
Package: ggeffects (via r-universe)
March 12, 2025

Type Package

Encoding UTF-8

Title Create Tidy Data Frames of Marginal Effects for 'ggplot' from
Model Outputs

Version 2.2.1

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Compute marginal effects and adjusted predictions from
statistical models and returns the result as tidy data frames.
These data frames are ready to use with the 'ggplot2'-package.
Effects and predictions can be calculated for many different
models. Interaction terms, splines and polynomial terms are
also supported. The main functions are ggpredict(), ggemmeans()
and ggeffect(). There is a generic plot()-method to plot the
results using 'ggplot2'.

Depends R (>= 3.6)

Imports graphics, insight (>= 1.0.1), datawizard (>= 1.0.0), stats,
utils

Suggests AER, afex, aod, bayestestR, betareg, brglm, brglm2, brms,
broom, car, carData, clubSandwich, dfidx, effects (>= 4.2-2),
effectsize (>= 1.0.0), emmeans (>= 1.8.9), fixest, gam, gamlss,
gamm4, gee, geepack, ggplot2, ggrepel, GLMMadaptive, glmmTMB
(>= 1.1.7), gridExtra, gt, haven, htmltools, httr2, jsonlite,
knitr, lme4 (>= 1.1-35), logistf, logitr, marginaleffects (>=
0.25.0), modelbased (>= 0.9.0), MASS, Matrix, mice, MCMCglmm,
MuMIn, mgcv, mclogit, mlogit, nestedLogit (>= 0.3.0), nlme,
nnet, ordinal, parameters, parsnip, patchwork, pscl, plm,
quantreg, rmarkdown, rms, robustbase, rstanarm, rstantools,
sandwich, sdmTMB (>= 0.4.0), see, sjlabelled (>= 1.1.2),
sjstats, speedglm, survey, survival, testthat, tibble,
tinytable (>= 0.1.0), vdiffr, withr, VGAM

URL https://strengejacke.github.io/ggeffects/

BugReports https://github.com/strengejacke/ggeffects/issues/

1

https://strengejacke.github.io/ggeffects/
https://github.com/strengejacke/ggeffects/issues/

2 Contents

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

License MIT + file LICENSE

LazyData true

NeedsCompilation no

Author Daniel Lüdecke [aut, cre]
(<https://orcid.org/0000-0002-8895-3206>), Frederik Aust [ctb]
(<https://orcid.org/0000-0003-4900-788X>), Sam Crawley [ctb]
(<https://orcid.org/0000-0002-7847-0411>), Mattan S.
Ben-Shachar [ctb] (<https://orcid.org/0000-0002-4287-4801>),
Sean C. Anderson [ctb]
(<https://orcid.org/0000-0001-9563-1937>)

Repository CRAN

Date/Publication 2025-03-11 22:30:01 UTC

Contents

as.data.frame.ggeffects . 3
coffee_data . 10
collapse_by_group . 10
efc . 11
fish . 11
format.ggeffects . 12
get_predictions . 15
get_title . 19
install_latest . 20
lung2 . 21
new_data . 21
plot . 22
pool_comparisons . 26
pool_predictions . 27
predict_response . 28
pretty_range . 39
residualize_over_grid . 40
test_predictions . 42
values_at . 50
vcov . 51

Index 54

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0003-4900-788X
https://orcid.org/0000-0002-7847-0411
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0001-9563-1937

as.data.frame.ggeffects 3

as.data.frame.ggeffects

Adjusted predictions from regression models

Description

After fitting a model, it is useful generate model-based estimates (expected values, or adjusted
predictions) of the response variable for different combinations of predictor values. Such estimates
can be used to make inferences about relationships between variables.

The ggeffects package computes marginal means and adjusted predicted values for the response,
at the margin of specific values or levels from certain model terms. The package is built around
three core functions: predict_response() (understanding results), test_predictions() (testing
results for statistically significant differences) and plot() (communicate results).

By default, adjusted predictions or marginal means are by returned on the response scale, which
is the easiest and most intuitive scale to interpret the results. There are other options for specific
models as well, e.g. with zero-inflation component (see documentation of the type-argument). The
result is returned as consistent data frame, which is nicely printed by default. plot() can be used
to easily create figures.

The main function to calculate marginal means and adjusted predictions is predict_response().
In previous versions of ggeffects, the functions ggpredict(), ggemmeans(), ggeffect() and
ggaverage() were used to calculate marginal means and adjusted predictions. These functions
are still available, but predict_response() as a "wrapper" around these functions is the preferred
way to do this now.

• ggpredict() calls get_predictions() (which in turn calls stats::predict())

• ggemmeans() calls emmeans::emmeans()

• ggaverage() calls marginaleffects::avg_predictions()

• ggeffect() calls effects::Effect()

Usage

S3 method for class 'ggeffects'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
stringsAsFactors = FALSE,
terms_to_colnames = FALSE

)

ggaverage(
model,
terms,
ci_level = 0.95,

4 as.data.frame.ggeffects

type = "fixed",
typical = "mean",
condition = NULL,
back_transform = TRUE,
vcov = NULL,
vcov_args = NULL,
weights = NULL,
verbose = TRUE,
...

)

ggeffect(
model,
terms,
ci_level = 0.95,
bias_correction = FALSE,
verbose = TRUE,
...

)

ggemmeans(
model,
terms,
ci_level = 0.95,
type = "fixed",
typical = "mean",
condition = NULL,
interval = "confidence",
back_transform = TRUE,
vcov = NULL,
vcov_args = NULL,
bias_correction = FALSE,
weights = NULL,
verbose = TRUE,
...

)

ggpredict(
model,
terms,
ci_level = 0.95,
type = "fixed",
typical = "mean",
condition = NULL,
interval = "confidence",
back_transform = TRUE,
vcov = NULL,
vcov_args = NULL,

as.data.frame.ggeffects 5

bias_correction = FALSE,
verbose = TRUE,
...

)

Arguments

x An object of class ggeffects, as returned by predict_response(), ggpredict(),
ggeffect(), ggaverage() or ggemmeans().

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment, ba-
sically with the meaning of data.frame(*, check.names = !optional). See
also the make.names argument of the matrix method.

... Arguments are passed down to ggpredict() (further down to predict()) or
ggemmeans() (and thereby to emmeans::emmeans()), If type = "simulate",
... may also be used to set the number of simulation, e.g. nsim = 500. When
calling ggeffect(), further arguments passed down to effects::Effect().

stringsAsFactors

logical: should the character vector be converted to a factor?
terms_to_colnames

Logical, if TRUE, standardized column names (like "x", "group" or "facet")
are replaced by the variable names of the focal predictors specified in terms.

model A model object, or a list of model objects.

terms Names of those terms from model, for which predictions should be displayed
(so called focal terms). Can be:

• A character vector, specifying the names of the focal terms. This is the
preferred and probably most flexible way to specify focal terms, e.g. terms
= "x [40:60]", to calculate predictions for the values 40 to 60.

• A list, where each element is a named vector, specifying the focal terms
and their values. This is the "classical" R way to specify focal terms, e.g.
list(x = 40:60).

• A formula, e.g. terms = ~ x + z, which is internally converted to a charac-
ter vector. This is probably the least flexible way, as you cannot specify
representative values for the focal terms.

• A data frame representing a "data grid" or "reference grid". Predictions are
then made for all combinations of the variables in the data frame.

terms at least requires one variable name. The maximum length is five terms,
where the second to fifth term indicate the groups, i.e. predictions of the first
term are grouped at meaningful values or levels of the remaining terms (see
values_at()). It is also possible to define specific values for focal terms, at
which adjusted predictions should be calculated (see details below). All re-
maining covariates that are not specified in terms are "marginalized", see the
margin argument in ?predict_response. See also argument condition to fix

6 as.data.frame.ggeffects

non-focal terms to specific values, and argument typical for ggpredict() or
ggemmeans().

ci_level Numeric, the level of the confidence intervals. Use ci_level = NA if confi-
dence intervals should not be calculated (for instance, due to computation time).
Typically, confidence intervals are based on the returned standard errors for the
predictions, assuming a t- or normal distribution (based on the model and the
available degrees of freedom, i.e. roughly +/- 1.96 * SE). See introduction of
this vignette for more details.

type Character, indicating whether predictions should be conditioned on specific model
components or not, or whether population or unit-level predictions are desired.
Consequently, most options only apply for survival models, mixed effects mod-
els and/or models with zero-inflation (and their Bayesian counter-parts); only
exception is type = "simulate", which is available for some other model classes
as well (which respond to simulate()).

Note 1: For brmsfit-models with zero-inflation component, there is no type
= "zero_inflated" nor type = "zi_random"; predicted values for these mod-
els always condition on the zero-inflation part of the model. The same is true
for MixMod-models from GLMMadaptive with zero-inflation component (see
’Details’).

Note 2: If margin = "empirical", or when calling ggaverage() respectively,
(i.e. counterfactual predictions), the type argument is handled differently. It
is set to "response" by default, but usually accepts all possible options from
the type-argument of the model’s respective predict() method. E.g., passing
a glm object would allow the options "response", "link", and "terms". For
models with zero-inflation component, the below mentioned options "fixed",
"zero_inflated" and "zi_prob" can also be used and will be "translated" into
the corresponding type option of the model’s respective predict()-method.

Note 3: If margin = "marginalmeans", or when calling ggemmeans() respec-
tively, type = "random" and type = "zi_random" are not available, i.e. no unit-
level predictions are possible.

• "fixed" (or "count")
Predicted values are conditioned on the fixed effects or conditional model
only. For mixed models, predicted values are on the population-level, i.e.
re.form = NA when calling predict(). For models with zero-inflation
component, this type would return the predicted mean from the count com-
ponent (without conditioning on the zero-inflation part).

• "random"
This only applies to mixed models, and type = "random" does not con-
dition on the zero-inflation component of the model. Use this for unit-
level predictions, i.e. predicted values for each level of the random effects
groups. Add the name of the related random effect term to the terms-
argument (for more details, see this vignette).

• "zero_inflated" (or "zi")
Predicted values are conditioned on the fixed effects and the zero-inflation
component, returning the expected value of the response (mu*(1-p)). For
For mixed models with zero-inflation component (e.g. from package glmmTMB),

https://strengejacke.github.io/ggeffects/articles/ggeffects.html
https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

as.data.frame.ggeffects 7

this would return the expected response mu*(1-p) on the population-level.
See ’Details’.

• "zi_random" (or "zero_inflated_random")
This only applies to mixed models. Predicted values are conditioned on the
fixed effects and the zero-inflation component. Use this for unit-level pre-
dictions, i.e. predicted values for each level of the random effects groups.
Add the name of the related random effect term to the terms-argument (for
more details, see this vignette).

• "zi_prob"
Returns the predicted zero-inflation probability, i.e. probability of a struc-
tural or "true" zero.

• "simulate"
Predicted values and confidence resp. prediction intervals are based on
simulations, i.e. calls to simulate(). This type of prediction takes all
model uncertainty into account. Currently supported models are objects
of class lm, glm, glmmTMB, wbm, MixMod and merMod. Use nsim to set the
number of simulated draws (see ... for details).

• "survival", "cumulative_hazard" and "quantile"
"survival" and "cumulative_hazard" apply only to coxph-objects from
the survial-package. These options calculate the survival probability or
the cumulative hazard of an event. type = "quantile" only applies to
survreg-objects from package survival, which returns the predicted quan-
tiles. For this option, the p argument is passed to predict(), so that quan-
tiles for different probabilities can be calculated, e.g. predict_response(...,
type = "quantile", p = c(0.2, 0.5, 0.8)).

