Package: glmmML (via r-universe)

October 21, 2024

Encoding UTF-8

Version 1.1.7	
Date 2024-09-20	
Title Generalized Linear Models with Clustering	
Description Binomial and Poisson regression for clustered data, fixed and random effects with bootstrapping.	
License GPL (>= 3)	
Depends R (>= 2.13.0)	
Maintainer Göran Broström <goran.brostrom@umu.se></goran.brostrom@umu.se>	
NeedsCompilation yes	
Suggests knitr, rmarkdown, lme4	
VignetteBuilder knitr	
RoxygenNote 7.3.2	
Author Göran Broström [aut, cre], Jianming Jin [ctb], Henrik Holmberg [ctb]	
Repository CRAN	
Date/Publication 2024-09-20 22:30:02 UTC	
Contents	
print.glmmML summary.glmmboot	2 3 5 6 9 10 11 12 13
Index	14

2 ghq

ghq

Description

Calculates the zeros and weights needed for Gauss-Hermite quadrature.

Gauss-Hermite

Usage

```
ghq(n.points = 1, modified = TRUE)
```

Arguments

n.points Number of points.

modified Multiply by exp(zeros**2)? Default is TRUE.

Details

Based on a Fortran 66 subroutine written by professor Jianming Jin.

Value

A list vith components

zeros The zeros (abscissas).

weights The weights

Note

The code is modified to suit the purpose of glmmML, with the permission of professor Jin.

Author(s)

Jianming Jin, Univ. of Illinois, Urbana-Campaign

References

Gauss-Hermite

See Also

glmmML

Examples

```
ghq(15, FALSE)
```

glmmboot 3

glmmboot	Generalized Linear Models with fixed effects grouping	

Description

Fits grouped GLMs with fixed group effects. The significance of the grouping is tested by simulation, with a bootstrap approach.

Usage

```
glmmboot(formula, family = binomial, data, cluster, weights, subset, na.action,
offset, contrasts = NULL, start.coef = NULL,
control = list(epsilon = 1e-08, maxit = 200, trace = FALSE), boot = 0)
```

Arguments

formula	a symbolic description of the model to be fit. The details of model specification are given below.
family	Currently, the only valid values are binomial and poisson. The binomial family allows for the logit and cloglog links.
data	an optional data frame containing the variables in the model. By default the variables are taken from 'environment(formula)', typically the environment from which 'glmmML' is called.
cluster	Factor indicating which items are correlated.
weights	Case weights.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
na.action	See glm.
offset	this can be used to specify an a priori known component to be included in the linear predictor during fitting.
contrasts	an optional list. See the 'contrasts.arg' of 'model.matrix.default'.
start.coef	starting values for the parameters in the linear predictor. Defaults to zero.
control	Controls the convergence criteria. See glm.control for details.
boot	number of bootstrap replicates. If equal to zero, no test of significance of the grouping factor is performed.

Details

The simulation is performed by simulating new response vectors from the fitted probabilities without clustering, and comparing the maximized log likelihoods. The maximizations are performed by profiling out the grouping factor. It is a very fast procedure, compared to glm, when the grouping factor has many levels.

4 glmmboot

Value

The return value is a list, an object of class 'glmmboot'.

coefficients Estimated regression coefficients

logLik the max log likelihood

cluster.null.deviance

Deviance without the clustering

frail The estimated cluster effects

bootLog The logLik values from the bootstrap samples

bootP Bootstrap p value

variance Variance covariance matrix

sd Standard error of regression parameters

boot_rep No. of bootstrap replicates

mixed Logical deviance Deviance

df.residual Its degrees of freedom

 $\begin{array}{ll} \text{aic} & \text{AIC} \\ \text{boot} & \text{Logical} \end{array}$

call The function call

Note

There is no overall intercept for this model; each cluster has its own intercept. See frail

Author(s)

G\"oran Brostr\"om and Henrik Holmberg

References

Brostr\"om, G. and Holmberg, H. (2011). Generalized linear models with clustered data: Fixed and random effects models. Computational Statistics and Data Analysis 55:3123-3134.

