Title: | Generalized Co-Sparse Factor Regression |
---|---|
Description: | Divide and conquer approach for estimating low-rank and sparse coefficient matrix in the generalized co-sparse factor regression. Please refer the manuscript 'Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127' for more details. |
Authors: | Aditya Mishra [aut, cre], Kun Chen [aut] |
Maintainer: | Aditya Mishra <[email protected]> |
License: | GPL (>= 3.0) |
Version: | 0.1 |
Built: | 2024-12-21 06:47:38 UTC |
Source: | CRAN |
Default control parameters for Generalized co-sparse factor regresion
gofar_control( maxit = 5000, epsilon = 1e-06, elnetAlpha = 0.95, gamma0 = 1, se1 = 1, spU = 0.5, spV = 0.5, lamMaxFac = 1, lamMinFac = 1e-06, initmaxit = 2000, initepsilon = 1e-06, equalphi = 1, objI = 1, alp = 60 )
gofar_control( maxit = 5000, epsilon = 1e-06, elnetAlpha = 0.95, gamma0 = 1, se1 = 1, spU = 0.5, spV = 0.5, lamMaxFac = 1, lamMinFac = 1e-06, initmaxit = 2000, initepsilon = 1e-06, equalphi = 1, objI = 1, alp = 60 )
maxit |
maximum iteration for each sequential steps |
epsilon |
tolerence value set for convergene of gcure |
elnetAlpha |
elastic net penalty parameter |
gamma0 |
power parameter in the adaptive weights |
se1 |
apply 1se sule for the model; |
spU |
maximum proportion of nonzero elements in each column of U |
spV |
maximum proportion of nonzero elements in each column of V |
lamMaxFac |
a multiplier of calculated lambda_max |
lamMinFac |
a multiplier of determing lambda_min as a fraction of lambda_max |
initmaxit |
maximum iteration for initialization problem |
initepsilon |
tolerence value for convergene in the initialization problem |
equalphi |
dispersion parameter for all gaussian outcome equal or not 0/1 |
objI |
1 or 0 convergence on the basis of objective function or not |
alp |
scaling factor corresponding to poisson outcomes |
a list of controling parameter.
Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127
# control variable for GOFAR(S) and GOFAR(P) control <- gofar_control()
# control variable for GOFAR(S) and GOFAR(P) control <- gofar_control()
Divide and conquer approach for low-rank and sparse coefficent matrix estimation: Exclusive extraction
gofar_p( Yt, X, nrank = 3, nlambda = 40, family, familygroup = NULL, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, PATH = FALSE )
gofar_p( Yt, X, nrank = 3, nlambda = 40, family, familygroup = NULL, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, PATH = FALSE )
Yt |
response matrix |
X |
covariate matrix; when X = NULL, the fucntion performs unsupervised learning |
nrank |
an integer specifying the desired rank/number of factors |
nlambda |
number of lambda values to be used along each path |
family |
set of family gaussian, bernoulli, possion |
familygroup |
index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli, "3" for Poisson outcomes |
cIndex |
control index, specifying index of control variable in the design matrix X |
ofset |
offset matrix specified |
control |
a list of internal parameters controlling the model fitting |
nfold |
number of fold for cross-validation |
PATH |
TRUE/FALSE for generating solution path of sequential estimate after cross-validation step |
C |
estimated coefficient matrix; based on GIC |
Z |
estimated control variable coefficient matrix |
Phi |
estimted dispersion parameters |
U |
estimated U matrix (generalize latent factor weights) |
D |
estimated singular values |
V |
estimated V matrix (factor loadings) |
lam |
selected lambda values based on the chosen information criterion |
lampath |
sequences of lambda values used in model fitting. In each sequential unit-rank estimation step, a sequence of length nlambda is first generated between (lamMaxlamMaxFac, lamMaxlamMaxFac*lamMinFac) equally spaced on the log scale, in which lamMax is estimated and the other parameters are specified in gofar_control. The model fitting starts from the largest lambda and stops when the maximum proportion of nonzero elements is reached in either u or v, as specified by spU and spV in gofar_control. |