When margin = "empirical" (or when calling ggaverage()), the type ar-
gument accepts all values from the type-argument of the model’s respective
predict()-method.

typical Character vector, naming the function to be applied to the covariates (non-focal
terms) over which the effect is "averaged". The default is "mean". Can be
"mean", "weighted.mean", "median", "mode" or "zero", which call the cor-
responding R functions (except "mode", which calls an internal function to
compute the most common value); "zero" simply returns 0. By default, if
the covariate is a factor, only "mode" is applicable; for all other values (in-
cluding the default, "mean") the reference level is returned. For character vec-
tors, only the mode is returned. You can use a named vector to apply differ-
ent functions to integer, numeric and categorical covariates, e.g. typical =
c(numeric = "median", factor = "mode"). If typical is "weighted.mean",
weights from the model are used. If no weights are available, the function falls
back to "mean". Note that this argument is ignored for predict_response(),
because the margin argument takes care of this.

condition Named character vector, which indicates covariates that should be held constant
at specific values. Unlike typical, which applies a function to the covariates
to determine the value that is used to hold these covariates constant, condition
can be used to define exact values, for instance condition = c(covariate1 =
20, covariate2 = 5). See ’Examples’.

back_transform Logical, if TRUE (the default), predicted values for log-, log-log, exp, sqrt and

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

8 as.data.frame.ggeffects

similar transformed responses will be back-transformed to original response-
scale. See insight::find_transformation() for more details.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for con-
fidence intervals based on robust standard errors). This argument accepts a co-
variance matrix, a function which returns a covariance matrix, or a string which
identifies the function to be used to compute the covariance matrix.

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "BS", "xy", "fractional", "jackknife", "residual",
"wild", "mammen", "norm", "webb". See ?sandwich::vcovBS

– Other sandwich package functions: "HAC", "PC", "CL", or "PL".

If NULL, standard errors (and confidence intervals) for predictions are based on
the standard errors as returned by the predict()-function. Note that probably
not all model objects that work with predict_response() are also supported
by the sandwich or clubSandwich packages.
See details in this vignette.

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments. If no estimation type (argument type) is given, the
default type for "HC" equals the default from the sandwich package; for type
"CR" the default is set to "CR3". For other defaults, refer to the documentation
in the sandwich or clubSandwich package.

weights This argument is used in two different ways, depending on the margin argument.

• When margin = "empirical" (or when calling ggaverag()), weights can
either be a character vector, naming the weigthing variable in the data, or
a vector of weights (of same length as the number of observations in the
data). This variable will be used to weight adjusted predictions.

• When margin = "marginalmeans" (or when calling ggemmeans()), weights
must be a character vector and is passed to emmeans::emmeans(), specify-
ing weights to use in averaging non-focal categorical predictors. Options
are "equal", "proportional", "outer", "cells", "flat", and "show.levels".
See ?emmeans::emmeans for details.

verbose Toggle messages or warnings.
bias_correction

Logical, if TRUE, adjusts for bias-correction when back-transforming the pre-
dicted values (to the response scale) for non-Gaussian mixed models. Back-
transforming the the population-level predictions ignores the effect of the vari-
ation around the population mean, so the result on the original data scale is

https://strengejacke.github.io/ggeffects/articles/practical_robustestimation.html

as.data.frame.ggeffects 9

biased due to Jensen’s inequality. That means, when type = "fixed" (the de-
fault) and population level predictions are returned, it is recommended to set
bias_correction = TRUE. To apply bias-correction, a valid value of sigma is re-
quired, which is extracted by default using insight::get_variance_residual().
Optionally, to provide own estimates of uncertainty, use the sigma argument.
Note that bias_correction currently only applies to mixed models, where
there are additive random components involved and where that bias-adjustment
can be appropriate. If ggemmeans() is called, bias-correction can also be applied
to GEE-models.

interval Type of interval calculation, can either be "confidence" (default) or "prediction".
May be abbreviated. Unlike confidence intervals, prediction intervals include
the residual variance (sigma^2) to account for the uncertainty of predicted val-
ues. Note that prediction intervals are not available for all models, but only for
models that work with insight::get_sigma(). For Bayesian models, when
interval = "confidence", predictions are based on posterior draws of the lin-
ear predictor rstantools::posterior_epred(). If interval = "prediction",
rstantools::posterior_predict() is called.

Details

Please see ?predict_response for details and examples.

Value

A data frame (with ggeffects class attribute) with consistent data columns:

• "x": the values of the first term in terms, used as x-position in plots.

• "predicted": the predicted values of the response, used as y-position in plots.

• "std.error": the standard error of the predictions. Note that the standard errors are always
on the link-scale, and not back-transformed for non-Gaussian models!

• "conf.low": the lower bound of the confidence interval for the predicted values.

• "conf.high": the upper bound of the confidence interval for the predicted values.

• "group": the grouping level from the second term in terms, used as grouping-aesthetics in
plots.

• "facet": the grouping level from the third term in terms, used to indicate facets in plots.
The estimated marginal means (or predicted values) are always on the response scale!
For proportional odds logistic regression (see ?MASS::polr) resp. cumulative link models
(e.g., see ?ordinal::clm), an additional column "response.level" is returned, which indi-
cates the grouping of predictions based on the level of the model’s response.
Note that for convenience reasons, the columns for the intervals are always named "conf.low"
and "conf.high", even though for Bayesian models credible or highest posterior density in-
tervals are returned.
There is an as.data.frame() method for objects of class ggeffects, which has an terms_to_colnames
argument, to use the term names as column names instead of the standardized names "x" etc.

10 collapse_by_group

coffee_data Sample dataset from a course about analysis of factorial designs

Description

A sample data set from a course about the analysis of factorial designs, by Mattan S. Ben-Shachar.
See following link for more information: https://github.com/mattansb/Analysis-of-Factorial-Designs-
foR-Psychologists

The data consists of five variables from 120 observations:

• ID: A unique identifier for each participant

• sex: The participant’s sex

• time: The time of day the participant was tested (morning, noon, or afternoon)

• coffee: Group indicator, whether participant drank coffee or not ("coffee" or "control").

• alertness: The participant’s alertness score.

Examples

Attach coffee-data
data(coffee_data)

collapse_by_group Collapse raw data by random effect groups

Description

This function extracts the raw data points (i.e. the data that was used to fit the model) and "averages"
(i.e. "collapses") the response variable over the levels of the grouping factor given in collapse_by.
Only works with mixed models.

Usage

collapse_by_group(grid, model, collapse_by = NULL, residuals = FALSE)

Arguments

grid A data frame representing the data grid, or an object of class ggeffects, as
returned by predict_response().

model The model for which to compute partial residuals. The data grid grid should
match to predictors in the model.

collapse_by Name of the (random effects) grouping factor. Data is collapsed by the levels of
this factor.

residuals Logical, if TRUE, collapsed partial residuals instead of raw data by the levels of
the grouping factor.

efc 11

Value

A data frame with raw data points, averaged over the levels of the given grouping factor from the
random effects. The group level of the random effect is saved in the column "random".

Examples

library(ggeffects)
data(efc, package = "ggeffects")
efc$e15relat <- as.factor(efc$e15relat)
efc$c161sex <- as.factor(efc$c161sex)
levels(efc$c161sex) <- c("male", "female")
model <- lme4::lmer(neg_c_7 ~ c161sex + (1 | e15relat), data = efc)
me <- predict_response(model, terms = "c161sex")
head(attributes(me)$rawdata)
collapse_by_group(me, model, "e15relat")

efc Sample dataset from the EUROFAMCARE project

Description

An SPSS sample data set, imported with the sjlabelled::read_spss() function. Consists of 28
variables from 908 observations. The data set is part of the EUROFAMCARE project, a cross-
national survey on informal caregiving in Europe.

Examples

Attach EFC-data
data(efc)

Show structure
str(efc)

show first rows
head(efc)

fish Sample data set

Description

A sample data set, used in tests and some examples. Useful for demonstrating count models (with
or without zero-inflation component). It consists of nine variables from 250 observations.

12 format.ggeffects

format.ggeffects Print and format ggeffects-objects

Description

A generic print-method for ggeffects-objects.

Usage

S3 method for class 'ggeffects'
format(
x,
variable_labels = FALSE,
value_labels = FALSE,
group_name = FALSE,
row_header_separator = ", ",
digits = 2,
collapse_ci = FALSE,
collapse_tables = FALSE,
n,
...

)

S3 method for class 'ggcomparisons'
format(x, collapse_ci = FALSE, collapse_p = FALSE, combine_levels = FALSE, ...)

S3 method for class 'ggeffects'
print(x, group_name = TRUE, digits = 2, verbose = TRUE, ...)

S3 method for class 'ggeffects'
print_md(x, group_name = TRUE, digits = 2, ...)

S3 method for class 'ggeffects'
print_html(
x,
group_name = TRUE,
digits = 2,
theme = NULL,
engine = c("tt", "gt"),
...

)

S3 method for class 'ggcomparisons'
print(x, collapse_tables = TRUE, ...)

S3 method for class 'ggcomparisons'
print_html(

format.ggeffects 13

x,
collapse_ci = FALSE,
collapse_p = FALSE,
theme = NULL,
engine = c("tt", "gt"),
...

)

S3 method for class 'ggcomparisons'
print_md(x, collapse_ci = FALSE, collapse_p = FALSE, theme = NULL, ...)

Arguments

x An object of class ggeffects, as returned by the functions from this package.
variable_labels

Logical, if TRUE variable labels are used as column headers. If FALSE, variable
names are used.

value_labels Logical, if TRUE, value labels are used as values in the table output. If FALSE,
the numeric values or factor levels are used.

group_name Logical, if TRUE, the name of further focal terms are used in the sub-headings of
the table. If FALSE, only the values of the focal terms are used.

row_header_separator

Character, separator between the different subgroups in the table output.

digits Number of digits to print.

collapse_ci Logical, if TRUE, the columns with predicted values and confidence intervals are
collapsed into one column, e.g. Predicted (95% CI).

collapse_tables

Logical, if TRUE, all tables are combined into one. The tables are not split by
further focal terms, but rather are added as columns. Only works when there is
more than one focal term.

n Number of rows to print per subgroup. If NULL, a default number of rows is
printed, depending on the number of subgroups.

... Further arguments passed down to format.ggeffects(), some of them are also
passed down further to insight::format_table() or insight::format_value().

collapse_p Logical, if TRUE, the columns with predicted values and p-values are collapsed
into one column, where significant p-values are indicated as asterisks.

combine_levels Logical, if TRUE, the levels of the first comparison of each focal term against
the second are combined into one column. This is useful when comparing mul-
tiple focal terms, e.g. education = low-high and gender = male-female are
combined into first = low-male and second = high-female.

verbose Toggle messages.

theme The theme to apply to the table. One of "grid", "striped", "bootstrap", or
"darklines".

engine The engine to use for printing. One of "tt" (default) or "gt". "tt" uses the
tinytable package, "gt" uses the gt package.

14 format.ggeffects

Value

format() return a formatted data frame, print() prints a formatted data frame to the console.
print_html() returns a tinytable object by default (unless changed with engine = "gt"), which
is printed as HTML, markdown or LaTeX table (depending on the context from which print_html()
is called, see tinytable::tt() for details).

Global Options to Customize Tables when Printing

The verbose argument can be used to display or silence messages and warnings. Furthermore,
options() can be used to set defaults for the print() and print_html() method. The following
options are available, which can simply be run in the console:

• ggeffects_ci_brackets: Define a character vector of length two, indicating the opening and
closing parentheses that encompass the confidence intervals values, e.g. options(ggeffects_ci_brackets
= c("[", "]")).

• ggeffects_collapse_ci: Logical, if TRUE, the columns with predicted values (or contrasts)
and confidence intervals are collapsed into one column, e.g. options(ggeffects_collapse_ci
= TRUE).

• ggeffects_collapse_p: Logical, if TRUE, the columns with predicted values (or contrasts)
and p-values are collapsed into one column, e.g. options(ggeffects_collapse_p = TRUE).
Note that p-values are replaced by asterisk-symbols (stars) or empty strings when ggeffects_collapse_p
= TRUE, depending on the significance level.

• ggeffects_collapse_tables: Logical, if TRUE, multiple tables for subgroups are combined
into one table. Only works when there is more than one focal term, e.g. options(ggeffects_collapse_tables
= TRUE).

• ggeffects_output_format: String, either "text", "markdown" or "html". Defines the de-
fault output format from predict_response(). If "html", a formatted HTML table is created
and printed to the view pane. "markdown" creates a markdown-formatted table inside Rmark-
down documents, and prints a text-format table to the console when used interactively. If
"text" or NULL, a formatted table is printed to the console, e.g. options(ggeffects_output_format
= "html").

• ggeffects_html_engine: String, either "tt" or "gt". Defines the default engine to use for
printing HTML tables. If "tt", the tinytable package is used, if "gt", the gt package is used,
e.g. options(ggeffects_html_engine = "gt").

