
Package: gpg (via r-universe)
October 21, 2024

Type Package

Title GNU Privacy Guard for R

Version 1.3.0

Description Bindings to GnuPG for working with OpenGPG (RFC4880)
cryptographic methods. Includes utilities for public key
encryption, creating and verifying digital signatures, and
managing your local keyring. Some functionality depends on the
version of GnuPG that is installed on the system. On Windows
this package can be used together with 'GPG4Win' which provides
a GUI for managing keys and entering passphrases.

License MIT + file LICENSE

SystemRequirements GPGME: libgpgme-dev (deb), gpgme-devel (rpm) gpgme
(brew). On Linux 'haveged' is recommended for generating
entropy when using the GPG key generator.

RoxygenNote 7.2.3

Imports curl, askpass

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/jeroen/gpg

BugReports https://github.com/jeroen/gpg/issues

Encoding UTF-8

NeedsCompilation yes

Author Jeroen Ooms [aut, cre]
(<https://orcid.org/0000-0002-4035-0289>)

Maintainer Jeroen Ooms <jeroenooms@gmail.com>

Repository CRAN

Date/Publication 2024-09-20 09:00:06 UTC

1

https://github.com/jeroen/gpg
https://github.com/jeroen/gpg/issues
https://orcid.org/0000-0002-4035-0289

2 gpg_encrypt

Contents

gpg_encrypt . 2
gpg_keygen . 3
gpg_keys . 3
gpg_restart . 4
gpg_sign . 5
pinentry . 6

Index 7

gpg_encrypt Encryption

Description

Encrypt or decrypt a message using the public key from the receiver. Optionally the message can
be signed using the private key of the sender.

Usage

gpg_encrypt(data, receiver, signer = NULL)

gpg_decrypt(data, verify = TRUE, as_text = TRUE)

Arguments

data path or raw vector with data to encrypt / decrypt

receiver key id(s) or fingerprint(s) for recepient(s)

signer (optional) key id(s) or fingerprint(s) for the sender(s) to sign the message

verify automatically checks that all signatures (if any) can be verified and raises an
error otherwise

as_text convert output to text. Set to FALSE if you expect binary data.

See Also

Other gpg: gpg_keygen(), gpg_keys, gpg_sign()

gpg_keygen 3

gpg_keygen GPG key generation

Description

Generates a new standard private-public keypair. This function is mostly for testing purposes. Use
the gpg --gen-key command line utility to generate an official GPG key with custom fields and
options.

Usage

gpg_keygen(name, email, passphrase = NULL)

Arguments

name value for the Name-Real field

email value for the Name-Email field

passphrase (optional) protect with a passphrase

References

GPG manual section on Unattended key generation.

See Also

Other gpg: gpg_encrypt(), gpg_keys, gpg_sign()

gpg_keys GPG keyring management

Description

Signing or encrypting with GPG require that the keys are stored in your personal keyring. Use
gpg_version to see which keyring (home dir) you are using. Also see gpg_keygen for generating a
new key.

Usage

gpg_import(file)

gpg_recv(id, search = NULL, keyserver = NULL)

gpg_send(id, keyserver = NULL)

gpg_delete(id, secret = FALSE)

https://www.gnupg.org/documentation/manuals/gnupg/Unattended-GPG-key-generation.html

4 gpg_restart

gpg_export(id, secret = FALSE)

gpg_list_keys(search = "", secret = FALSE)

gpg_list_signatures(id)

Arguments

file path to the key file or raw vector with key data

id unique ID of the pubkey to import (starts with 0x). Alternatively you can specify
a search string.

search string with name or email address to match the key info.

keyserver address of http keyserver. Default behavior is to try several commonly used
servers (MIT, Ubuntu, GnuPG, Surfnet)

secret set to TRUE to list/export/delete private (secret) keys

See Also

Other gpg: gpg_encrypt(), gpg_keygen(), gpg_sign()

Examples

Not run:
Submit key to a specific key server.
gpg_send("87CC261267801A17", "https://keys.openpgp.org")
Submit key to many key servers.
gpg_send("87CC261267801A17")

End(Not run)

gpg_restart Manage the GPG engine

Description

Use gpg_restart() to find the gpg program and home directory (which contains configuration and
keychains). Usually the default should be fine and you do not need to run this function manually.