See Also

```
link{glmmML}, optim, lmer in Matrix, and glmmPQL in MASS.
```

Examples

```
## Not run:
id <- factor(rep(1:20, rep(5, 20)))
y <- rbinom(100, prob = rep(runif(20), rep(5, 20)), size = 1)
x <- rnorm(100)
dat <- data.frame(y = y, x = x, id = id)
res <- glmmboot(y ~ x, cluster = id, data = dat, boot = 5000)
## End(Not run)
##system.time(res.glm <- glm(y ~ x + id, family = binomial))</pre>
```

glmmbootFit 5

glmmbootFit	Generalized Linear Models with fixed effects grouping
-------------	---

Description

'glmmbootFit' is the workhorse in the function glmmboot. It is suitable to call instead of 'glmmboot', e.g. in simulations.

Usage

```
glmmbootFit(X, Y, weights = rep(1, NROW(Y)),
start.coef = NULL, cluster = rep(1, length(Y)),
offset = rep(0, length(Y)), family = binomial(),
control = list(epsilon = 1.e-8, maxit = 200, trace
= FALSE), boot = 0)
```

Arguments

Χ	The design matrix (n * p).
Υ	The response vector of length n.
weights	Case weights.
start.coef	start values for the parameters in the linear predictor (except the intercept).
cluster	Factor indicating which items are correlated.
offset	this can be used to specify an a priori known component to be included in the linear predictor during fitting.
family	Currently, the only valid values are binomial and poisson. The binomial family allows for the logit and cloglog links.
control	A list. Controls the convergence criteria. See glm.control for details.

number of bootstrap replicates. If equal to zero, no test of significance of the

grouping factor is performed. If non-zero, it should be large, at least, say, 2000.

Value

boot

A list with components

coefficients	Estimated regression coefficients (note: No intercept).	
logLik	The maximised log likelihood.	
cluster.null.deviance		
	deviance from a moddel without cluster.	
frail	The estimated cluster effects.	
bootLog	The maximised bootstrap log likelihood values. A vector of length boot.	
bootP	The bootstrap p value.	
variance	The variance-covariance matrix of the fixed effects (no intercept).	
sd	The standard errors of the coefficients.	
boot_rep	The number of bootstrap replicates.	

6 glmmML

Note

A profiling approach is used to estimate the cluster effects.

Author(s)

Göran Broström

See Also

```
glmmboot
```

Examples

```
## Not run
x <- matrix(rnorm(1000), ncol = 1)
id <- rep(1:100, rep(10, 100))
y <- rbinom(1000, size = 1, prob = 0.4)
fit <- glmmbootFit(x, y, cluster = id, boot = 200)
summary(fit)
## End(Not run)
## Should show no effects. And boot too small.</pre>
```

glmmML

Generalized Linear Models with random intercept

Description

Fits GLMs with random intercept by Maximum Likelihood and numerical integration via Gauss-Hermite quadrature.

Usage

```
glmmML(formula, family = binomial, data, cluster, weights,
cluster.weights, subset, na.action,
offset, contrasts = NULL, prior = c("gaussian", "logistic", "cauchy"),
start.coef = NULL, start.sigma = NULL, fix.sigma = FALSE, x = FALSE,
control = list(epsilon = 1e-08, maxit = 200, trace = FALSE),
method = c("Laplace", "ghq"), n.points = 8, boot = 0)
```

Arguments

formula	a symbolic description of the model to be fit. The details of model specification are given below.
family	Currently, the only valid values are binomial and poisson. The binomial family allows for the logit and cloglog links.
data	an optional data frame containing the variables in the model. By default the variables are taken from 'environment(formula)', typically the environment from which 'glmmML' is called.

glmmML 7

cluster Factor indicating which items are correlated.

weights Case weights. Defaults to one.

cluster.weights

Cluster weights. Defaults to one.

subset an optional vector specifying a subset of observations to be used in the fitting

process.

na.action See glm.

start.coef starting values for the parameters in the linear predictor. Defaults to zero.

start.sigma starting value for the mixing standard deviation. Defaults to 0.5.

