Title: | Risk Score Plot for Cox Regression |
---|---|
Description: | The risk plot may be one of the most commonly used figures in tumor genetic data analysis. We can conclude the following two points: Comparing the prediction results of the model with the real survival situation to see whether the survival rate of the high-risk group is lower than that of the low-level group, and whether the survival time of the high-risk group is shorter than that of the low-risk group. The other is to compare the heat map and scatter plot to see the correlation between the predictors and the outcome. |
Authors: | Jing Zhang [aut, cre], Zhi Jin [aut] |
Maintainer: | Jing Zhang <[email protected]> |
License: | GPL-2 |
Version: | 1.3 |
Built: | 2024-12-11 07:28:38 UTC |
Source: | CRAN |
Risk Score Plot for Cox Regression
ggrisk( fit, heatmap.genes = NULL, new.data = NULL, code.0 = "Alive", code.1 = "Dead", code.highrisk = "High", code.lowrisk = "Low", cutoff.show = TRUE, cutoff.value = "median", cutoff.x = NULL, cutoff.y = NULL, cutoff.label = NULL, title.A.ylab = "Risk Score", title.B.ylab = "Survival Time", title.A.legend = "Risk Group", title.B.legend = "Status", title.C.legend = "Expression", size.ABC = 1.5, size.ylab.title = 14, size.Atext = 11, size.Btext = 11, size.Ctext = 11, size.yticks = 0.5, size.yline = 0.5, size.points = 2, size.dashline = 1, size.cutoff = 5, size.legendtitle = 13, size.legendtext = 12, color.A = c(low = "blue", high = "red"), color.B = c(code.0 = "blue", code.1 = "red"), color.C = c(low = "blue", median = "white", high = "red"), vjust.A.ylab = 1, vjust.B.ylab = 2, family = "sans", expand.x = 3, relative_heights = c(0.1, 0.1, 0.01, 0.15) )
ggrisk( fit, heatmap.genes = NULL, new.data = NULL, code.0 = "Alive", code.1 = "Dead", code.highrisk = "High", code.lowrisk = "Low", cutoff.show = TRUE, cutoff.value = "median", cutoff.x = NULL, cutoff.y = NULL, cutoff.label = NULL, title.A.ylab = "Risk Score", title.B.ylab = "Survival Time", title.A.legend = "Risk Group", title.B.legend = "Status", title.C.legend = "Expression", size.ABC = 1.5, size.ylab.title = 14, size.Atext = 11, size.Btext = 11, size.Ctext = 11, size.yticks = 0.5, size.yline = 0.5, size.points = 2, size.dashline = 1, size.cutoff = 5, size.legendtitle = 13, size.legendtext = 12, color.A = c(low = "blue", high = "red"), color.B = c(code.0 = "blue", code.1 = "red"), color.C = c(low = "blue", median = "white", high = "red"), vjust.A.ylab = 1, vjust.B.ylab = 2, family = "sans", expand.x = 3, relative_heights = c(0.1, 0.1, 0.01, 0.15) )
fit |
cox regression results of coxph() from 'survival' package or cph() from 'rms' package |
heatmap.genes |
(optional) numeric variables. Name for genes |
new.data |
new data for validation |
code.0 |
string. Code for event 0. Default is 'Alive' |
code.1 |
string. Code for event 1. Default is 'Dead' |
code.highrisk |
string. Code for highrisk in risk score. Default is 'High' |
code.lowrisk |
string. Code for lowrisk in risk score. Default is 'Low' |
cutoff.show |
logical, whether to show text for cutoff in figure A. Default is TRUE |
cutoff.value |
string, which can be 'median', 'roc' or 'cutoff'. Even you can define it by yourself |
cutoff.x |
numeric (optional), ordination x for cutoff text |
cutoff.y |
numeric (optional), ordination y for cutoff text |
cutoff.label |
(should be) string. Define cutoff label by yourself |
title.A.ylab |
string, y-lab title for figure A. Default is 'Risk Score' |
title.B.ylab |
string, y-lab title for figure B. Default is 'Survival Time' |
title.A.legend |
string, legend title for figure A. Default is 'Risk Group' |
title.B.legend |
string, legend title for figure B. Default is 'Status' |
title.C.legend |
string, legend title for figure C. Default is 'Expression' |
size.ABC |
numeric, size for ABC. Default is 1.5 |
size.ylab.title |
numeric, size for y-axis label title. Default is 14 |
size.Atext |
numeric, size for y-axis text in figure A. Default is 11 |
size.Btext |
numeric, size for y-axis text in figure B. Default is 11 |
size.Ctext |
numeric, size for y-axis text in figure C. Default is 11 |
size.yticks |
numeric, size for y-axis ticks. Default is 0.5 |
size.yline |