Use options(<option_name> = NULL) to remove the option.

Examples

data(efc, package = "ggeffects")
fit <- lm(barthtot ~ c12hour + e42dep, data = efc)

default print
predict_response(fit, "e42dep")

surround CI values with parentheses
print(predict_response(fit, "e42dep"), ci_brackets = c("(", ")"))
you can also use `options(ggeffects_ci_brackets = c("[", "]"))`

get_predictions 15

to set this globally

collapse CI columns into column with predicted values
print(predict_response(fit, "e42dep"), collapse_ci = TRUE)

include value labels
print(predict_response(fit, "e42dep"), value_labels = TRUE)

include variable labels in column headers
print(predict_response(fit, "e42dep"), variable_labels = TRUE)

include value labels and variable labels
print(predict_response(fit, "e42dep"), variable_labels = TRUE, value_labels = TRUE)

data(iris)
m <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)

default print with subgroups
predict_response(m, c("Petal.Length", "Species"))

omit name of grouping variable in subgroup table headers
print(predict_response(m, c("Petal.Length", "Species")), group_name = FALSE)

collapse tables into one
print(predict_response(m, c("Petal.Length", "Species")), collapse_tables = TRUE, n = 3)

increase number of digits
print(predict_response(fit, "e42dep"), digits = 5)

get_predictions S3-class definition for the ggeffects package

Description

get_predictions() is the core function to return adjusted predictions for a model, when calling
ggpredict() or predict_response() with margin = "mean_reference" (the default option for
margin). Basically, the input contains the model object and a data grid that is typically used for the
newdata argument of the predict() method. get_predictions() can be used as S3-method for
own classes, to add support for new models in ggeffects and is only relevant for package developers.

There are no S3-class definitions for ggemmeans() or ggaverage(), because these functions simply
call methods from the emmeans or marginaleffects packages. Hence, methods should be written
for those packages, too, if a model-object should work with ggemmeans() or ggaverage().

Usage

get_predictions(model, ...)

Default S3 method:

16 get_predictions

get_predictions(
model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...

)

Arguments

model, terms, ci_level, type, typical, vcov, vcov_args, condition,
interval, bias_correction, verbose

Arguments from the call to predict_response() that are passed down to get_predictions().
Note that bias_correction is usally already processed in predict_response()
and thus doesn’t need further handling in get_predictions(), unless you need
to re-calculate the link-inverse-function (argument link_inverse) inside the
get_predictions() method.

... Further arguments, passed to predict() or other methods used in get_predictions().

data_grid A data frame containing the data grid (or reference grid) with all relevant values
of predictors for which the adjusted predictions should be made. Typically the
data frame that is passed to the newdata argument in predict(). A data grid can
be created with functions like data_grid() or insight::get_datagrid().

link_inverse The model’s family link-inverse function. Can be retrieved using insight::link_inverse().

model_info An object returned by insight::model_info().

Details

Adding support for ggeffects is quite easy. The user-level function is predict_response(), which
either calls ggpredict(), ggemmeans() or ggaverage(). These function, in turn, call predict(),
emmeans::emmeans() or marginaleffects::avg_predictions(). Following needs to be done
to add support for new model classes:

• emmeans: if your model is supported by emmeans, it is automatically supported by ggemmeans().
Thus, you need to add the corresponding methods to your package so that your model class is
supported by **emmeans.

• marginaleffects: similar to emmeans, if your package is supported by the marginaleffects
package, it works with ggaverage().

get_predictions 17

• predict: in order to make your model class work with ggpredict(), you need to add a
get_predictions() method. The here documented arguments are all passed from predict_response()
to get_predictions(), no matter if they are required to calculate predictions or not. Thus,
it is not necessary to process all of those arguments, but they can be used to modulate certain
settings when calculating predictions. Note that if your method does not define all men-
tioned arguments, these are still passed via ... - make sure that further methods in your
get_predictions() method still work when they process the It is important that the
function returns a data frame with a specific structure, namely the data grid and the columns
predicted, conf.low, and conf.high. Predictions and intervals should be on the response
scale.

A simple example for an own class-implementation for Gaussian-alike models could look like this:

get_predictions.own_class <- function(model, data_grid, ci_level = 0.95, ...) {
predictions <- predict(
model,
newdata = data_grid,
type = "response",
se.fit = !is.na(ci_level),
...

)

do we have standard errors?
if (is.na(ci_level)) {
copy predictions
data_grid$predicted <- as.vector(predictions)

} else {
copy predictions
data_grid$predicted <- predictions$fit

calculate CI
data_grid$conf.low <- predictions$fit - qnorm(0.975) * predictions$se.fit
data_grid$conf.high <- predictions$fit + qnorm(0.975) * predictions$se.fit

optional: copy standard errors
attr(data_grid, "std.error") <- predictions$se.fit

}

data_grid
}

A simple example for an own class-implementation for non-Gaussian-alike models could look like
this (note the use of the link-inverse function link_inverse(), which is passed to the link_inverse
argument):

get_predictions.own_class <- function(model,
data_grid,
ci_level = 0.95,

link_inverse = insight::link_inverse(model),

18 get_predictions

...) {
predictions <- predict(
model,
newdata = data_grid,
type = "link", # for non-Gaussian, return on link-scale
se.fit = !is.na(ci_level),
...

)

do we have standard errors?
if (is.na(ci_level)) {
copy predictions
data_grid$predicted <- link_inverse(as.vector(predictions))

} else {
copy predictions, use link-inverse to back-transform
data_grid$predicted <- link_inverse(predictions$fit)

calculate CI
data_grid$conf.low <- link_inverse(
predictions$fit - qnorm(0.975) * predictions$se.fit

)
data_grid$conf.high <- link_inverse(
predictions$fit + qnorm(0.975) * predictions$se.fit

)

optional: copy standard errors
attr(data_grid, "std.error") <- predictions$se.fit

}

data_grid
}

Value

A data frame that contains

• the data grid (from the argument data_grid)

• the columns predicted, conf.low, and conf.high

• optionally, the attribute "std.error" with the standard errors.

Note that predictions and confidence intervals should already be transformed to the response scale
(e.g., by using insight::link_inverse()). The standard errors are always on the link scale (not
transformed).

If values are not available (for example, confidence intervals), set their value to NA.

get_title 19

get_title Get titles and labels from data

Description

Get variable and value labels from ggeffects-objects. predict_response() saves information on
variable names and value labels as additional attributes in the returned data frame. This is especially
helpful for labelled data (see sjlabelled), since these labels can be used to set axis labels and titles.

Usage

get_title(x, case = NULL)

get_x_title(x, case = NULL)

get_y_title(x, case = NULL)

get_legend_title(x, case = NULL)

get_legend_labels(x, case = NULL)

get_x_labels(x, case = NULL)

get_complete_df(x, case = NULL)

Arguments

x An object of class ggeffects, as returned by any ggeffects-function; for get_complete_df(),
must be a list of ggeffects-objects.

case Desired target case. Labels will automatically converted into the specified char-
acter case. See ?sjlabelled::convert_case for more details on this argu-
ment.

Value

The titles or labels as character string, or NULL, if variables had no labels; get_complete_df()
returns the input list x as single data frame, where the grouping variable indicates the predicted
values for each term.

Examples

library(ggeffects)
library(ggplot2)
data(efc, package = "ggeffects")
efc$c172code <- datawizard::to_factor(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

mydf <- predict_response(fit, terms = c("c12hour", "c161sex", "c172code"))

20 install_latest

ggplot(mydf, aes(x = x, y = predicted, colour = group)) +
stat_smooth(method = "lm") +
facet_wrap(~facet, ncol = 2) +
labs(
x = get_x_title(mydf),
y = get_y_title(mydf),
colour = get_legend_title(mydf)

)

adjusted predictions, a list of data frames (one data frame per term)
eff <- ggeffect(fit)
eff
get_complete_df(eff)

adjusted predictions for education only, and get x-axis-labels
mydat <- eff[["c172code"]]
ggplot(mydat, aes(x = x, y = predicted, group = group)) +

stat_summary(fun = sum, geom = "line") +
scale_x_discrete(labels = get_x_labels(mydat))

install_latest Update latest ggeffects-version from R-universe (GitHub) or CRAN

Description

This function can be used to install the latest package version of ggeffects, either the development
version (from R-universe/GitHub) or the current version from CRAN.

Usage

install_latest(
source = c("development", "cran"),
force = FALSE,
verbose = TRUE

)

Arguments

source Character. Either "development" or "cran". If "cran", ggeffects will be in-
stalled from the default CRAN mirror returned by getOption("repos")['CRAN'].
If "development" (the default), ggeffects is installed from the r-universe repos-
itory (https://strengejacke.r-universe.dev/).

force Logical, if FALSE, the update will only be installed if a newer version is available.
Use force=TRUE to force installation, even if the version number for the locally
installed package is identical to the latest development-version. Only applies
when source="development".

verbose Toggle messages.

https://strengejacke.r-universe.dev/

lung2 21

Value

Invisible NULL.

Examples

install latest development-version of ggeffects from the
r-universe repository
install_latest()

lung2 Sample data set

Description

A sample data set, used in tests and examples for survival models. This dataset is originally included
in the survival package, but for convenience reasons it is also available in this package.

new_data Create a data frame from all combinations of predictor values

Description

Create a data frame for the "newdata"-argument that contains all combinations of values from the
terms in questions. Similar to expand.grid(). The terms-argument accepts all shortcuts for rep-
resentative values as in predict_response().

Usage

new_data(model, terms, typical = "mean", condition = NULL, ...)

data_grid(model, terms, typical = "mean", condition = NULL, ...)

Arguments

model A fitted model object.

terms Character vector with the names of those terms from model for which all com-
binations of values should be created. This argument works in the same way as
the terms argument in predict_response(). See also this vignette.

typical Character vector, naming the function to be applied to the covariates (non-focal
terms) over which the effect is "averaged". The default is "mean". Can be
"mean", "weighted.mean", "median", "mode" or "zero", which call the cor-
responding R functions (except "mode", which calls an internal function to
compute the most common value); "zero" simply returns 0. By default, if

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

22 plot

the covariate is a factor, only "mode" is applicable; for all other values (in-
cluding the default, "mean") the reference level is returned. For character vec-
tors, only the mode is returned. You can use a named vector to apply differ-
ent functions to integer, numeric and categorical covariates, e.g. typical =
c(numeric = "median", factor = "mode"). If typical is "weighted.mean",
weights from the model are used. If no weights are available, the function falls
back to "mean". Note that this argument is ignored for predict_response(),
because the margin argument takes care of this.

condition Named character vector, which indicates covariates that should be held constant
at specific values. Unlike typical, which applies a function to the covariates
to determine the value that is used to hold these covariates constant, condition
can be used to define exact values, for instance condition = c(covariate1 =
20, covariate2 = 5). See ’Examples’.

... Currently not used.

Value

A data frame containing one row for each combination of values of the supplied variables.

Examples

data(efc, package = "ggeffects")
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
new_data(fit, c("c12hour [meansd]", "c161sex"))

nd <- new_data(fit, c("c12hour [meansd]", "c161sex"))
pr <- predict(fit, type = "response", newdata = nd)
nd$predicted <- pr
nd

compare to
predict_response(fit, c("c12hour [meansd]", "c161sex"))

plot Plot ggeffects-objects

Description

plot is a generic plot-method for ggeffects-objects. ggeffects_palette() returns show_palettes()

Usage

S3 method for class 'ggeffects'
plot(
x,
show_ci = TRUE,
ci_style = c("ribbon", "errorbar", "dash", "dot"),

plot 23

show_data = FALSE,
show_residuals = FALSE,
show_residuals_line = FALSE,
data_labels = FALSE,
limit_range = FALSE,
collapse_group = FALSE,
show_legend = TRUE,
show_title = TRUE,
show_x_title = TRUE,
show_y_title = TRUE,
case = NULL,
colors = NULL,
alpha = 0.15,
dot_size = NULL,
dot_alpha = 0.35,
dot_shape = NULL,
line_size = NULL,
jitter = NULL,
dodge = 0.25,
use_theme = TRUE,
log_y = FALSE,
connect_lines = FALSE,
facets,
grid,
one_plot = TRUE,
n_rows = NULL,
verbose = TRUE,
...

