Title: | GLM-Based Ordination Method |
---|---|
Description: | A zero-inflated quasi-Poisson factor model to display similarity between samples visually in a low (2 or 3) dimensional space. |
Authors: | Michael B. Sohn |
Maintainer: | Michael B. Sohn <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0 |
Built: | 2024-12-16 06:43:10 UTC |
Source: | CRAN |
preliminary analysis of similarity between samples in a low (2 or 3) dimensional display.
Michael B. Sohn
Maintainer: Michael B. Sohn <[email protected]>
Sohn, M.B. and Li, H. (2017). A GLM-Based Latent Variable Ordination Method for Microbiome Samples (Submitted).
## Not run: # load test data data(gomms_test_data); # estimate factor scores cdat <- as.matrix(gomms_test_data[,-ncol(gomms_test_data)]); rslt <- gomms(cdat); # plot estimated factor scores y <- as.matrix(gomms_test_data$group); gomms.plot(rslt, y); ## End(Not run)
## Not run: # load test data data(gomms_test_data); # estimate factor scores cdat <- as.matrix(gomms_test_data[,-ncol(gomms_test_data)]); rslt <- gomms(cdat); # plot estimated factor scores y <- as.matrix(gomms_test_data$group); gomms.plot(rslt, y); ## End(Not run)
estimate factor loadings and scores.
gomms(X, n.factors = 2, min.prop.nonzeros = 0.05, show.max.delta = FALSE)
gomms(X, n.factors = 2, min.prop.nonzeros = 0.05, show.max.delta = FALSE)
X |
raw count data. |
n.factors |
number of factors. Default value is 2. |
min.prop.nonzeros |
minimum proportion of nonzeros allowed in analysis. |
show.max.delta |
display the maximum different between jth and (j+1)th iterations. |
estimated factor scores.
Michael B. Sohn
Maintainer: Michael B. Sohn <[email protected]>
Sohn, M.B. and Li, H. (2017). A GLM-Based Latent Variable Ordination Method for Microbiome Samples (Submitted).
70 samples and 83 features. The last column contains the population identification for each sample.
data(gomms_test_data)
data(gomms_test_data)
plot estimated factor loadings for each sample.
gomms.plot(X, Y, col.markers = NULL, pch.markers = NULL, ...)
gomms.plot(X, Y, col.markers = NULL, pch.markers = NULL, ...)
X |
two dimnsional matrix of factor scores. |
Y |
one or two dimensional matrix of classification. |
col.markers |
user specified colors for classification. |
pch.markers |
user specified plot symbols for classification. |
... |
optional graphical parameters to be passed. |
estimate the probability of a zero from a zero state.
Qqpois(cdat, eta.hat, mu.hat, dispersion)
Qqpois(cdat, eta.hat, mu.hat, dispersion)
cdat |
count Data. |
eta.hat |
estimated proportion of zeros from a zero state. |
mu.hat |
estimated mean count. |
dispersion |
estimated values for dispersion. |
estimated probability of a zero from a zero state.