Examples for Kernel Density Estimation and Kernel

Regression

We start with some simple examples for kernel density and regression estimation. First we load
the airquality data which are part of the R base package.

> data(airquality)

> attach(airquality)

For the variable Wind we estimate the kernel density estimator and graph it:

> library(gplm)

> fh <- kde(Wind)

> plot(fh, type="l", main="Kernel density estimate (KDE)")

This displays the following �gure:

5 10 15 20

0.
02

0.
04

0.
06

0.
08

0.
10

Kernel density estimate (KDE)

fh$x

fh
$y

By default kde calculates the kernel density estimator using the quartic (biweight) kernel on an
equidistant grid within the range of the data. The default bandwidth is calculated by Scott's
rule of thumb (Scott; 1992, Section 6.3) as kde is indented to work with multivariate data
(Härdle et al.; 2004, Section 3.6). The estimated bandwidth can be obtained by:

> fh$bandwidth

biweight

2.914528

The function kde is also able to calculate the density estimate on a grid of given vlaues. For
example, to add the kernel density estimate at the value x = 10 and x = 15 to our �gure we
could type for example:

> fh.10 <- kde(Wind, grid=c(10,15))

> points(fh.10, col="red", pch=19)

> title("KDE with estimates at x=10, 15 (in red)")

This modi�es our �gure in the following way:
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KDE with estimates at x=10, 15 (in red)

The bandwidth can be modi�ed by setting the bandwidth parameter. Also the kernel function
could be changed:

> fh <- kde(Wind, bandwidth=3, kernel="epanechnikov")

> fh$bandwidth

[1] 3

This provides us with:
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KDE with uniform kernel and bandwidth=3

A two-dimensional kernel density estimate is computed in a similar way:

> fh.biv <- kde(cbind(Wind,Temp))

To obtain a plot of the resulting density surface requires a little more e�ort:

> Wind.grid <- unique(fh.biv$x[,1]) ## extract grids

> Temp.grid <- unique(fh.biv$x[,2])

> o <- order(fh.biv$x[,2],fh.biv$x[,1]) ## order by 2nd column

> fh2 <- matrix(fh.biv$y[o],length(Wind.grid),length(Temp.grid))

> persp(Wind.grid,Temp.grid,fh2,main="bivariate KDE",

+ theta=30,phi=30,expand=0.5,col="lightblue",shade=0.5)
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The resulting surface is shown as:

Wind.grid

Te
m

p.
gr

id
fh2

bivariate KDE

In order to use di�erent grid sizes we could apply for example:

> Wind.grid <- seq(min(Wind),max(Wind),length=20) ## define grid

> Temp.grid <- seq(min(Temp),max(Temp),length=40)

> fh.biv <- kde(cbind(Wind,Temp), grid=create.grid(list(Wind.grid,Temp.grid)))

> o <- order(fh.biv$x[,2],fh.biv$x[,1]) ## order by 2nd column

> fh2a <- matrix(fh.biv$y[o],length(Wind.grid),length(Temp.grid))

> persp(Wind.grid,Temp.grid,fh2a,main="bivariate KDE",

+ theta=30,phi=30,expand=0.5,col="lightblue",shade=0.5)

The now resulting surface shows a �ner grid in the Temp dimension:

Wind.grid

Te
m

p.
gr

id
fh2a

bivariate KDE, different grids

An alternative graphical display is a contour plot computed from:

> contour(Wind.grid,Temp.grid,fh2a, main="KDE Contours")
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KDE Contours
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The function kreg implements the (multivariate) Nadaraya�Watson estimator for estimating
the regression function m(x) = E(Y |x). As a univariate regression example we use the regres-
sion:

> mh <- kreg(Wind, Temp)

> plot(Wind,Temp, col="grey", pch="+")

> lines(mh, col="blue", lwd=2)

> title("Data and Nadaraya--Watson regression")

The default bandwidth is calculated by Scott's rule of thumb. All other options are practically
identical to kde. The considered code displays the �gure:
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Data and Nadaraya−−Watson regression

In the same way as before we can estimate bivariate (or higher dimensional) regression functions:

> airquality2 <- airquality[!is.na(Ozone),] ## delete NA's

> detach(airquality) ## detach previous data

> attach(airquality2)

> bandwidth <- bandwidth.scott(cbind(Wind,Temp))

> mh.biv <- kreg(cbind(Wind,Temp),Ozone, bandwidth=bandwidth)

> Wind.grid <- unique(mh.biv$x[,1]) ## extract grids
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> Temp.grid <- unique(mh.biv$x[,2])

> o <- order(mh.biv$x[,2],mh.biv$x[,1]) ## order by 2nd column

> mh2 <- matrix(mh.biv$y[o],length(Wind.grid),length(Temp.grid))

> persp(Wind.grid,Temp.grid,mh2,main="bivariate KDE",

+ theta=30,phi=30,expand=0.5,col="lightblue",shade=0.5)

The estimated regression surface is:
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bivariate KDE
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4 Examples for a Partial Linear Model (PLM)

To illustrate the PLM we use the data from the Current Population Survey 1985 in package
AER:

> library(AER)

> data(CPS1985)

> str(CPS1985) ## show data structure

'data.frame': 534 obs. of 11 variables:

$ wage : num 5.1 4.95 6.67 4 7.5 ...

$ education : num 8 9 12 12 12 13 10 12 16 12 ...

$ experience: num 21 42 1 4 17 9 27 9 11 9 ...

$ age : num 35 57 19 22 35 28 43 27 33 27 ...

$ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ...

$ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ...

$ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ...

$ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ...

$ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ...

$ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ...

$ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ...