)

theme_ggeffects(base_size = 11, base_family = "")

ggeffects_palette(palette = "metro", n = NULL)

show_palettes()

Arguments

x An object of class ggeffects, as returned by the functions from this package.

show_ci Logical, if TRUE, confidence bands (for continuous variables at x-axis) resp. er-
ror bars (for factors at x-axis) are plotted.

ci_style Character vector, indicating the style of the confidence bands. May be either
"ribbon", "errorbar", "dash" or "dot", to plot a ribbon, error bars, or dashed
or dotted lines as confidence bands.

show_data Logical, if TRUE, a layer with raw data from response by predictor on the x-axis,
plotted as point-geoms, is added to the plot. Note that if the model has a trans-
formed response variable, and the predicted values are not back-transformed (i.e.

24 plot

if back_transform = FALSE), the raw data points are plotted on the transformed
scale, i.e. same scale as the predictions.

show_residuals Logical, if TRUE, a layer with partial residuals is added to the plot. See vignette
Effect Displays with Partial Residuals. from effects for more details on partial
residual plots.

show_residuals_line

Logical, if TRUE, a loess-fit line is added to the partial residuals plot. Only
applies if residuals is TRUE.

data_labels Logical, if TRUE and row names in data are available, data points will be labelled
by their related row name.

limit_range Logical, if TRUE, limits the range of the prediction bands to the range of the data.

collapse_group For mixed effects models, name of the grouping variable of random effects.
If collapse_group = TRUE, data points "collapsed" by the first random effect
groups are added to the plot. Else, if collapse_group is a name of a group fac-
tor, data is collapsed by that specific random effect. See collapse_by_group()
for further details.

show_legend Logical, shows or hides the plot legend.

show_title Logical, shows or hides the plot title-

show_x_title Logical, shows or hides the plot title for the x-axis.

show_y_title Logical, shows or hides the plot title for the y-axis.

case Desired target case. Labels will automatically converted into the specified char-
acter case. See ?sjlabelled::convert_case for more details on this argu-
ment.

colors Character vector with color values in hex-format, valid color value names (see
demo("colors")) or a name of a ggeffects-color-palette (see ggeffects_palette()).
Following options are valid for colors:

• If not specified, the color brewer palette "Set1" will be used.
• If "gs", a greyscale will be used.
• If "bw", the plot is black/white and uses different line types to distinguish

groups.
• There are some pre-defined color-palettes in this package that can be used,

e.g. colors = "metro". See show_palettes() to show all available palettes.
• Else specify own color values or names as vector (e.g. colors = c("#f00000",
"#00ff00")).

alpha Alpha value for the confidence bands.

dot_size Numeric, size of the point geoms.

dot_alpha Alpha value for data points, when show_data = TRUE.

dot_shape Shape of data points, when show_data = TRUE.

line_size Numeric, size of the line geoms.

jitter Numeric, between 0 and 1. If not NULL and show_data = TRUE, adds a small
amount of random variation to the location of data points dots, to avoid over-
plotting. Hence the points don’t reflect exact values in the data. May also be a

https://cran.r-project.org/package=effects

plot 25

numeric vector of length two, to add different horizontal and vertical jittering.
For binary outcomes, raw data is not jittered by default to avoid that data points
exceed the axis limits.

dodge Value for offsetting or shifting error bars, to avoid overlapping. Only applies, if
a factor is plotted at the x-axis (in such cases, the confidence bands are replaced
by error bars automatically), or if ci_style = "errorbars".

use_theme Logical, if TRUE, a slightly tweaked version of ggplot’s minimal-theme, theme_ggeffects(),
is applied to the plot. If FALSE, no theme-modifications are applied.

log_y Logical, if TRUE, the y-axis scale is log-transformed. This might be useful for
binomial models with predicted probabilities on the y-axis.

connect_lines Logical, if TRUE and plot has point-geoms with error bars (this is usually the
case when the x-axis is discrete), points of same groups will be connected with
a line.

facets, grid Logical, defaults to TRUE if x has a column named facet, and defaults to FALSE
if x has no such column. Set facets = TRUE to wrap the plot into facets even for
grouping variables (see ’Examples’). grid is an alias for facets.

one_plot Logical, if TRUE and x has a grid column (i.e. when five terms were used), a
single, integrated plot is produced.

n_rows Number of rows to align plots. By default, all plots are aligned in one row. For
facets, or multiple panels, plots can also be aligned in multiiple rows, to avoid
that plots are too small.

verbose Logical, toggle warnings and messages.
... Further arguments passed down to ggplot::scale_y*(), to control the appear-

ance of the y-axis.
base_size Base font size.
base_family Base font family.
palette Name of a pre-defined color-palette as string. See show_palettes() to show

all available palettes. Use NULL to return a list with names and color-codes of all
avaibale palettes.

n Number of color-codes from the palette that should be returned.

Details

For proportional odds logistic regression (see ?MASS::polr) or cumulative link models in general,
plots are automatically facetted by response.level, which indicates the grouping of predictions
based on the level of the model’s response.

Value

A ggplot2-object.

Partial Residuals

For generalized linear models (glms), residualized scores are computed as inv.link(link(Y) +
r) where Y are the predicted values on the response scale, and r are the working residuals.

For (generalized) linear mixed models, the random effect are also partialled out.

26 pool_comparisons

Note

Load library(ggplot2) and use theme_set(theme_ggeffects()) to set the ggeffects-theme as
default plotting theme. You can then use further plot-modifiers, e.g. from sjPlot, like legend_style()
or font_size() without losing the theme-modifications.

There are pre-defined colour palettes in this package. Use show_palettes() to show all available
colour palettes as plot, or ggeffects_palette(palette = NULL) to show the color codes.

Examples

library(sjlabelled)
data(efc)
efc$c172code <- as_label(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

dat <- predict_response(fit, terms = "c12hour")
plot(dat)

facet by group, use pre-defined color palette
dat <- predict_response(fit, terms = c("c12hour", "c172code"))
plot(dat, facet = TRUE, colors = "hero")

don't use facets, b/w figure, w/o confidence bands
dat <- predict_response(fit, terms = c("c12hour", "c172code"))
plot(dat, colors = "bw", show_ci = FALSE)

factor at x axis, plot exact data points and error bars
dat <- predict_response(fit, terms = c("c172code", "c161sex"))
plot(dat)

for three variables, automatic facetting
dat <- predict_response(fit, terms = c("c12hour", "c172code", "c161sex"))
plot(dat)

show color codes of specific palette
ggeffects_palette("okabe-ito")

show all color palettes
show_palettes()

pool_comparisons Pool contrasts and comparisons from test_predictions()

Description

This function "pools" (i.e. combines) multiple ggcomparisons objects, returned by test_predictions(),
in a similar fashion as mice::pool().

pool_predictions 27

Usage

pool_comparisons(x, ...)

Arguments

x A list of ggcomparisons objects, as returned by test_predictions().

... Currently not used.

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76).

Value

A data frame with pooled comparisons or contrasts of predictions.

References

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

Examples

data("nhanes2", package = "mice")
imp <- mice::mice(nhanes2, printFlag = FALSE)
comparisons <- lapply(1:5, function(i) {

m <- lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
test_predictions(m, "age")

})
pool_comparisons(comparisons)

pool_predictions Pool Predictions or Estimated Marginal Means

Description

This function "pools" (i.e. combines) multiple ggeffects objects, in a similar fashion as mice::pool().

Usage

pool_predictions(x, ...)

Arguments

x A list of ggeffects objects, as returned by predict_response().

... Currently not used.

28 predict_response

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76). Pooling is applied to the pre-
dicted values on the scale of the linear predictor, not on the response scale, in order to have accurate
pooled estimates and standard errors. The final pooled predicted values are then transformed to the
response scale, using insight::link_inverse().

Value

A data frame with pooled predictions.

References

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

Examples

example for multiple imputed datasets
data("nhanes2", package = "mice")
imp <- mice::mice(nhanes2, printFlag = FALSE)
predictions <- lapply(1:5, function(i) {

m <- lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
predict_response(m, "age")

})
pool_predictions(predictions)

predict_response Adjusted predictions and estimated marginal means from regression
models

Description

After fitting a model, it is useful generate model-based estimates (expected values, or adjusted
predictions) of the response variable for different combinations of predictor values. Such estimates
can be used to make inferences about relationships between variables.

The ggeffects package computes marginal means and adjusted predicted values for the response, at
the margin of specific values or levels from certain model terms. The package is built around three
core functions: predict_response() (understanding results), test_predictions() (importance
of results) and plot() (communicate results).

By default, adjusted predictions or marginal means are returned on the response scale, which is the
easiest and most intuitive scale to interpret the results. There are other options for specific models
as well, e.g. with zero-inflation component (see documentation of the type-argument). The result
is returned as structured data frame, which is nicely printed by default. plot() can be used to easily
create figures.

predict_response 29

The main function to calculate marginal means and adjusted predictions is predict_response(),
which returns adjusted predictions, marginal means or averaged counterfactual predictions depend-
ing on value of the margin-argument.

In previous versions of ggeffects, the functions ggpredict(), ggemmeans(), ggeffect() and
ggaverage() were used to calculate marginal means and adjusted predictions. These functions
are still available, but predict_response() as a "wrapper" around these functions is the preferred
way to calculate marginal means and adjusted predictions now.

Usage

predict_response(
model,
terms,
margin = "mean_reference",
ci_level = 0.95,
type = "fixed",
condition = NULL,
interval = "confidence",
back_transform = TRUE,
vcov = NULL,
vcov_args = NULL,
weights = NULL,
bias_correction = FALSE,
verbose = TRUE,
...

)

Arguments

model A model object.

terms Names of those terms from model, for which predictions should be displayed
(so called focal terms). Can be:

• A character vector, specifying the names of the focal terms. This is the
preferred and probably most flexible way to specify focal terms, e.g. terms
= "x [40:60]", to calculate predictions for the values 40 to 60.

• A list, where each element is a named vector, specifying the focal terms
and their values. This is the "classical" R way to specify focal terms, e.g.
list(x = 40:60).

• A formula, e.g. terms = ~ x + z, which is internally converted to a charac-
ter vector. This is probably the least flexible way, as you cannot specify
representative values for the focal terms.

• A data frame representing a "data grid" or "reference grid". Predictions are
then made for all combinations of the variables in the data frame.

terms at least requires one variable name. The maximum length is five terms,
where the second to fifth term indicate the groups, i.e. predictions of the first
term are grouped at meaningful values or levels of the remaining terms (see
values_at()). It is also possible to define specific values for focal terms, at

30 predict_response

which adjusted predictions should be calculated (see details below). All re-
maining covariates that are not specified in terms are "marginalized", see the
margin argument in ?predict_response. See also argument condition to fix
non-focal terms to specific values, and argument typical for ggpredict() or
ggemmeans().

margin Character string, indicating how to marginalize over the non-focal predictors, i.e.
those variables that are not specified in terms. Possible values are "mean_reference",
"mean_mode", "marginalmeans" and "empirical" (or one of its aliases, "counterfactual"
or "average", aka average "counterfactual" predictions). You can set a default-
option for the margin argument via options(), e.g. options(ggeffects_margin
= "empirical"), so you don’t have to specify your preferred marginalization
method each time you call predict_response(). See details in the documen-
tation below.

ci_level Numeric, the level of the confidence intervals. Use ci_level = NA if confi-
dence intervals should not be calculated (for instance, due to computation time).
Typically, confidence intervals are based on the returned standard errors for the
predictions, assuming a t- or normal distribution (based on the model and the
available degrees of freedom, i.e. roughly +/- 1.96 * SE). See introduction of
this vignette for more details.

type Character, indicating whether predictions should be conditioned on specific model
components or not, or whether population or unit-level predictions are desired.
Consequently, most options only apply for survival models, mixed effects mod-
els and/or models with zero-inflation (and their Bayesian counter-parts); only
exception is type = "simulate", which is available for some other model classes
as well (which respond to simulate()).
Note 1: For brmsfit-models with zero-inflation component, there is no type
= "zero_inflated" nor type = "zi_random"; predicted values for these mod-
els always condition on the zero-inflation part of the model. The same is true
for MixMod-models from GLMMadaptive with zero-inflation component (see
’Details’).
Note 2: If margin = "empirical", or when calling ggaverage() respectively,
(i.e. counterfactual predictions), the type argument is handled differently. It
is set to "response" by default, but usually accepts all possible options from
the type-argument of the model’s respective predict() method. E.g., passing
a glm object would allow the options "response", "link", and "terms". For
models with zero-inflation component, the below mentioned options "fixed",
"zero_inflated" and "zi_prob" can also be used and will be "translated" into
the corresponding type option of the model’s respective predict()-method.
Note 3: If margin = "marginalmeans", or when calling ggemmeans() respec-
tively, type = "random" and type = "zi_random" are not available, i.e. no unit-
level predictions are possible.