IC |
values of information criteria |
Upath |
solution path of U |
Dpath |
solution path of D |
Vpath |
solution path of D |
ObjDec |
boolian type matrix outcome showing if objective function is monotone decreasing or not. |
familygroup |
spcified familygroup of outcome variables. |
Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127
family <- list(gaussian(), binomial(), poisson()) control <- gofar_control() nlam <- 40 # number of tuning parameter SD <- 123 # Simulated data for testing data('simulate_gofar') attach(simulate_gofar) q <- ncol(Y) p <- ncol(X) # Simulate data with 20% missing entries miss <- 0.20 # Proportion of entries missing t.ind <- sample.int(n * q, size = miss * n * q) y <- as.vector(Y) y[t.ind] <- NA Ym <- matrix(y, n, q) naind <- (!is.na(Ym)) + 0 # matrix(1,n,q) misind <- any(naind == 0) + 0 # # Model fitting begins: control$epsilon <- 1e-7 control$spU <- 50 / p control$spV <- 25 / q control$maxit <- 1000 # Model fitting: GOFAR(P) (full data) set.seed(SD) rank.est <- 5 fit.eea <- gofar_p(Y, X, nrank = rank.est, nlambda = nlam, family = family, familygroup = familygroup, control = control, nfold = 5 ) # Model fitting: GOFAR(P) (missing data) set.seed(SD) rank.est <- 5 fit.eea.m <- gofar_p(Ym, X, nrank = rank.est, nlambda = nlam, family = family, familygroup = familygroup, control = control, nfold = 5 )
family <- list(gaussian(), binomial(), poisson()) control <- gofar_control() nlam <- 40 # number of tuning parameter SD <- 123 # Simulated data for testing data('simulate_gofar') attach(simulate_gofar) q <- ncol(Y) p <- ncol(X) # Simulate data with 20% missing entries miss <- 0.20 # Proportion of entries missing t.ind <- sample.int(n * q, size = miss * n * q) y <- as.vector(Y) y[t.ind] <- NA Ym <- matrix(y, n, q) naind <- (!is.na(Ym)) + 0 # matrix(1,n,q) misind <- any(naind == 0) + 0 # # Model fitting begins: control$epsilon <- 1e-7 control$spU <- 50 / p control$spV <- 25 / q control$maxit <- 1000 # Model fitting: GOFAR(P) (full data) set.seed(SD) rank.est <- 5 fit.eea <- gofar_p(Y, X, nrank = rank.est, nlambda = nlam, family = family, familygroup = familygroup, control = control, nfold = 5 ) # Model fitting: GOFAR(P) (missing data) set.seed(SD) rank.est <- 5 fit.eea.m <- gofar_p(Ym, X, nrank = rank.est, nlambda = nlam, family = family, familygroup = familygroup, control = control, nfold = 5 )
Divide and conquer approach for low-rank and sparse coefficent matrix estimation: Sequential
gofar_s( Yt, X, nrank = 3, nlambda = 40, family, familygroup = NULL, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, PATH = FALSE )
gofar_s( Yt, X, nrank = 3, nlambda = 40, family, familygroup = NULL, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, PATH = FALSE )
Yt |
response matrix |
X |
covariate matrix; when X = NULL, the fucntion performs unsupervised learning |
nrank |
an integer specifying the desired rank/number of factors |
nlambda |
number of lambda values to be used along each path |
family |
set of family gaussian, bernoulli, possion |
familygroup |
index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli, "3" for Poisson outcomes |
cIndex |
control index, specifying index of control variable in the design matrix X |
ofset |
offset matrix specified |
control |
a list of internal parameters controlling the model fitting |
nfold |
number of folds in k-fold crossvalidation |
PATH |
TRUE/FALSE for generating solution path of sequential estimate after cross-validation step |
C |
estimated coefficient matrix; based on GIC |
Z |
estimated control variable coefficient matrix |
Phi |
estimted dispersion parameters |
U |
estimated U matrix (generalize latent factor weights) |