fix.sigma Should sigma be fixed at start.sigma?

x If TRUE, the design matrix is returned (as x).

offset this can be used to specify an a priori known component to be included in the

linear predictor during fitting.

contrasts an optional list. See the 'contrasts.arg' of 'model.matrix.default'.

prior Which "prior" distribution (for the random effects)? Possible choices are "gaus-

sian" (default), "logistic", and "cauchy".

control Controls the convergence criteria. See glm. control for details.

method There are two choices "Laplace" (default) and "ghq" (Gauss-Hermite).

n.points Number of points in the Gauss-Hermite quadrature. If n.points == 1, the Gauss-

Hermite is the same as Laplace approximation. If method is set to "Laplace",

this parameter is ignored.

boot Do you want a bootstrap estimate of cluster effect? The default is No (boot

= 0). If you want to say yes, enter a positive integer here. It should be equal to the number of bootstrap samples you want to draw. A recomended absolute

minimum value is boot = 2000.

Details

The integrals in the log likelihood function are evaluated by the Laplace approximation (default) or Gauss-Hermite quadrature. The latter is now fully adaptive; however, only approximate estimates of variances are available for the Gauss-Hermite (n.points > 1) method.

For the binomial families, the response can be a two-column matrix, see the help page for glm for details.

Value

The return value is a list, an object of class 'glmmML'. The components are:

boot No. of boot replicates

converged Logical

coefficients Estimated regression coefficients

coef.sd Their standard errors

sigma The estimated random effects' standard deviation

8 glmmML

sigma.sd Its standard error

variance The estimated variance-covariance matrix. The last column/row corresponds to

the standard deviation of the random effects (sigma)

aic AIC

bootP Bootstrap p value from testing the null hypothesis of no random effect (sigma =

0)

deviance Deviance mixed Logical

df.residual Degrees of freedom

cluster.null.deviance

Deviance from a glm with no clustering. Subtracting deviance gives a test statistic for the null hypothesis of no clustering. Its asymptotic distribution is a symmetric mixture a constant at zero and a chi-squared distribution with one df.

The printed p-value is based on this.

cluster.null.df

Its degrees of freedom

posterior.modes

Estimated posterior modes of the random effects

terms The terms object

info From hessian inversion. Should be 0. If not, no variances could be estimated.

You could try fixing sigma at the estimated value and rerun.

prior Which prior was used?

call The function call

x The design matrix if asked for, otherwise not present

Note

The optimization may not converge with the default value of start.sigma. In that case, try different start values for sigma. If still no convergence, consider the possibility to fix the value of sigma at several values and study the profile likelihood.

Author(s)

G\"oran Brostr\"om

References

Brostr\"om, G. and Holmberg, H. (2011). Generalized linear models with clustered data: Fixed and random effects models. Computational Statistics and Data Analysis 55:3123-3134.

See Also

glmmboot, glm, optim, lmer in Matrixand glmmPQL in MASS.

glmmML.fit 9

Examples

```
id <- factor(rep(1:20, rep(5, 20)))
y <- rbinom(100, prob = rep(runif(20), rep(5, 20)), size = 1)
x <- rnorm(100)
dat <- data.frame(y = y, x = x, id = id)
glmmML(y ~ x, data = dat, cluster = id)</pre>
```

glmmML.fit

Generalized Linear Model with random intercept

Description

This function is called by glmmML, but it can also be called directly by the user.

Usage

```
glmmML.fit(X, Y, weights = rep(1, NROW(Y)), cluster.weights = rep(1, NROW(Y)),
start.coef = NULL, start.sigma = NULL,
fix.sigma = FALSE,
cluster = NULL, offset = rep(0, nobs), family = binomial(),
method = 1, n.points = 1,
control = list(epsilon = 1.e-8, maxit = 200, trace = FALSE),
intercept = TRUE, boot = 0, prior = 0)
```