• "fixed" (or "count")
Predicted values are conditioned on the fixed effects or conditional model
only. For mixed models, predicted values are on the population-level, i.e.
re.form = NA when calling predict(). For models with zero-inflation
component, this type would return the predicted mean from the count com-
ponent (without conditioning on the zero-inflation part).

https://strengejacke.github.io/ggeffects/articles/ggeffects.html

predict_response 31

• "random"
This only applies to mixed models, and type = "random" does not con-
dition on the zero-inflation component of the model. Use this for unit-
level predictions, i.e. predicted values for each level of the random effects
groups. Add the name of the related random effect term to the terms-
argument (for more details, see this vignette).

• "zero_inflated" (or "zi")
Predicted values are conditioned on the fixed effects and the zero-inflation
component, returning the expected value of the response (mu*(1-p)). For
For mixed models with zero-inflation component (e.g. from package glmmTMB),
this would return the expected response mu*(1-p) on the population-level.
See ’Details’.

• "zi_random" (or "zero_inflated_random")
This only applies to mixed models. Predicted values are conditioned on the
fixed effects and the zero-inflation component. Use this for unit-level pre-
dictions, i.e. predicted values for each level of the random effects groups.
Add the name of the related random effect term to the terms-argument (for
more details, see this vignette).

• "zi_prob"
Returns the predicted zero-inflation probability, i.e. probability of a struc-
tural or "true" zero.

• "simulate"
Predicted values and confidence resp. prediction intervals are based on
simulations, i.e. calls to simulate(). This type of prediction takes all
model uncertainty into account. Currently supported models are objects
of class lm, glm, glmmTMB, wbm, MixMod and merMod. Use nsim to set the
number of simulated draws (see ... for details).

• "survival", "cumulative_hazard" and "quantile"
"survival" and "cumulative_hazard" apply only to coxph-objects from
the survial-package. These options calculate the survival probability or
the cumulative hazard of an event. type = "quantile" only applies to
survreg-objects from package survival, which returns the predicted quan-
tiles. For this option, the p argument is passed to predict(), so that quan-
tiles for different probabilities can be calculated, e.g. predict_response(...,
type = "quantile", p = c(0.2, 0.5, 0.8)).

When margin = "empirical" (or when calling ggaverage()), the type ar-
gument accepts all values from the type-argument of the model’s respective
predict()-method.

condition Named character vector, which indicates covariates that should be held constant
at specific values. Unlike typical, which applies a function to the covariates
to determine the value that is used to hold these covariates constant, condition
can be used to define exact values, for instance condition = c(covariate1 =
20, covariate2 = 5). See ’Examples’.

interval Type of interval calculation, can either be "confidence" (default) or "prediction".
May be abbreviated. Unlike confidence intervals, prediction intervals include
the residual variance (sigma^2) to account for the uncertainty of predicted val-
ues. Note that prediction intervals are not available for all models, but only for

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html
https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

32 predict_response

models that work with insight::get_sigma(). For Bayesian models, when
interval = "confidence", predictions are based on posterior draws of the lin-
ear predictor rstantools::posterior_epred(). If interval = "prediction",
rstantools::posterior_predict() is called.

back_transform Logical, if TRUE (the default), predicted values for log-, log-log, exp, sqrt and
similar transformed responses will be back-transformed to original response-
scale. See insight::find_transformation() for more details.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for con-
fidence intervals based on robust standard errors). This argument accepts a co-
variance matrix, a function which returns a covariance matrix, or a string which
identifies the function to be used to compute the covariance matrix.

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "BS", "xy", "fractional", "jackknife", "residual",
"wild", "mammen", "norm", "webb". See ?sandwich::vcovBS

– Other sandwich package functions: "HAC", "PC", "CL", or "PL".

If NULL, standard errors (and confidence intervals) for predictions are based on
the standard errors as returned by the predict()-function. Note that probably
not all model objects that work with predict_response() are also supported
by the sandwich or clubSandwich packages.
See details in this vignette.

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments. If no estimation type (argument type) is given, the
default type for "HC" equals the default from the sandwich package; for type
"CR" the default is set to "CR3". For other defaults, refer to the documentation
in the sandwich or clubSandwich package.

weights This argument is used in two different ways, depending on the margin argument.

• When margin = "empirical" (or when calling ggaverag()), weights can
either be a character vector, naming the weigthing variable in the data, or
a vector of weights (of same length as the number of observations in the
data). This variable will be used to weight adjusted predictions.

• When margin = "marginalmeans" (or when calling ggemmeans()), weights
must be a character vector and is passed to emmeans::emmeans(), specify-
ing weights to use in averaging non-focal categorical predictors. Options
are "equal", "proportional", "outer", "cells", "flat", and "show.levels".
See ?emmeans::emmeans for details.

bias_correction

Logical, if TRUE, adjusts for bias-correction when back-transforming the pre-
dicted values (to the response scale) for non-Gaussian mixed models. Back-

https://strengejacke.github.io/ggeffects/articles/practical_robustestimation.html

predict_response 33

transforming the the population-level predictions ignores the effect of the vari-
ation around the population mean, so the result on the original data scale is
biased due to Jensen’s inequality. That means, when type = "fixed" (the de-
fault) and population level predictions are returned, it is recommended to set
bias_correction = TRUE. To apply bias-correction, a valid value of sigma is re-
quired, which is extracted by default using insight::get_variance_residual().
Optionally, to provide own estimates of uncertainty, use the sigma argument.
Note that bias_correction currently only applies to mixed models, where
there are additive random components involved and where that bias-adjustment
can be appropriate. If ggemmeans() is called, bias-correction can also be applied
to GEE-models.

verbose Toggle messages or warnings.

... If margin is set to "mean_reference" or "mean_mode", arguments are passed
down to ggpredict() (further down to predict()); for margin = "marginalmeans",
further arguments passed down to ggemmeans() and thereby to emmeans::emmeans();
if margin = "empirical", further arguments are passed down to marginaleffects::avg_predictions().
If type = "simulate", ... may also be used to set the number of simulation,
e.g. nsim = 500. When calling ggeffect(), further arguments passed down to
effects::Effect().

Value

A data frame (with ggeffects class attribute) with consistent data columns:

• "x": the values of the first term in terms, used as x-position in plots.

• "predicted": the predicted values of the response, used as y-position in plots.

• "std.error": the standard error of the predictions. Note that the standard errors are always
on the link-scale, and not back-transformed for non-Gaussian models!

• "conf.low": the lower bound of the confidence interval for the predicted values.

• "conf.high": the upper bound of the confidence interval for the predicted values.

• "group": the grouping level from the second term in terms, used as grouping-aesthetics in
plots.

• "facet": the grouping level from the third term in terms, used to indicate facets in plots.
The estimated marginal means (or predicted values) are always on the response scale!
For proportional odds logistic regression (see ?MASS::polr) resp. cumulative link models
(e.g., see ?ordinal::clm), an additional column "response.level" is returned, which indi-
cates the grouping of predictions based on the level of the model’s response.
Note that for convenience reasons, the columns for the intervals are always named "conf.low"
and "conf.high", even though for Bayesian models credible or highest posterior density in-
tervals are returned.
There is an as.data.frame() method for objects of class ggeffects, which has an terms_to_colnames
argument, to use the term names as column names instead of the standardized names "x" etc.

Supported Models

A list of supported models can be found at the package website. Support for models varies by
marginalization method (the margin argument), i.e. although predict_response() supports most

https://github.com/strengejacke/ggeffects

34 predict_response

models, some models are only supported exclusively by one of the four downstream functions
(ggpredict(), ggemmeans(), ggeffect() or ggaverage()). This means that not all models work
for every margin option of predict_response().

Holding covariates at constant values, or how to marginalize over the non-focal predictors

predict_response() is a wrapper around ggpredict(), ggemmeans() and ggaverage(). De-
pending on the value of the margin argument, predict_response() calls one of those functions.
The margin argument indicates how to marginalize over the non-focal predictors, i.e. those vari-
ables that are not specified in terms. Possible values are:

• "mean_reference" and "mean_mode": For "mean_reference", non-focal predictors are set
to their mean (numeric variables), reference level (factors), or "most common" value (mode)
in case of character vectors. For "mean_mode", non-focal predictors are set to their mean
(numeric variables) or mode (factors, or "most common" value in case of character vectors).
These predictons represent a rather "theoretical" view on your data, which does not necessarily
exactly reflect the characteristics of your sample. It helps answer the question, "What is the
predicted (or: expected) value of the response at meaningful values or levels of my focal terms
for a ’typical’ observation in my data?", where ’typical’ refers to certain characteristics of the
remaining predictors.

• "marginalmeans": non-focal predictors are set to their mean (numeric variables) or averaged
over the levels or "values" for factors and character vectors. Averaging over the factor levels
of non-focal terms computes a kind of "weighted average" for the values at which these terms
are hold constant. Thus, non-focal categorical terms are conditioned on "weighted averages"
of their levels. There are different weighting options that can be altered using the weights
argument.
These predictions come closer to the sample, because all possible values and levels of the non-
focal predictors are taken into account. It would answer the question, "What is the predicted
(or: expected) value of the response at meaningful values or levels of my focal terms for an
’average’ observation in my data?". It refers to randomly picking a subject of your sample and
the result you get on average.

• "empirical" (or "counterfactual" or "average"): non-focal predictors are averaged over
the observations in the sample. The response is predicted for each subject in the data and
predicted values are then averaged across all subjects, aggregated/grouped by the focal terms.
In particular, averaging is applied to counterfactual predictions (Dickerman and Hernan 2020).
There is a more detailed description in this vignette.
Counterfactual predictions are useful, insofar as the results can also be transferred to other
contexts. It answers the question, "What is the predicted (or: expected) value of the response
at meaningful values or levels of my focal terms for the ’average’ observation in the popula-
tion?". It does not only refer to the actual data in your sample, but also "what would be if" we
had more data, or if we had data from a different population. This is where "counterfactual"
refers to.

You can set a default-option for the margin argument via options(), e.g. options(ggeffects_margin
= "empirical"), so you don’t have to specify your "default" marginalization method each time you
call predict_response(). Use options(ggeffects_margin = NULL) to remove that setting.

The condition argument can be used to fix non-focal terms to specific values.

https://strengejacke.github.io/ggeffects/articles/technical_differencepredictemmeans.html

predict_response 35

Marginal Means and Adjusted Predictions at Specific Values

Meaningful values of focal terms can be specified via the terms argument. Specifying meaningful
or representative values as string pattern is the preferred way in the ggeffects package. However, it
is also possible to use a list() for the focal terms if prefer the "classical" R way. terms can also
be a data (or reference) grid provided as data frame. All options are described in this vignette.

Indicating levels in square brackets allows for selecting only certain groups or values resp. value
ranges. The term name and the start of the levels in brackets must be separated by a whitespace
character, e.g. terms = c("age", "education [1,3]"). Numeric ranges, separated with colon, are
also allowed: terms = c("education", "age [30:60]"). The stepsize for ranges can be adjusted
using by, e.g. terms = "age [30:60 by=5]".

The terms argument also supports the same shortcuts as the values argument in values_at(). So
terms = "age [meansd]" would return predictions for the values one standard deviation below the
mean age, the mean age and one SD above the mean age. terms = "age [quart2]" would calculate
predictions at the value of the lower, median and upper quartile of age.

Furthermore, it is possible to specify a function name. Values for predictions will then be trans-
formed, e.g. terms = "income [exp]". This is useful when model predictors were transformed for
fitting the model and should be back-transformed to the original scale for predictions. It is also
possible to define own functions (see this vignette).