> attach(CPS1985)

It is often assumed that the log(wage) of a person depends linearly on education and nonlin-
early on experience. We can check that by estimating a PLM using gplm:

> library(gplm)

> bandwidth <- bandwidth.scott(experience)

> gh <- kgplm(x=cbind(gender,education),t=experience,y=log(wage),h=bandwidth)

> o <- order(experience) ## sort curve estimate by experience

> plot(experience[o], gh$m[o], type="l")

> title("PLM component function for experience")

Indeed we �nd an inverse U-shaped function showing some artefacts (due to sparse data) at
the right boundary:
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PLM component function for experience
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As before we can compute the estimated function on a �ner grid which also generates a more
smooth picture:

> exp.grid <- seq(min(experience),max(experience),length=200)

> gh2 <- kgplm(x=cbind(gender,education),t=experience,y=log(wage),

+ h=bandwidth,grid=exp.grid)

> plot(exp.grid, gh2$m.grid, type="l", col="blue")

> title("PLM component function for experience (on grid)")
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The R function name kgplm indicates that this function is based on kernel smoothing. An
alternative to kgplm is the function sgplm1 based on splines. This function however does only
estimate univariate PLM component functions. An estimate similar to that by kgplm is found
by:

> gs <- sgplm1(x=cbind(gender,education),t=experience,y=log(wage),df=8)

> o <- order(experience) ## sort curve estimate by experience

> plot(experience[o], gs$m[o], type="l")

> title("PLM component function for experience (sgplm1)")
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Using kgplm we can also estimate a bivariate PLM component function for education and
experience. Technically this follows the examples for a bivariate kernel density or regression.
The function kgplm does however not automatically de�ne a grid. We therefore specify the
grid �rst and then display the function using persp as already shown:

> bandwidth <- 1.5*bandwidth.scott(cbind(education,experience))

> edu.grid <- seq(min(education),max(education),length=25)

> exp.grid <- seq(min(experience),max(experience),length=25)

> grid <- create.grid(list(edu.grid,exp.grid))

> gh <- kgplm(x=(gender=="female"),t=cbind(education,experience),y=log(wage),

+ h=bandwidth,grid=grid)

> o <- order(grid[,2],grid[,1])

> mh <- matrix(gh$m.grid[o],length(edu.grid),length(exp.grid))

> persp(edu.grid,exp.grid,mh,

+ theta=30,phi=30,expand=0.5,col="lightblue",shade=0.5)

> title("bivariate PLM component function")
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5 Examples for a Generalized Partial Linear Model

(GPLM)

For illustrating the GPLM we use another dataset from the AER package, the data on extra-
marital a�airs. In order to consider a binary response we transform the number of a�airs to a
binary indicator variable y:

> library(AER)

> data(Affairs)

> str(Affairs) ## show data structure

'data.frame': 601 obs. of 9 variables:

$ affairs : num 0 0 0 0 0 0 0 0 0 0 ...

$ gender : Factor w/ 2 levels "female","male": 2 1 1 2 2 1 1 2 1 2 ...

$ age : num 37 27 32 57 22 32 22 57 32 22 ...

$ yearsmarried : num 10 4 15 15 0.75 1.5 0.75 15 15 1.5 ...

$ children : Factor w/ 2 levels "no","yes": 1 1 2 2 1 1 1 2 2 1 ...

$ religiousness: int 3 4 1 5 2 2 2 2 4 4 ...

$ education : num 18 14 12 18 17 17 12 14 16 14 ...

$ occupation : int 7 6 1 6 6 5 1 4 1 4 ...

$ rating : int 4 4 4 5 3 5 3 4 2 5 ...

> attach(Affairs)

> y <- (affairs > 0)

The GPLM estimation is again very similar to the PLM estimation. Basically, the only main
di�erence is the speci�cation of the distribution family for the response and the respective link
function. We are now estimate a logit-type GPLM for the response y:

> library(gplm)

> bandwidth <- 1.5*bandwidth.scott(age)

> age.grid <- seq(min(age),max(age),length=200)

> gh <- kgplm(x=cbind(gender,education,yearsmarried),t=age,y=y,h=bandwidth,

+ grid=age.grid,family="bernoulli",link="logit")

> plot(age.grid, gh$m.grid, type="l")

> title("GPLM component function for age")
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Alternatively we can now use sgplm1 again and compare both estimates:

> gs <- sgplm1(x=cbind(gender,education,yearsmarried),t=age,y=y,df=7,

+ grid=age.grid,family="bernoulli",link="logit")

> ylim <- range(gh$m.grid, gs$m.grid)

> plot(age.grid, gh$m.grid, type="l", ylim=ylim)

> lines(age.grid, gs$m.grid, col="seagreen")

> title("GPLM component function for age (kgplm vs. sgplm1)")

> legend("topright",c("kgplm","sgplm1"),lwd=1,col=c("black","seagreen"))
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The previous �gures indicated that extramarital a�airs are less likely for higher age. This
changes if we estimate a bivariate GPLM component function. The following �gure shows that
the propensity varies with age and yearsmarried:
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The following code was used to generate this �gure:

> bandwidth <- 1.5*bandwidth.scott(cbind(age,yearsmarried))

> age.grid <- seq(min(age),max(age),length=25)

> ym.grid <- seq(min(yearsmarried),max(yearsmarried),length=25)

> grid <- create.grid(list(age.grid,ym.grid))

> gh <- kgplm(x=(gender=="female"),t=cbind(age,yearsmarried),y=y,

+ h=bandwidth,grid=grid,family="bernoulli",link="logit")

> o <- order(grid[,2],grid[,1])

> mh <- matrix(gh$m.grid[o],length(age.grid),length(ym.grid))

> persp(age.grid,ym.grid,mh,

+ theta=30,phi=30,expand=0.5,col="lightblue",shade=0.5)

> title("bivariate GPLM component function")
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