Arguments

V	
Χ	Design matrix of covariates.
Υ	Response vector. Or two-column matrix.
weights	Case weights. Defaults to one.
cluster.weight	CS .
	Cluster weights. Defaults to one.
start.coef	Starting values for the coefficients.
start.sigma	Starting value for the mixing standard deviation.
fix.sigma	Should sigma be fixed at start.sigma?
cluster	The clustering variable.
offset	The offset in the model.
family	Family of distributions. Defaults to binomial with logit link. Other possibilities are binomial with cloglog link and poisson with log link.
method	Laplace (1) or Gauss-hermite (0)?
n.points	Number of points in the Gauss-Hermite quadrature. Default is n.points = 1, which is equivalent to Laplace approximation.
control	Control of the iterations. See glm.control.
intercept	Logical. If TRUE, an intercept is fitted.
boot	Integer. If > 0 , bootstrapping with boot replicates.
prior	Which prior distribution? 0 for "gaussian", 1 for "logistic", 2 for "cauchy".

print.glmmboot

Details

In the optimisation, "vmmin" (in C code) is used.

Value

A list. For details, see the code, and glmmML.

Author(s)

Göran Broström

References

Broström (2003)

See Also

```
glmmML, glmmPQL, and lmer.
```

Examples

```
x <- cbind(rep(1, 14), rnorm(14))
y <- rbinom(14, prob = 0.5, size = 1)
id <- rep(1:7, 2)
glmmML.fit(x, y, cluster = id)</pre>
```

print.glmmboot

Prints a 'glmmML' object.

Description

A glmmboot object is the output of glmmboot.

Usage

```
## S3 method for class 'glmmboot'
print(x, digits = max(3, getOption("digits") - 3), na.print = "", ...)
```

Arguments

```
x The glmmboot object
digits Number of printed digits.
na.print How to print NAs
... Additional parameters, which are ignored.
```

print.glmmML 11

Details

Nothing in particular.

Value

A short summary of the object is printed.

Note

This is the only summary method available for the moment.

Author(s)

Göran Broström

See Also

glmmboot

print.glmmML

Prints a 'glmmML' object.

Description

A glmmML object is the output of glmmML.

Usage

```
## S3 method for class 'glmmML'
print(x, digits = max(3, getOption("digits") - 3), na.print = "", ...)
```

Arguments

x The glmmML objectdigits Number of printed digits.na.print How to print NAs

... Additional parameters, which are ignored.

Details

Nothing in particular.

Value

A short summary of the object is printed.

12 summary.glmmboot

Note

This is the only summary method available for the moment.

Author(s)

Göran Broström

See Also

glmmML

 $\verb|summary.glmmboot| \\$

Summary of a glmmboot object

Description

It simply calls print.glmmboot

Usage

```
## S3 method for class 'glmmboot'
summary(object, ...)
```

Arguments

object A glmmboot object ... Additional arguments

Details

A summary method will be written soon.

Value

Nothing is returned.

Note

Preliminary

Author(s)

Göran Broström

See Also

```
print.glmmboot
```

summary.glmmML 13

 $\verb"summary.glmmML"$

Summary of a glmmML object

Description

It simply calls print.glmmML

Usage

```
## S3 method for class 'glmmML'
summary(object, ...)
```

Arguments

object A glmmML object ... Additional arguments

Value

Nothing is returned.

Note

Preliminary

Author(s)

Göran Broström

See Also

```
print.glmmML
```

Index

```
* math
     ghq, 2
* nonlinear
     glmmboot, 3
     glmmbootFit, 5
* print
     print.glmmboot, 10
     print.glmmML, 11
     summary.glmmboot, 12
     summary.glmmML, 13
* regression
     glmmboot, 3
     glmmbootFit, 5
     glmmML, 6
     glmmML.fit, 9
ghq, 2
glm, 3, 8
\mathtt{glm.control}, \textit{3}, \textit{5}, \textit{7}, \textit{9}
glmmboot, 3, 6, 8, 11
{\tt glmmbootFit}, {\tt 5}
glmmML, 2, 6, 10, 12
glmmML.fit, 9
glmmPQL, 4, 8, 10
lmer, 4, 8, 10
optim, 4, 8
print.glmmboot, 10, 12
print.glmmML, 11, 13
summary.glmmboot, 12
summary.glmmML, 13
```