Instead of a function, it is also possible to define the name of a variable with specific values, e.g. to
define a vector v = c(1000, 2000, 3000) and then use terms = "income [v]".

You can take a random sample of any size with sample=n, e.g terms = "income [sample=8]",
which will sample eight values from all possible values of the variable income. This option is
especially useful for plotting predictions at certain levels of random effects group levels, where the
group factor has too many levels to be completely plotted. For more details, see this vignette.

Finally, numeric vectors for which no specific values are given, a "pretty range" is calculated (see
pretty_range()), to avoid memory allocation problems for vectors with many unique values. If a
numeric vector is specified as second or third term (i.e. if this focal term is used for "stratification"),
representative values (see values_at()) are chosen (unless other values are specified), which are
typically the mean value, as well as one standard deviation below and above the mean. If all values
for a numeric vector should be used to compute predictions, you may use e.g. terms = "age [all]".
See also package vignettes.

To create a pretty range that should be smaller or larger than the default range (i.e. if no specific
values would be given), use the n tag, e.g. terms="age [n=5]" or terms="age [n=12]". Larger
values for n return a larger range of predicted values.

Bayesian Regression Models

predict_response() also works with Stan-models from the rstanarm or brms-packages. The
predicted values are the median value of all drawn posterior samples. Standard errors are the median
absolute deviation of the posterior samples. The confidence intervals for Stan-models are Bayesian
predictive intervals. By default, the predictions are based on rstantools::posterior_epred()
and hence have the limitations that the uncertainty of the error term (residual variance) is not taken
into account. The recommendation is to use the posterior predictive distribution (rstantools::posterior_predict()),
i.e. setting interval = "prediction".

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html
https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html
https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

36 predict_response

Mixed (multilevel) Models

For mixed models, following options are possible:

• Predictions can be made on the population-level (type = "fixed", the default) or for each
level of the grouping variable (unit-level). If unit-level predictions are requested, you need
to set type = "random"`` and specify the grouping variable(s) in the terms‘
argument.

• Population-level predictions can be either conditional (predictions for a "typical" group) or
marginal (average predictions across all groups). The default in predict_response() calcu-
lated conditional predictions. Set margin = "empirical" for marginal predictions.

• Prediction intervals, i.e. when interval = "predictions" also account for the uncertainty
in the random effects.

See more details in this vignette.

Zero-Inflated and Zero-Inflated Mixed Models with brms

Models of class brmsfit always condition on the zero-inflation component, if the model has such
a component. Hence, there is no type = "zero_inflated" nor type = "zi_random" for brmsfit-
models, because predictions are based on draws of the posterior distribution, which already account
for the zero-inflation part of the model.

Zero-Inflated and Zero-Inflated Mixed Models with glmmTMB

If model is of class glmmTMB, hurdle, zeroinfl or zerotrunc, and margin is not set to "empirical,
simulations from a multivariate normal distribution (see ?MASS::mvrnorm) are drawn to calcu-
late mu*(1-p). Confidence intervals are then based on quantiles of these results. For type =
"zi_random", prediction intervals also take the uncertainty in the random-effect paramters into
account (see also Brooks et al. 2017, pp.391-392 for details).

An alternative for models fitted with glmmTMB that take all model uncertainties into account are
simulations based on simulate(), which is used when type = "simulate" (see Brooks et al. 2017,
pp.392-393 for details).

Finally, if margin = "empirical", the returned predictions are already conditioned on the zero-
inflation part (and possible random effects) of the model, thus these are most comparable to the
type = "simulate" option. In other words, if all model components should be taken into account
for predictions, you should consider using margin = "empirical".

MixMod-models from GLMMadaptive

Predicted values for the fixed effects component (type = "fixed" or type = "zero_inflated")
are based on predict(..., type = "mean_subject"), while predicted values for random effects
components (type = "random" or type = "zi_random") are calculated with predict(..., type
= "subject_specific") (see ?GLMMadaptive::predict.MixMod for details). The latter option
requires the response variable to be defined in the newdata-argument of predict(), which will be
set to its typical value (see values_at()).

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

predict_response 37

Multinomial Models

polr, clm models, or more generally speaking, models with ordinal or multinominal outcomes, have
an additional column response.level, which indicates with which level of the response variable
the predicted values are associated.

Averaged model predictions (package MuMIn)

For averaged model predictions, i.e. when the input model is an object of class "averaging"
(MuMIn::model.avg()), predictions are made with the full averaged coefficients.

Note

Printing Results
The print() method gives a clean output (especially for predictions by groups), and indicates at
which values covariates were held constant. Furthermore, the print() method has several argu-
ments to customize the output. See this vignette for details.

Limitations
The support for some models, for example from package MCMCglmm, is not fully tested and may
fail for certain models. If you encounter any errors, please file an issue at Github.

References

• Brooks ME, Kristensen K, Benthem KJ van, Magnusson A, Berg CW, Nielsen A, et al.
glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized
Linear Mixed Modeling. The R Journal. 2017;9: 378-400.

• Johnson PC. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes mod-
els. Methods Ecol Evol, 5: 944-946.

• Dickerman BA, Hernan, MA. Counterfactual prediction is not only for causal inference. Eur
J Epidemiol 35, 615–617 (2020).

Examples

library(sjlabelled)
data(efc)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

predict_response(fit, terms = "c12hour")
predict_response(fit, terms = c("c12hour", "c172code"))
more compact table layout for printing
out <- predict_response(fit, terms = c("c12hour", "c172code", "c161sex"))
print(out, collapse_table = TRUE)

specified as formula
predict_response(fit, terms = ~ c12hour + c172code + c161sex)

only range of 40 to 60 for variable 'c12hour'
predict_response(fit, terms = "c12hour [40:60]")

terms as named list

https://strengejacke.github.io/ggeffects/articles/introduction_print.html
https://github.com/strengejacke/ggeffects/issues

38 predict_response

predict_response(fit, terms = list(c12hour = 40:60))

covariate "neg_c_7" is held constant at a value of 11.84 (its mean value).
To use a different value, use "condition"
predict_response(fit, terms = "c12hour [40:60]", condition = c(neg_c_7 = 20))

to plot ggeffects-objects, you can use the 'plot()'-function.
the following examples show how to build your ggplot by hand.

plot predicted values, remaining covariates held constant
library(ggplot2)
mydf <- predict_response(fit, terms = "c12hour")
ggplot(mydf, aes(x, predicted)) +

geom_line() +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.1)

three variables, so we can use facets and groups
mydf <- predict_response(fit, terms = c("c12hour", "c161sex", "c172code"))
ggplot(mydf, aes(x = x, y = predicted, colour = group)) +

stat_smooth(method = "lm", se = FALSE) +
facet_wrap(~facet, ncol = 2)

select specific levels for grouping terms
mydf <- predict_response(fit, terms = c("c12hour", "c172code [1,3]", "c161sex"))
ggplot(mydf, aes(x = x, y = predicted, colour = group)) +

stat_smooth(method = "lm", se = FALSE) +
facet_wrap(~facet) +
labs(
y = get_y_title(mydf),
x = get_x_title(mydf),
colour = get_legend_title(mydf)

)

level indication also works for factors with non-numeric levels
and in combination with numeric levels for other variables
data(efc)
efc$c172code <- sjlabelled::as_label(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
predict_response(fit, terms = c(

"c12hour",
"c172code [low level of education, high level of education]",
"c161sex [1]"

))

when "terms" is a named list
predict_response(fit, terms = list(

c12hour = seq(0, 170, 30),
c172code = c("low level of education", "high level of education"),
c161sex = 1

))

use categorical value on x-axis, use axis-labels, add error bars

pretty_range 39

dat <- predict_response(fit, terms = c("c172code", "c161sex"))
ggplot(dat, aes(x, predicted, colour = group)) +

geom_point(position = position_dodge(0.1)) +
geom_errorbar(
aes(ymin = conf.low, ymax = conf.high),
position = position_dodge(0.1)

) +
scale_x_discrete(breaks = 1:3, labels = get_x_labels(dat))

3-way-interaction with 2 continuous variables
data(efc)
make categorical
efc$c161sex <- as_factor(efc$c161sex)
fit <- lm(neg_c_7 ~ c12hour * barthtot * c161sex, data = efc)
select only levels 30, 50 and 70 from continuous variable Barthel-Index
dat <- predict_response(fit, terms = c("c12hour", "barthtot [30,50,70]", "c161sex"))
ggplot(dat, aes(x = x, y = predicted, colour = group)) +

stat_smooth(method = "lm", se = FALSE, fullrange = TRUE) +
facet_wrap(~facet) +
labs(

colour = get_legend_title(dat),
x = get_x_title(dat),
y = get_y_title(dat),
title = get_title(dat)

)

or with ggeffects' plot-method
plot(dat, show_ci = FALSE)

predictions for polynomial terms
data(efc)
fit <- glm(

tot_sc_e ~ c12hour + e42dep + e17age + I(e17age^2) + I(e17age^3),
data = efc,
family = poisson()

)
predict_response(fit, terms = "e17age")

pretty_range Create a pretty sequence over a range of a vector

Description

Creates an evenly spaced, pretty sequence of numbers for a range of a vector.

Usage

pretty_range(x, n = NULL, length = NULL)

40 residualize_over_grid

Arguments

x A numeric vector.

n Numeric value, indicating the size of how many values are used to create a pretty
sequence. If x has a large value range (> 100), n could be something between
1 to 5. If x has a rather small amount of unique values, n could be something
between 10 to 20. If n = NULL, pretty_range() automatically tries to find a
pretty sequence.

length Integer value, as alternative to n, defines the number of intervals to be returned.

Value

A numeric vector with a range corresponding to the minimum and maximum values of x. If x is
missing, a function, pre-programmed with n and length is returned. See examples.

Examples

data(iris)
pretty range for vectors with decimal points
pretty_range(iris$Petal.Length)

pretty range for large range, increasing by 50
pretty_range(1:1000)

increasing by 20
pretty_range(1:1000, n = 7)

return 10 intervals
pretty_range(1:1000, length = 10)

same result
pretty_range(1:1000, n = 2.5)

function factory
range_n_5 <- pretty_range(n = 5)
range_n_5(1:1000)

residualize_over_grid Compute partial residuals from a data grid

Description

This function computes partial residuals based on a data grid, where the data grid is usually a data
frame from all combinations of factor variables or certain values of numeric vectors. This data grid
is usually used as newdata argument in predict(), and can be created with new_data().

residualize_over_grid 41

Usage

residualize_over_grid(grid, model, ...)

S3 method for class 'data.frame'
residualize_over_grid(grid, model, predictor_name, ...)

S3 method for class 'ggeffects'
residualize_over_grid(grid, model, protect_names = TRUE, ...)

Arguments

grid A data frame representing the data grid, or an object of class ggeffects, as
returned by predict_response().

model The model for which to compute partial residuals. The data grid grid should
match to predictors in the model.

... Currently not used.

predictor_name The name of the focal predictor, for which partial residuals are computed.

protect_names Logical, if TRUE, preserves column names from the ggeffects objects that is
used as grid.

Value

A data frame with residuals for the focal predictor.

Partial Residuals

For generalized linear models (glms), residualized scores are computed as inv.link(link(Y) +
r) where Y are the predicted values on the response scale, and r are the working residuals.

For (generalized) linear mixed models, the random effect are also partialled out.

References

Fox J, Weisberg S. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor
Effect Plots and Partial Residuals. Journal of Statistical Software 2018;87.

Examples

library(ggeffects)
set.seed(1234)
x <- rnorm(200)
z <- rnorm(200)
quadratic relationship
y <- 2 * x + x^2 + 4 * z + rnorm(200)

d <- data.frame(x, y, z)
model <- lm(y ~ x + z, data = d)

pr <- predict_response(model, c("x [all]", "z"))

42 test_predictions

head(residualize_over_grid(pr, model))

test_predictions (Pairwise) comparisons between predictions (marginal effects)

Description

Function to test differences of adjusted predictions for statistical significance. This is usually called
contrasts or (pairwise) comparisons, or "marginal effects". hypothesis_test() is an alias.

Usage

test_predictions(object, ...)

hypothesis_test(object, ...)