numeric, size for y-axis line. Default is 0.5 |
size.points |
numeric, size for scatter points. Default is 2 |
size.dashline |
numeric, size for dashline. Default is 1 |
size.cutoff |
numeric, size for cutoff text. Default is 5 |
size.legendtitle |
numeric, size for legend title. Default is 13 |
size.legendtext |
numeric, size for legend text. Default is 12 |
color.A |
color for figure A. Default is low = 'blue', high = 'red' |
color.B |
color for figure B. Default is code.0 = 'blue', code.1 = 'red' |
color.C |
color for figure C. Default is low = 'blue', median = 'white', high = 'red' |
vjust.A.ylab |
numeric, vertical just for y-label in figure A. Default is 1 |
vjust.B.ylab |
numeric, vertical just for y-label in figure B. Default is 2 |
family |
family, default is sans |
expand.x |
numeric, expand for x-axis |
relative_heights |
numeric, relative heights for figure A, B, colored side bar and heatmap. Default is 0.1 0.1 0.01 and 0.15 |
A risk score picture
library(rms) library(ggrisk) fit <- cph(Surv(time,status)~ANLN+CENPA+GPR182+BCO2,LIRI) ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8) #more detailed example #plot ggrisk(fit) #heatmap.genes ggrisk(fit, heatmap.genes=c('GPR182','CENPA','BCO2')) #cutoff ggrisk(fit, cutoff.value='median') #default ggrisk(fit, cutoff.value='roc') ggrisk(fit, cutoff.value='cutoff') ggrisk(fit, cutoff.value=-1) ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8) ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, cutoff.label='This is cutoff') #code for 0 and 1 ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead') #code for high and low risk group ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk') #title ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression') #size ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12) #color ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), color.C=c(low='blue',median='white',high='red')) #vjust ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), color.C=c(low='blue',median='white',high='red'), vjust.A.ylab=1, vjust.B.ylab=2) #family, expand, relative height ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), color.C=c(low='blue',median='white',high='red'), vjust.A.ylab=1, vjust.B.ylab=2, family='sans', expand.x=3, relative_heights=c(0.1,0.1,0.01,0.15))
library(rms) library(ggrisk) fit <- cph(Surv(time,status)~ANLN+CENPA+GPR182+BCO2,LIRI) ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8) #more detailed example #plot ggrisk(fit) #heatmap.genes ggrisk(fit, heatmap.genes=c('GPR182','CENPA','BCO2')) #cutoff ggrisk(fit, cutoff.value='median') #default ggrisk(fit, cutoff.value='roc') ggrisk(fit, cutoff.value='cutoff') ggrisk(fit, cutoff.value=-1) ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8) ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, cutoff.label='This is cutoff') #code for 0 and 1 ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead') #code for high and low risk group ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk') #title ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression') #size ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12) #color ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), color.C=c(low='blue',median='white',high='red')) #vjust ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), color.C=c(low='blue',median='white',high='red'), vjust.A.ylab=1, vjust.B.ylab=2) #family, expand, relative height ggrisk(fit, cutoff.value='median', cutoff.x = 145, cutoff.y = -0.8, code.0 = 'Still Alive', code.1 = 'Already Dead', code.highrisk = 'High Risk', code.lowrisk = 'Low Risk', title.A.ylab='Risk Score', title.B.ylab='Survival Time(year)', title.A.legend='Risk Group', title.B.legend='Status', title.C.legend='Expression', size.ABC=1.5, size.ylab.title=14, size.Atext=11, size.Btext=11, size.Ctext=11, size.yticks=0.5, size.yline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), color.C=c(low='blue',median='white',high='red'), vjust.A.ylab=1, vjust.B.ylab=2, family='sans', expand.x=3, relative_heights=c(0.1,0.1,0.01,0.15))
This data is a liver cancer data from Japan Data released in ICGC database (Link). It cantains time, event and four genes.