Usage

gpg_restart(home = NULL, path = NULL, debug = "none", silent = FALSE)

gpg_version(silent = FALSE)

gpg_info()

gpg_options()

gpg_sign 5

Arguments

home path to your GPG configuration directory (including keyrings)

path location of gpg or gpg2 or gpgconf or (on windows) gpgme-w32spawn.exe

debug debugging level, integer between 1 and 9

silent suppress output of gpg --version

Details

Use gpg_info() to get your current engine settings. The gpg_version() function simply calls gpg
--version to see some verbose output about the gpg executable.

gpg_options reads options in the GnuPG configuration file, which is stored by default in ~/.gnupg/gpg.conf.
Note that changing options might affect other software using GnuPG.

Examples

gpg_version()
gpg_info()

gpg_sign PGP Signatures

Description

Utilities to create and verify PGP signatures.

Usage

gpg_verify(signature, data = NULL, error = TRUE)

gpg_sign(data, signer = NULL, mode = c("detach", "normal", "clear"))

Arguments

signature path or raw vector for the gpg signature (contains the PGP SIGNATURE block)

data path or raw vector with data to sign or verify. In gpg_verify this should be
NULL if signature is not detached (i.e. clear or normal signature)

error raise an error if verification fails because you do not have the signer public key
in your keyring.

signer (optional) vector with key ID’s to use for signing. If NULL, GPG tries the user
default private key.

mode use normal to create a full OpenPGP message containing both data and signa-
ture or clear append the signature to the clear-text data (for email messages).
Default detach only returns the signature itself.

6 pinentry

See Also

Other gpg: gpg_encrypt(), gpg_keygen(), gpg_keys

Examples

Not run:
This requires you have the Debian master key in your keyring
msg <- tempfile()
sig <- tempfile()
download.file("http://http.us.debian.org/debian/dists/stable/Release", msg)
download.file("http://http.us.debian.org/debian/dists/stable/Release.gpg", sig)
gpg_verify(sig, msg, error = FALSE)

End(Not run)

pinentry Password Entry

Description

Function to prompt the user for a password to read a protected private key.

Usage

pinentry(prompt = "Enter your GPG passphrase:")

Arguments

prompt the string printed when prompting the user for input.

Details

If available, this function calls the GnuPG pinentry program. However this only works in a termi-
nal. Therefore the IDE can provide a custom password entry widget by setting the askpass option.
If no such option is specified we default to readline.

Index

∗ gpg
gpg_encrypt, 2
gpg_keygen, 3
gpg_keys, 3
gpg_sign, 5

gpg (gpg_sign), 5
gpg_decrypt (gpg_encrypt), 2
gpg_delete (gpg_keys), 3
gpg_encrypt, 2, 3, 4, 6
gpg_export (gpg_keys), 3
gpg_import (gpg_keys), 3
gpg_info (gpg_restart), 4
gpg_keygen, 2, 3, 3, 4, 6
gpg_keys, 2, 3, 3, 6
gpg_list_keys (gpg_keys), 3
gpg_list_signatures (gpg_keys), 3
gpg_options (gpg_restart), 4
gpg_recv (gpg_keys), 3
gpg_restart, 4
gpg_send (gpg_keys), 3
gpg_sign, 2–4, 5
gpg_verify (gpg_sign), 5
gpg_version, 3
gpg_version (gpg_restart), 4

pinentry, 6

readline, 6

7

	gpg_encrypt
	gpg_keygen
	gpg_keys
	gpg_restart
	gpg_sign
	pinentry
	Index