Default S3 method:
test_predictions(
object,
terms = NULL,
by = NULL,
test = "pairwise",
test_args = NULL,
equivalence = NULL,
scale = "response",
p_adjust = NULL,
df = NULL,
ci_level = 0.95,
margin = "mean_reference",
condition = NULL,
collapse_levels = FALSE,
engine = "marginaleffects",
verbose = TRUE,
...

)

S3 method for class 'ggeffects'
test_predictions(
object,
by = NULL,
test = "pairwise",
equivalence = NULL,
scale = "response",
p_adjust = NULL,
df = NULL,
collapse_levels = FALSE,
engine = "marginaleffects",

test_predictions 43

verbose = TRUE,
...

)

Arguments

object A fitted model object, or an object of class ggeffects. If object is of class
ggeffects, arguments terms, margin and ci_level are taken from the ggeffects
object and don’t need to be specified.

... Arguments passed down to data_grid() when creating the reference grid and
to marginaleffects::predictions() resp. marginaleffects::slopes().
For instance, arguments type or transform can be used to back-transform
comparisons and contrasts to different scales. vcov can be used to calculate
heteroscedasticity-consistent standard errors for contrasts.
To define a heteroscedasticity-consistent variance-covariance matrix, you can
either use the same arguments as for predict_response() etc., namely vcov
and vcov_args. These are then transformed into a matrix and passed down to
the vcov argument in marginaleffects. Or you directly use the vcov argument.
See ?marginaleffects::slopes for further details.

terms If object is an object of class ggeffects, the same terms argument is used as
for the predictions, i.e. terms can be ignored. Else, if object is a model object,
terms must be a character vector with the names of the focal terms from object,
for which contrasts or comparisons should be displayed. At least one term is
required, maximum length is three terms. If the first focal term is numeric,
contrasts or comparisons for the slopes of this numeric predictor are computed
(possibly grouped by the levels of further categorical focal predictors).

by Character vector specifying the names of predictors to condition on. Hypothesis
test is then carried out for focal terms by each level of by variables. This is
useful especially for interaction terms, where we want to test the interaction
within "groups". by is only relevant for categorical predictors.

test Hypothesis to test, defined as character string, formula, or data frame. Can be
one of:

• String:
– "pairwise" (default), to test pairwise comparisons.
– "trend" (or "slope") to test for the linear trend/slope of (usually) con-

tinuous predictors. These options are just aliases for setting trend =
NULL.

– "contrast" to test simple contrasts (i.e. each level is tested against the
average over all levels).

– "exclude" to test simple contrasts (i.e. each level is tested against
the average over all other levels, excluding the contrast that is being
tested).

– "interaction" to test interaction contrasts (difference-in-difference
contrasts). More flexible interaction contrasts can be calcualted using
the test_args argument.

– "consecutive" to test contrasts between consecutive levels of a pre-
dictor.

44 test_predictions

– "polynomial" to test orthogonal polynomial contrasts, assuming equally-
spaced factor levels.

• String equation:
A character string with a custom hypothesis, e.g. "b2 = b1". This would
test if the second level of a predictor is different from the first level. Custom
hypotheses are very flexible. It is also possible to test interaction contrasts
(difference-in-difference contrasts) with custom hypotheses, e.g. "(b2 -
b1) = (b4 - b3)". See also section Introduction into contrasts and pairwise
comparisons.

• Formula:
A formula, where the left-hand side indicates the type of comparison and
the right-hand side which pairs to compare. Optionally, grouping variables
can be specified after a vertical bar. See also ’Examples’.

– For the left-hand side, comparisons can be difference or ratio.
– For the right-hand side, pairs can be reference, sequential, or meandev.

For reference, all factor levels are compared to the reference level.
sequential compares consecutive levels of a predictor. meandev com-
pares each factor level against the "average" factor level.

– If a variable is specified after |, comparisons will be grouped by that
variable.

• A data frame with custom contrasts. See ’Examples’.
• NULL, in which case simple contrasts are computed.

Technical details about the packages used as back-end to calculate contrasts and
pairwise comparisons are provided in the section Packages used as back-end to
calculate contrasts and pairwise comparisons below.

test_args Optional arguments passed to test, typically provided as named list. Only ap-
plies to those options that use the emmeans package as backend, e.g. if test =
"interaction", test_args will be passed to emmeans::contrast(interaction
= test_args). For other emmeans options (like "contrast", "exclude", "consecutive"
and so on), test_args will be passed to the option argument in emmeans::contrast().

equivalence ROPE’s lower and higher bounds. Should be "default" or a vector of length
two (e.g., c(-0.1, 0.1)). If "default", bayestestR::rope_range() is used.
Instead of using the equivalence argument, it is also possible to call the equivalence_test()
method directly. This requires the parameters package to be loaded. When us-
ing equivalence_test(), two more columns with information about the ROPE
coverage and decision on H0 are added. Furthermore, it is possible to plot() the
results from equivalence_test(). See bayestestR::equivalence_test()
resp. parameters::equivalence_test.lm() for details.

scale Character string, indicating the scale on which the contrasts or comparisons are
represented. Can be one of:

• "response" (default), which would return contrasts on the response scale
(e.g. for logistic regression, as probabilities);

• "link" to return contrasts on scale of the linear predictors (e.g. for logistic
regression, as log-odds);

• "probability" (or "probs") returns contrasts on the probability scale,
which is required for some model classes, like MASS::polr();

test_predictions 45

• "oddsratios" to return contrasts on the odds ratio scale (only applies to
logistic regression models);

• "irr" to return contrasts on the odds ratio scale (only applies to count mod-
els);

• or a transformation function like "exp" or "log", to return transformed
(exponentiated respectively logarithmic) contrasts; note that these transfor-
mations are applied to the response scale.

Note: If the scale argument is not supported by the provided object, it is
automatically changed to a supported scale-type (a message is printed when
verbose = TRUE).

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() or stats::p.adjust.methods for details. Further possi-
ble adjustment methods are "tukey" or "sidak", and for johnson_neyman(),
"fdr" (or "bh") and "esarey" (or its short-cut "es") are available options.
Some caution is necessary when adjusting p-value for multiple comparisons.
See also section P-value adjustment below.

df Degrees of freedom that will be used to compute the p-values and confidence
intervals. If NULL, degrees of freedom will be extracted from the model using
insight::get_df() with type = "wald".

ci_level Numeric, the level of the confidence intervals. If object is an object of class
ggeffects, the same ci_level argument is used as for the predictions, i.e.
ci_level can be ignored.

margin Character string, indicates the method how to marginalize over non-focal terms.
See predict_response() for details. If object is an object of class ggeffects,
the same margin argument is used as for the predictions, i.e. margin can be ig-
nored.

condition Named character vector, which indicates covariates that should be held constant
at specific values, for instance condition = c(covariate1 = 20, covariate2
= 5).

collapse_levels

Logical, if TRUE, term labels that refer to identical levels are no longer separated
by "-", but instead collapsed into a unique term label (e.g., "level a-level a"
becomes "level a"). See ’Examples’.

engine Character string, indicates the package to use for computing contrasts and com-
parisons. Usually, this argument can be ignored, unless you want to explic-
itly use another package than marginaleffects to calculate contrasts and pairwise
comparisons. engine can be either "marginaleffects" (default) or "emmeans".
The latter is useful when the marginaleffects package is not available, or when
the emmeans package is preferred. Note that using emmeans as back-end is
currently not as feature rich as the default (marginaleffects). Setting engine =
"emmeans" provides some additional test options: "interaction" to calculate
interaction contrasts, "consecutive" to calculate contrasts between consecu-
tive levels of a predictor, or a data frame with custom contrasts (see also test).
There is a third option as well, engine = "ggeffects". However, this option
offers less features as the default engine, "marginaleffects". It can be faster
in some cases, though, and works for comparing predicted random effects in

46 test_predictions

mixed models, or predicted probabilities of the zero-inflation component. If
the marginaleffects package is not installed, the emmeans package is used au-
tomatically. If this package is not installed as well, engine = "ggeffects" is
used.

verbose Toggle messages and warnings.

Value

A data frame containing predictions (e.g. for test = NULL), contrasts or pairwise comparisons of
adjusted predictions or estimated marginal means.

Simple workflow for pairwise comparisons

A simple workflow includes calculating adjusted predictions and passing the results directly to
test_predictions(), e.g.:

1. fit your model
model <- lm(mpg ~ hp + wt + am, data = mtcars)
2. calculate adjusted predictions
pr <- predict_response(model, "am")
pr
3. test pairwise comparisons
test_predictions(pr)

See also this vignette.

Packages used as back-end to calculate contrasts and pairwise comparisons

The test argument is used to define which kind of contrast or comparison should be calculated. The
default is to use the marginaleffects package. Here are some technical details about the packages
used as back-end. When test is...

• "pairwise" (default), pairwise comparisons are based on the marginaleffects package.

• "trend" or "slope" also uses the marginaleffects package.

• "contrast" uses the emmeans package, i.e. emmeans::contrast(method = "eff") is called.

• "exclude" relies on the emmeans package, i.e. emmeans::contrast(method = "del.eff")
is called.

• "polynomial" relies on the emmeans package, i.e. emmeans::contrast(method = "poly")
is called.

• "interaction" uses the emmeans package, i.e. emmeans::contrast(interaction = ...)
is called.

• "consecutive" also relies on the emmeans package, i.e. emmeans::contrast(method =
"consec") is called.

• a character string with a custom hypothesis, the marginaleffects package is used.

• a data frame with custom contrasts, emmeans is used again.

• for formulas, the marginaleffects package is used.

https://strengejacke.github.io/ggeffects/articles/practical_glm_workflow.html

test_predictions 47

• NULL calls functions from the marginaleffects package with hypothesis = NULL.

• If all focal terms are only present as random effects in a mixed model, or if predicted probabili-
ties for the zero-inflation component of a model should be tested, functions from the ggeffects
package are used. There is an example for pairwise comparisons of random effects in this
vignette.

P-value adjustment for multiple comparisons

Note that p-value adjustment for methods supported by p.adjust() (see also p.adjust.methods),
each row is considered as one set of comparisons, no matter which test was specified. That is,
for instance, when test_predictions() returns eight rows of predictions (when test = NULL),
and p_adjust = "bonferroni", the p-values are adjusted in the same way as if we had a test of
pairwise comparisons (test = "pairwise") where eight rows of comparisons are returned. For
methods "tukey" or "sidak", a rank adjustment is done based on the number of combinations of
levels from the focal predictors in terms. Thus, the latter two methods may be useful for certain
tests only, in particular pairwise comparisons.

For johnson_neyman(), the only available adjustment methods are "fdr" (or "bh") (Benjamini &
Hochberg (1995)) and "esarey" (or "es") (Esarey and Sumner 2017). These usually return similar
results. The major difference is that "fdr" can be slightly faster and more stable in edge cases,
however, confidence intervals are not updated. Only the p-values are adjusted. "esarey" is slower,
but confidence intervals are updated as well.

Global options to choose package for calculating comparisons

ggeffects_test_engine can be used as option to either use the marginaleffects package for com-
puting contrasts and comparisons (default), or the emmeans package (e.g. options(ggeffects_test_engine
= "emmeans")). The latter is useful when the marginaleffects package is not available, or when the
emmeans package is preferred. You can also provide the engine directly, e.g. test_predictions(...,
engine = "emmeans"). Note that using emmeans as backend is currently not as feature rich as the
default (marginaleffects).

If engine = "emmeans", the test argument can also be "interaction" to calculate interaction
contrasts (difference-in-difference contrasts), "consecutive" to calculate contrasts between con-
secutive levels of a predictor, or a data frame with custom contrasts. If test is one of the latter
options, and engine is not specified, the engine is automatically set to "emmeans". Additionally,
the test_args argument can be used to specify further options for those contrasts. See ’Examples’
and documentation of test_args.

If the marginaleffects package is not installed, the emmeans package is used automatically. If this
package is not installed as well, engine = "ggeffects" is used.