data(LIRI)
data(LIRI)
An object of class data.frame
with 232 rows and 6 columns.
data(LIRI)
data(LIRI)
Two Scatter Plot Plot for Cox Regression
two_scatter( fit, new.data = NULL, code.0 = "Alive", code.1 = "Dead", code.highrisk = "High", code.lowrisk = "Low", cutoff.show = TRUE, cutoff.value = "median", cutoff.x, cutoff.y, cutoff.label, title.A.ylab = "Risk Score", title.B.ylab = "Survival Time", title.xlab = "Rank", title.A.legend = "Risk Group", title.B.legend = "Status", size.AB = 1.5, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 11, size.Btext = 11, size.xtext = 11, size.xyticks = 0.5, size.xyline = 0.5, size.points = 2, size.dashline = 1, size.cutoff = 5, size.legendtitle = 13, size.legendtext = 12, color.A = c(low = "blue", high = "red"), color.B = c(code.0 = "blue", code.1 = "red"), vjust.A.ylab = 1, vjust.B.ylab = 2, family = "sans", expand.x = 3 )
two_scatter( fit, new.data = NULL, code.0 = "Alive", code.1 = "Dead", code.highrisk = "High", code.lowrisk = "Low", cutoff.show = TRUE, cutoff.value = "median", cutoff.x, cutoff.y, cutoff.label, title.A.ylab = "Risk Score", title.B.ylab = "Survival Time", title.xlab = "Rank", title.A.legend = "Risk Group", title.B.legend = "Status", size.AB = 1.5, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 11, size.Btext = 11, size.xtext = 11, size.xyticks = 0.5, size.xyline = 0.5, size.points = 2, size.dashline = 1, size.cutoff = 5, size.legendtitle = 13, size.legendtext = 12, color.A = c(low = "blue", high = "red"), color.B = c(code.0 = "blue", code.1 = "red"), vjust.A.ylab = 1, vjust.B.ylab = 2, family = "sans", expand.x = 3 )
fit |
cox regression results of coxph() from 'survival' package or cph() from 'rms' package |
new.data |
new data for validation |
code.0 |
string. Code for event 0. Default is 'Alive' |
code.1 |
string. Code for event 1. Default is 'Dead' |
code.highrisk |
string. Code for highrisk in risk score. Default is 'High' |
code.lowrisk |
string. Code for lowrisk in risk score. Default is 'Low' |
cutoff.show |
logical, whether to show text for cutoff in figure A. Default is TRUE |
cutoff.value |
string, which can be 'median', 'roc' or 'cutoff'. Even you can define it by yourself |
cutoff.x |
numeric (optional), ordination x for cutoff text |
cutoff.y |
numeric (optional), ordination y for cutoff text |
cutoff.label |
(should be) string. Define cutoff label by yourself |
title.A.ylab |
string, y-lab title for figure A. Default is 'Riskscore' |
title.B.ylab |
string, y-lab title for figure B. Default is 'Survival Time' |
title.xlab |
string, x-lab title for figure B. Default is 'Rank' |
title.A.legend |
string, legend title for figure A. Default is 'Risk Group' |
title.B.legend |
string, legend title for figure B. Default is 'Status' |
size.AB |
numeric, size for ABC. Default is 1.5 |
size.ylab.title |
numeric, size for y-axis label title. Default is 14 |
size.xlab.title |
numeric, size for x-axis lab title. Default is 11 |
size.Atext |
numeric, size for y-axis text in figure A. Default is 11 |
size.Btext |
numeric, size for y-axis text in figure B. Default is 11 |
size.xtext |
numeric, size for x-axis text. Default is 11 |
size.xyticks |
numeric, size for y-axis ticks. Default is 0.5 |
size.xyline |
numeric, size for y-axis line. Default is 0.5 |
size.points |
numeric, size for scatter points. Default is 2 |
size.dashline |
numeric, size for dashline. Default is 1 |
size.cutoff |
numeric, size for cutoff text. Default is 5 |
size.legendtitle |
numeric, size for legend title. Default is 13 |
size.legendtext |
numeric, size for legend text. Default is 12 |
color.A |
color for figure A. Default is low = 'blue', high = 'red' |
color.B |
color for figure B. Default is code.0 = 'blue', code.1 = 'red' |
vjust.A.ylab |
numeric, vertical just for y-label in figure A. Default is 1 |
vjust.B.ylab |
numeric, vertical just for y-label in figure B. Default is 2 |
family |
family, default is sans |
expand.x |
numeric, expand for x-axis |
A riskscore picture
