Package 'gge'

Title: Genotype Plus Genotype-by-Environment Biplots
Description: Create biplots for GGE (genotype plus genotype-by-environment) and GGB (genotype plus genotype-by-block-of-environments) models. See Laffont et al. (2013) <doi:10.2135/cropsci2013.03.0178>.
Authors: Kevin Wright [aut, cre, cph] , Jean-Louis Laffont [aut]
Maintainer: Kevin Wright <[email protected]>
License: MIT + file LICENSE
Version: 1.9
Built: 2024-10-29 06:54:11 UTC
Source: CRAN

Help Index


GGE and GGB biplots

Description

Fit a GGE (genotype + genotype * environment) model and display the results.

Usage

gge(x, ...)

## S3 method for class 'data.frame'
gge(x, formula, gen.group = NULL, env.group = NULL, ggb = FALSE, ...)

## S3 method for class 'formula'
gge(formula, data, gen.group = NULL, env.group = NULL, ggb = FALSE, ...)

## S3 method for class 'matrix'
gge(
  x,
  center = TRUE,
  scale = TRUE,
  gen.group = NULL,
  env.group = NULL,
  ggb = FALSE,
  comps = c(1, 2),
  method = "svd",
  ...
)

## S3 method for class 'gge'
plot(x, main = substitute(x), ...)

## S3 method for class 'gge'
biplot(
  x,
  main = substitute(x),
  subtitle = "",
  xlab = "auto",
  ylab = "auto",
  cex.gen = 0.6,
  cex.env = 0.5,
  col.gen = "darkgreen",
  col.env = "orange3",
  pch.gen = 1,
  lab.env = TRUE,
  comps = 1:2,
  flip = "auto",
  origin = "auto",
  res.vec = TRUE,
  hull = FALSE,
  zoom.gen = 1,
  zoom.env = 1,
  ...
)

biplot3d(x, ...)

## S3 method for class 'gge'
biplot3d(
  x,
  cex.gen = 0.6,
  cex.env = 0.5,
  col.gen = "darkgreen",
  col.env = "orange3",
  comps = 1:3,
  lab.env = TRUE,
  res.vec = TRUE,
  zoom.gen = 1,
  ...
)

Arguments

x

A matrix or data.frame.

...

Other arguments (e.g. maxiter, gramschmidt)

formula

A formula

gen.group

genotype group

env.group

env group

ggb

If TRUE, fit a GGB biplot model.

data

Data frame

center

If TRUE, center values for each environment

scale

If TRUE, scale values for each environment

comps

Principal components to use for the biplot. Default c(1,2).

method

method used to find principal component directions. Either "svd" or "nipals".

main

Title, by default the name of the data. Use NULL to suppress the title.

subtitle

Subtitle to put in front of options. Use NULL to suppress the subtitle.

xlab

Label along axis. Default "auto" shows percent of variation explained. Use NULL to suppress.

ylab

Label along axis. Default "auto" shows percent of variation explained. Use NULL to suppress.

cex.gen

Character expansion for genotype labels, default 0.6. Use 0 to omit genotype labels.

cex.env

Character expansion for environment labels/symbols. Use lab.env=FALSE to omit labels.

col.gen

Color for genotype labels. May be a single color for all genotypes, or a vector of colors for each genotype.

col.env

Color for environments. May be a single color for all environments, or a vector of colors for each environment.

pch.gen

Plot character for genotypes

lab.env

Label environments if TRUE.

flip

If "auto" then each axis is flipped so that the genotype ordinate is positively correlated with genotype means. Can also be a vector like c(TRUE,FALSE) for manual control.

origin

If "auto", the plotting window is centered on genotypes, otherwise the origin is at the middle of the window.

res.vec

If TRUE, for each group, draw residual vectors from the mean of the locs to the individual locs.

hull

If TRUE, show a which-won-where polygon.

zoom.gen

Zoom factor for manual control of genotype xlim,ylim The default is 1. Values less than 1 may be useful if genotype names are long.

zoom.env

Zoom factor for manual control of environment xlim,ylim. The default is 1. Values less than 1 may be useful if environment names are long. Not used for 3D biplots.

Details

If there is replication in G*E, then the replications are averaged together before constructing the biplot.

The singular value decomposition of x is used to calculate the principal components for the biplot. Missing values are NOT allowed.

The argument method can be either 'svd' for complete-data or 'nipals' for missing-data.

Value

A list of class gge containing:

x

The filled-in data

x.orig

The original data

genCoord

genotype coordinates

locCoord

loc coordinates

blockCoord

block coordinates

gen.group

If not NULL, use this to specify a column of the data.frame to classify genotypes into groups.

env.group

If not NULL, use this to specify a column of the data.frame to classify environments into groups.

ggb

If TRUE, create a GGB biplot

genMeans

genotype means

mosdat

mosaic plot data

R2

variation explained by each PC

center

Data centered?

scale

Data scaled?

method

Method used to calculate principal components.

pctMiss

Percent of x that is missing values

maxPCs

Maximum number of PCs

Author(s)

Kevin Wright, Jean-Louis Laffont

Jean-Louis Laffont, Kevin Wright

References

Jean-Louis Laffont, Kevin Wright and Mohamed Hanafi (2013). Genotype + Genotype x Block of Environments (GGB) Biplots. Crop Science, 53, 2332-2341. doi:10.2135/cropsci2013.03.0178.

Kroonenberg, Pieter M. (1997). Introduction to Biplots for GxE Tables, Research Report 51, Centre for Statistics, The University of Queensland, Brisbane, Australia. https://three-mode.leidenuniv.nl/document/biplot.pdf

Yan, W. and Kang, M.S. (2003). GGE Biplot Analysis. CRC Press.

Examples

# Example 1.  Data is a data.frame in 'matrix' format
B <- matrix(c(50, 67, 90, 98, 120,
              55, 71, 93, 102, 129,
              65, 76, 95, 105, 134,
              50, 80, 102, 130, 138,
              60, 82, 97, 135, 151,
              65, 89, 106, 137, 153,
              75, 95, 117, 133, 155), ncol=5, byrow=TRUE)
rownames(B) <- c("G1","G2","G3","G4","G5","G6","G7")
colnames(B) <- c("E1","E2","E3","E4","E5")

library(gge)
m1 = gge(B)
plot(m1)
biplot(m1, main="Example biplot")
# biplot3d(m1)

if(require(agridat)){
  # crossa.wheat biplot

  # Specify env.group as column in data frame
  data(crossa.wheat)
  dat2 <- crossa.wheat
  m2 <- gge(dat2, yield~gen*loc, env.group=locgroup, scale=FALSE)
  plot(m2)
  biplot(m2, lab.env=TRUE, main="crossa.wheat")
  # biplot3d(m2)
}

Function to create a Red-Gray-Blue palette

Description

A function to create a Red-Gray-Blue palette.

Usage

RedGrayBlue(n)

Arguments

n

Number of colors to create

Details

Using gray instead of white allows missing values to appear as white (actually, transparent).

Value

A vector of n colors.

Author(s)

Kevin Wright

Examples

pie(rep(1,11), col=RedGrayBlue(11))
title("RedGrayBlue(11)")