D |
estimated singular values |
V |
estimated V matrix (factor loadings) |
lam |
selected lambda values based on the chosen information criterion |
familygroup |
spcified familygroup of outcome variables. |
fitCV |
output from crossvalidation step, for each sequential step |
Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127
family <- list(gaussian(), binomial(), poisson()) control <- gofar_control() nlam <- 40 # number of tuning parameter SD <- 123 # Simulated data for testing data('simulate_gofar') attach(simulate_gofar) q <- ncol(Y) p <- ncol(X) # # Simulate data with 20% missing entries miss <- 0.20 # Proportion of entries missing t.ind <- sample.int(n * q, size = miss * n * q) y <- as.vector(Y) y[t.ind] <- NA Ym <- matrix(y, n, q) naind <- (!is.na(Ym)) + 0 # matrix(1,n,q) misind <- any(naind == 0) + 0 # # Model fitting begins: control$epsilon <- 1e-7 control$spU <- 50 / p control$spV <- 25 / q control$maxit <- 1000 # Model fitting: GOFAR(S) (full data) set.seed(SD) rank.est <- 5 fit.seq <- gofar_s(Y, X, nrank = rank.est, family = family, nlambda = nlam, familygroup = familygroup, control = control, nfold = 5 ) # Model fitting: GOFAR(S) (missing data) set.seed(SD) rank.est <- 5 fit.seq.m <- gofar_s(Ym, X, nrank = rank.est, family = family, nlambda = nlam, familygroup = familygroup, control = control, nfold = 5 )
family <- list(gaussian(), binomial(), poisson()) control <- gofar_control() nlam <- 40 # number of tuning parameter SD <- 123 # Simulated data for testing data('simulate_gofar') attach(simulate_gofar) q <- ncol(Y) p <- ncol(X) # # Simulate data with 20% missing entries miss <- 0.20 # Proportion of entries missing t.ind <- sample.int(n * q, size = miss * n * q) y <- as.vector(Y) y[t.ind] <- NA Ym <- matrix(y, n, q) naind <- (!is.na(Ym)) + 0 # matrix(1,n,q) misind <- any(naind == 0) + 0 # # Model fitting begins: control$epsilon <- 1e-7 control$spU <- 50 / p control$spV <- 25 / q control$maxit <- 1000 # Model fitting: GOFAR(S) (full data) set.seed(SD) rank.est <- 5 fit.seq <- gofar_s(Y, X, nrank = rank.est, family = family, nlambda = nlam, familygroup = familygroup, control = control, nfold = 5 ) # Model fitting: GOFAR(S) (missing data) set.seed(SD) rank.est <- 5 fit.seq.m <- gofar_s(Ym, X, nrank = rank.est, family = family, nlambda = nlam, familygroup = familygroup, control = control, nfold = 5 )
Genertate random samples from a generalize sparse factor regression model
gofar_sim(U, D, V, n, Xsigma, C0, familygroup, snr)
gofar_sim(U, D, V, n, Xsigma, C0, familygroup, snr)
U |
specified value of U |
D |
specified value of D |
V |
specified value of V |
n |
sample size |
Xsigma |
covariance matrix for generating sample of X |
C0 |
Specified coefficient matrix with first row being intercept |
familygroup |
index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli, "3" for Poisson outcomes |
snr |
signal to noise ratio specified for gaussian type outcomes |
Y |
Generated response matrix |
X |
Generated predictor matrix |
sigmaG |
standard deviation for gaussian error |
Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127
## Model specification: SD <- 123 set.seed(SD) n <- 200 p <- 100 pz <- 0 # Model I in the paper # n <- 200; p <- 300; pz <- 0 ; # Model II in the paper # q1 <- 0; q2 <- 30; q3 <- 0 # Similar response cases q1 <- 15 q2 <- 15 q3 <- 0 # mixed response cases nrank <- 3 # true rank rank.est <- 4 # estimated rank nlam <- 40 # number of tuning parameter s <- 1 # multiplying factor to singular value snr <- 0.25 # SNR for variance Gaussian error # q <- q1 + q2 + q3 respFamily <- c("gaussian", "binomial", "poisson") family <- list(gaussian(), binomial(), poisson()) familygroup <- c(rep(1, q1), rep(2, q2), rep(3, q3)) cfamily <- unique(familygroup) nfamily <- length(cfamily) # control <- gofar_control() # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # if (nfamily == 1) { # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) } else { # for mixed type response setting # V is generated such that joint learning can be emphasised V1 <- matrix(0, ncol = nrank, nrow = q / 2) V1[, 1] <- c(sample(c(1, -1), 5, replace = TRUE), rep(0, q / 2 - 5)) V1[, 2] <- c( rep(0, 3), V1[4, 1], -1 * V1[5, 1], sample(c(1, -1), 3, replace = TRUE), rep(0, q / 2 - 8) ) V1[, 3] <- c( V1[1, 1], -1 * V1[2, 1], rep(0, 4), V1[7, 2], -1 * V1[8, 2], sample(c(1, -1), 2, replace = TRUE), rep(0, q / 2 - 10) ) # V2 <- matrix(0, ncol = nrank, nrow = q / 2) V2[, 1] <- c(sample(c(1, -1), 5, replace = TRUE), rep(0, q / 2 - 5)) V2[, 2] <- c( rep(0, 3), V2[4, 1], -1 * V2[5, 1], sample(c(1, -1), 3, replace = TRUE), rep(0, q / 2 - 8) ) V2[, 3] <- c( V2[1, 1], -1 * V2[2, 1], rep(0, 4), V2[7, 2], -1 * V2[8, 2], sample(c(1, -1), 2, replace = TRUE), rep(0, q / 2 - 10) ) # V <- rbind(V1, V2) } U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- gofar_sim(U, D, V, n, Xsigma, C0, familygroup, snr) # Dispersion parameter pHI <- c(rep(sim.sample$sigmaG, q1), rep(1, q2), rep(1, q3)) X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ] simulate_gofar <- list(Y = Y,X = X, U = U, D = D, V = V, n=n, Xsigma = Xsigma, C0 = C0, familygroup = familygroup)
## Model specification: SD <- 123 set.seed(SD) n <- 200 p <- 100 pz <- 0 # Model I in the paper # n <- 200; p <- 300; pz <- 0 ; # Model II in the paper # q1 <- 0; q2 <- 30; q3 <- 0 # Similar response cases q1 <- 15 q2 <- 15 q3 <- 0 # mixed response cases nrank <- 3 # true rank rank.est <- 4 # estimated rank nlam <- 40 # number of tuning parameter s <- 1 # multiplying factor to singular value snr <- 0.25 # SNR for variance Gaussian error # q <- q1 + q2 + q3 respFamily <- c("gaussian", "binomial", "poisson") family <- list(gaussian(), binomial(), poisson()) familygroup <- c(rep(1, q1), rep(2, q2), rep(3, q3)) cfamily <- unique(familygroup) nfamily <- length(cfamily) # control <- gofar_control() # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # if (nfamily == 1) { # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) } else { # for mixed type response setting # V is generated such that joint learning can be emphasised V1 <- matrix(0, ncol = nrank, nrow = q / 2) V1[, 1] <- c(sample(c(1, -1), 5, replace = TRUE), rep(0, q / 2 - 5)) V1[, 2] <- c( rep(0, 3), V1[4, 1], -1 * V1[5, 1], sample(c(1, -1), 3, replace = TRUE), rep(0, q / 2 - 8) ) V1[, 3] <- c( V1[1, 1], -1 * V1[2, 1], rep(0, 4), V1[7, 2], -1 * V1[8, 2], sample(c(1, -1), 2, replace = TRUE), rep(0, q / 2 - 10) ) # V2 <- matrix(0, ncol = nrank, nrow = q / 2) V2[, 1] <- c(sample(c(1, -1), 5, replace = TRUE), rep(0, q / 2 - 5)) V2[, 2] <- c( rep(0, 3), V2[4, 1], -1 * V2[5, 1], sample(c(1, -1), 3, replace = TRUE), rep(0, q / 2 - 8) ) V2[, 3] <- c( V2[1, 1], -1 * V2[2, 1], rep(0, 4), V2[7, 2], -1 * V2[8, 2], sample(c(1, -1), 2, replace = TRUE), rep(0, q / 2 - 10) ) # V <- rbind(V1, V2) } U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- gofar_sim(U, D, V, n, Xsigma, C0, familygroup, snr) # Dispersion parameter pHI <- c(rep(sim.sample$sigmaG, q1), rep(1, q2), rep(1, q3)) X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ] simulate_gofar <- list(Y = Y,X = X, U = U, D = D, V = V, n=n, Xsigma = Xsigma, C0 = C0, familygroup = familygroup)
Simulated data with low-rank and sparse coefficient matrix.
data(simulate_gofar)
data(simulate_gofar)
A list of variables for the analysis using GOFAR(S) and GOFAR(P):
Generated response matrix
Generated predictor matrix
specified value of U
specified value of V
specified value of D
sample size
covariance matrix used to generate predictors in X
intercept value in the coefficient matrix
index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli, "3" for Poisson outcomes
Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127