Global Options to Customize Tables when Printing

The verbose argument can be used to display or silence messages and warnings. Furthermore,
options() can be used to set defaults for the print() and print_html() method. The following
options are available, which can simply be run in the console:

• ggeffects_ci_brackets: Define a character vector of length two, indicating the opening and
closing parentheses that encompass the confidence intervals values, e.g. options(ggeffects_ci_brackets
= c("[", "]")).

https://strengejacke.github.io/ggeffects/articles/practical_intersectionality.html
https://strengejacke.github.io/ggeffects/articles/practical_intersectionality.html

48 test_predictions

• ggeffects_collapse_ci: Logical, if TRUE, the columns with predicted values (or contrasts)
and confidence intervals are collapsed into one column, e.g. options(ggeffects_collapse_ci
= TRUE).

• ggeffects_collapse_p: Logical, if TRUE, the columns with predicted values (or contrasts)
and p-values are collapsed into one column, e.g. options(ggeffects_collapse_p = TRUE).
Note that p-values are replaced by asterisk-symbols (stars) or empty strings when ggeffects_collapse_p
= TRUE, depending on the significance level.

• ggeffects_collapse_tables: Logical, if TRUE, multiple tables for subgroups are combined
into one table. Only works when there is more than one focal term, e.g. options(ggeffects_collapse_tables
= TRUE).

• ggeffects_output_format: String, either "text", "markdown" or "html". Defines the de-
fault output format from predict_response(). If "html", a formatted HTML table is created
and printed to the view pane. "markdown" creates a markdown-formatted table inside Rmark-
down documents, and prints a text-format table to the console when used interactively. If
"text" or NULL, a formatted table is printed to the console, e.g. options(ggeffects_output_format
= "html").

• ggeffects_html_engine: String, either "tt" or "gt". Defines the default engine to use for
printing HTML tables. If "tt", the tinytable package is used, if "gt", the gt package is used,
e.g. options(ggeffects_html_engine = "gt").

Use options(<option_name> = NULL) to remove the option.

References

Esarey, J., & Sumner, J. L. (2017). Marginal effects in interaction models: Determining and con-
trolling the false positive rate. Comparative Political Studies, 1–33. Advance online publication.
doi: 10.1177/0010414017730080

See Also

There is also an equivalence_test() method in the parameters package (parameters::equivalence_test.lm()),
which can be used to test contrasts or comparisons for practical equivalence. This method also has
a plot() method, hence it is possible to do something like:

library(parameters)
predict_response(model, focal_terms) |>
equivalence_test() |>
plot()

Examples

data(efc)
efc$c172code <- as.factor(efc$c172code)
efc$c161sex <- as.factor(efc$c161sex)
levels(efc$c161sex) <- c("male", "female")
m <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

direct computation of comparisons

test_predictions 49

test_predictions(m, "c172code")

passing a `ggeffects` object
pred <- predict_response(m, "c172code")
test_predictions(pred)

test for slope
test_predictions(m, "c12hour")

interaction - contrasts by groups
m <- lm(barthtot ~ c12hour + c161sex * c172code + neg_c_7, data = efc)
test_predictions(m, c("c161sex", "c172code"), test = NULL)

interaction - pairwise comparisons by groups
test_predictions(m, c("c161sex", "c172code"))

equivalence testing
test_predictions(m, c("c161sex", "c172code"), equivalence = c(-2.96, 2.96))

equivalence testing, using the parameters package
pr <- predict_response(m, c("c161sex", "c172code"))
parameters::equivalence_test(pr)

interaction - collapse unique levels
test_predictions(m, c("c161sex", "c172code"), collapse_levels = TRUE)

p-value adjustment
test_predictions(m, c("c161sex", "c172code"), p_adjust = "tukey")

not all comparisons, only by specific group levels
test_predictions(m, "c172code", by = "c161sex")

specific comparisons
test_predictions(m, c("c161sex", "c172code"), test = "b2 = b1")

interaction - slope by groups
m <- lm(barthtot ~ c12hour + neg_c_7 * c172code + c161sex, data = efc)
test_predictions(m, c("neg_c_7", "c172code"))

Interaction and consecutive contrasts -----------------

data(coffee_data, package = "ggeffects")
m <- lm(alertness ~ time * coffee + sex, data = coffee_data)

consecutive contrasts
test_predictions(m, "time", by = "coffee", test = "consecutive")

same as (using formula):
pr <- predict_response(m, c("time", "coffee"))
test_predictions(pr, test = difference ~ sequential | coffee)

interaction contrasts - difference-in-difference comparisons
pr <- predict_response(m, c("time", "coffee"), margin = "marginalmeans")

50 values_at

test_predictions(pr, test = "interaction")

Ratio contrasts ---------------------------------------

test_predictions(test = ratio ~ reference | coffee)

Custom contrasts --------------------------------------

wakeup_time <- data.frame(

"wakeup vs later" = c(-2, 1, 1) / 2, # make sure each "side" sums to (+/-)1!
"start vs end of day" = c(-1, 0, 1)

)
test_predictions(m, "time", by = "coffee", test = wakeup_time)

Example: marginal effects -----------------------------

data(iris)
m <- lm(Petal.Width ~ Petal.Length + Species, data = iris)

we now want the marginal effects for "Species". We can calculate
the marginal effect using the "marginaleffects" package
marginaleffects::avg_slopes(m, variables = "Species")

finally, test_predictions() returns the same. while the previous results
report the marginal effect compared to the reference level "setosa",
test_predictions() returns the marginal effects for all pairwise comparisons
test_predictions(m, "Species")

values_at Calculate representative values of a vector

Description

This function calculates representative values of a vector, like minimum/maximum values or lower,
median and upper quartile etc., which can be used for numeric vectors to plot adjusted predictions
at these representative values.

Usage

values_at(x, values = "meansd")

representative_values(x, values = "meansd")

Arguments

x A numeric vector.

values Character vector, naming a pattern for which representative values should be
calculcated.

vcov 51

• "minmax": (default) minimum and maximum values (lower and upper
bounds) of x.

• "meansd": uses the mean value of x as well as one standard deviation below
and above mean value to plot the effect of the moderator on the independent
variable.

• "zeromax": is similar to the "minmax" option, however, 0 is always used
as minimum value for x. This may be useful for predictors that don’t have
an empirical zero-value, but absence of moderation should be simulated by
using 0 as minimum.

• "fivenum": calculates and uses the Tukey’s five number summary (mini-
mum, lower-hinge, median, upper-hinge, maximum) of x. This is equiva-
lent to "quartiles".

• "threenum": calculates a three number summary (lower-hinge, median,
and upper-hinge) of x. This is equivalent to "quartiles2".

• "terciles": calculates and uses the terciles (lower and upper third) of x,
including minimum and maximum value.

• "terciles2": calculates and uses the terciles (lower and upper third) of x,
excluding minimum and maximum value.

• an option to compute a range of percentiles is also possible, using "percentile",
followed by the percentage of the range. For example, "percentile95"
will calculate the 95% range of x.

• "all": uses all values of x.

Value

A numeric vector, representing the required values from x, like minimum/maximum value or mean
and +/- 1 SD. If x is missing, a function, pre-programmed with n and length is returned. See
examples.

Examples

data(efc)
values_at(efc$c12hour)
values_at(efc$c12hour, "quartiles2")

mean_sd <- values_at(values = "meansd")
mean_sd(efc$c12hour)

vcov Calculate variance-covariance matrix for adjusted predictions

Description

Returns the variance-covariance matrix for the predicted values from object.

52 vcov

Usage

S3 method for class 'ggeffects'
vcov(object, vcov = NULL, vcov_args = NULL, verbose = TRUE, ...)

Arguments

object An object of class "ggeffects", as returned by predict_response().
vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for con-

fidence intervals based on robust standard errors). This argument accepts a co-
variance matrix, a function which returns a covariance matrix, or a string which
identifies the function to be used to compute the covariance matrix.

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "BS", "xy", "fractional", "jackknife", "residual",
"wild", "mammen", "norm", "webb". See ?sandwich::vcovBS

– Other sandwich package functions: "HAC", "PC", "CL", or "PL".
If NULL, standard errors (and confidence intervals) for predictions are based on
the standard errors as returned by the predict()-function. Note that probably
not all model objects that work with predict_response() are also supported
by the sandwich or clubSandwich packages.
See details in this vignette.

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments. If no estimation type (argument type) is given, the
default type for "HC" equals the default from the sandwich package; for type
"CR" the default is set to "CR3". For other defaults, refer to the documentation
in the sandwich or clubSandwich package.

verbose Toggle messages or warnings.
... Currently not used.

Details

The returned matrix has as many rows (and columns) as possible combinations of predicted values
from the predict_response() call. For example, if there are two variables in the terms-argument
of predict_response() with 3 and 4 levels each, there will be 3*4 combinations of predicted
values, so the returned matrix has a 12x12 dimension. In short, nrow(object) is always equal to
nrow(vcov(object)). See also ’Examples’.

Value

The variance-covariance matrix for the predicted values from object.

https://strengejacke.github.io/ggeffects/articles/practical_robustestimation.html

vcov 53

Examples

data(efc)
model <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
result <- predict_response(model, c("c12hour [meansd]", "c161sex"))

vcov(result)

compare standard errors
sqrt(diag(vcov(result)))
as.data.frame(result)

only two predicted values, no further terms
vcov() returns a 2x2 matrix
result <- predict_response(model, "c161sex")
vcov(result)

2 levels for c161sex multiplied by 3 levels for c172code
result in 6 combinations of predicted values
thus vcov() returns a 6x6 matrix
result <- predict_response(model, c("c161sex", "c172code"))
vcov(result)

Index

∗ data
coffee_data, 10
efc, 11
fish, 11
lung2, 21

as.data.frame(), 9, 33
as.data.frame.ggeffects, 3

bayestestR::equivalence_test(), 44
bayestestR::rope_range(), 44

coffee_data, 10
collapse_by_group, 10
collapse_by_group(), 24

data.frame, 5
data_grid (new_data), 21
data_grid(), 16, 43

efc, 11
efc_test (efc), 11
emmeans::emmeans(), 8, 32

fish, 11
format.ggcomparisons

(format.ggeffects), 12
format.ggeffects, 12
format.ggeffects(), 13

get_complete_df (get_title), 19
get_legend_labels (get_title), 19
get_legend_title (get_title), 19
get_predictions, 15
get_title, 19
get_x_labels (get_title), 19
get_x_title (get_title), 19
get_y_title (get_title), 19
ggaverage (as.data.frame.ggeffects), 3
ggeffect (as.data.frame.ggeffects), 3
ggeffects_palette (plot), 22

ggemmeans (as.data.frame.ggeffects), 3
ggpredict (as.data.frame.ggeffects), 3

hypothesis_test (test_predictions), 42

insight::find_transformation(), 8, 32
insight::format_table(), 13
insight::format_value(), 13
insight::get_datagrid(), 16
insight::get_df(), 45
insight::get_sigma(), 9, 32
insight::get_variance_residual(), 9, 33
insight::link_inverse(), 28
insight::model_info(), 16
install_latest, 20

lung2, 21

make.names, 5
marginaleffects::predictions(), 43
marginaleffects::slopes(), 43
mice::pool(), 26, 27

new_data, 21
new_data(), 40

parameters::equivalence_test.lm(), 44,
48

plot, 22
pool_comparisons, 26
pool_predictions, 27
predict_response, 28
predict_response(), 27, 45
pretty_range, 39
pretty_range(), 35
print (format.ggeffects), 12
print_html.ggcomparisons

(format.ggeffects), 12
print_html.ggeffects

(format.ggeffects), 12

54

INDEX 55

print_md.ggcomparisons
(format.ggeffects), 12

print_md.ggeffects (format.ggeffects),
12

representative_values (values_at), 50
residualize_over_grid, 40
rstantools::posterior_epred(), 9, 32, 35
rstantools::posterior_predict(), 9, 32,

35

show_palettes (plot), 22
show_palettes(), 24
sjlabelled::read_spss(), 11
stats::p.adjust(), 45
stats::p.adjust.methods, 45

test_predictions, 42
test_predictions(), 26, 27
theme_ggeffects (plot), 22
tinytable::tt(), 14

values_at, 50
values_at(), 5, 29, 35, 36
vcov, 51

	as.data.frame.ggeffects
	coffee_data
	collapse_by_group
	efc
	fish
	format.ggeffects
	get_predictions
	get_title
	install_latest
	lung2
	new_data
	plot
	pool_comparisons
	pool_predictions
	predict_response
	pretty_range
	residualize_over_grid
	test_predictions
	values_at
	vcov
	Index