library(rms) fit <- cph(Surv(time,status)~ANLN+CENPA+GPR182+BCO2,LIRI) two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5) #more detailed example library(ggrisk) #plot two_scatter(fit) #regulate cutoff ##hidden cutoff two_scatter(fit, cutoff.show = FALSE) two_scatter(fit, cutoff.value = 'median') two_scatter(fit, cutoff.value = 'roc') two_scatter(fit, cutoff.value = 'cutoff') two_scatter(fit, cutoff.value = -1) two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5) #code for 0 and 1 two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead') #code for high and low risk group two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group') #title for legend, x and y lab two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank') #vertical just for y-axis lab two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3) #size two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3, size.AB = 2, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 12, size.Btext = 12, size.xtext = 12, size.xyticks = 0.5, size.xyline = 0.5, size.dashline = 1.5, size.points = 1, size.cutoff = 5, size.legendtitle = 14, size.legendtext = 13) #color two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3, size.AB = 2, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 12, size.Btext = 12, size.xtext = 12, size.xyticks = 0.5, size.xyline = 0.5, size.dashline = 1.5, size.points = 1, size.cutoff = 5, size.legendtitle = 14, size.legendtext = 13, color.A = c(low='green',high='red'), color.B = c(code.0='green',code.1='red')) #famli and expand two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3, size.AB = 2, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 12, size.Btext = 12, size.xtext = 12, size.xyticks = 0.5, size.xyline = 0.5, size.dashline = 1.5, size.points = 1, size.cutoff = 5, size.legendtitle = 14, size.legendtext = 13, color.A = c(low='green',high='red'), color.B = c(code.0='green',code.1='red'), family = 'sans', # sans for Arail, serif for Times New Roman expand.x=10)
library(rms) fit <- cph(Surv(time,status)~ANLN+CENPA+GPR182+BCO2,LIRI) two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5) #more detailed example library(ggrisk) #plot two_scatter(fit) #regulate cutoff ##hidden cutoff two_scatter(fit, cutoff.show = FALSE) two_scatter(fit, cutoff.value = 'median') two_scatter(fit, cutoff.value = 'roc') two_scatter(fit, cutoff.value = 'cutoff') two_scatter(fit, cutoff.value = -1) two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5) #code for 0 and 1 two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead') #code for high and low risk group two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group') #title for legend, x and y lab two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank') #vertical just for y-axis lab two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3) #size two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3, size.AB = 2, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 12, size.Btext = 12, size.xtext = 12, size.xyticks = 0.5, size.xyline = 0.5, size.dashline = 1.5, size.points = 1, size.cutoff = 5, size.legendtitle = 14, size.legendtext = 13) #color two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3, size.AB = 2, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 12, size.Btext = 12, size.xtext = 12, size.xyticks = 0.5, size.xyline = 0.5, size.dashline = 1.5, size.points = 1, size.cutoff = 5, size.legendtitle = 14, size.legendtext = 13, color.A = c(low='green',high='red'), color.B = c(code.0='green',code.1='red')) #famli and expand two_scatter(fit, cutoff.value = 'median', cutoff.x = 142, cutoff.y = -0.5, code.0 = 'Still Alive', code.1 = 'Dead', code.highrisk = 'High Group', code.lowrisk = 'Low Group', title.A.legend = 'Riskscore', title.B.legend = 'Event Status', title.A.ylab = 'Riskscore', title.B.ylab = 'Survival Time(year)', title.xlab = 'This is rank', vjust.A.ylab = 1, vjust.B.ylab = 3, size.AB = 2, size.ylab.title = 14, size.xlab.title = 14, size.Atext = 12, size.Btext = 12, size.xtext = 12, size.xyticks = 0.5, size.xyline = 0.5, size.dashline = 1.5, size.points = 1, size.cutoff = 5, size.legendtitle = 14, size.legendtext = 13, color.A = c(low='green',high='red'), color.B = c(code.0='green',code.1='red'), family = 'sans', # sans for Arail, serif for Times New Roman expand.x=10)