Title: | Cognitive Models |
---|---|
Description: | Hierarchical Bayesian models. The package provides tools to fit two response time models, using the population-based Markov Chain Monte Carlo. |
Authors: | Yi-Shin Lin [aut, cre], Andrew Heathcote [aut] |
Maintainer: | Yi-Shin Lin <[email protected]> |
License: | GPL-2 |
Version: | 0.2.6.0 |
Built: | 2024-12-21 06:51:36 UTC |
Source: | CRAN |
Binding a data set with a model object. The function also checks whether they are compatible and adds attributes on a data model instance.
BuildDMI(x, model)
BuildDMI(x, model)
x |
data as in data frame |
model |
a model object |
a data model instance
A model object consists of arraies with model attributes.
BuildModel(p.map, responses, factors = list(A = "1"), match.map = NULL, constants = numeric(0), type = "norm", posdrift = TRUE, verbose = TRUE) ## S3 method for class 'model' print(x, p.vector = NULL, ...) ## S3 method for class 'dmi' print(x, ...)
BuildModel(p.map, responses, factors = list(A = "1"), match.map = NULL, constants = numeric(0), type = "norm", posdrift = TRUE, verbose = TRUE) ## S3 method for class 'model' print(x, p.vector = NULL, ...) ## S3 method for class 'dmi' print(x, ...)
p.map |
parameter map. This option maps a particular factorial design to model parameters |
responses |
specifying the response names and levels |
factors |
specifying a list of factors and their levels |
match.map |
match map. This option matches stimuli and responses |
constants |
specifying the parameters with fixed values |
type |
specifying model type, either "rd" or "norm". |
posdrift |
a Boolean, switching between enforcing strict postive drift rates by using truncated normal distribution. This option is only useful in "norm" model type. |
verbose |
Print p.vector, constants and model type |
x |
a model object |
p.vector |
parameter vector |
... |
other arguments |
model <- BuildModel( p.map = list(a = "1", v = "1", z = "1", d = "1", t0 = "1", sv = "1", sz = "1", st0 = "1"), constants = c(st0 = 0, d = 0, sz = 0, sv = 0), match.map = list(M = list(s1 = "r1", s2 = "r2")), factors = list(S = c("s1", "s2")), responses = c("r1", "r2"), type = "rd")
model <- BuildModel( p.map = list(a = "1", v = "1", z = "1", d = "1", t0 = "1", sv = "1", sz = "1", st0 = "1"), constants = c(st0 = 0, d = 0, sz = 0, sv = 0), match.map = list(M = list(s1 = "r1", s2 = "r2")), factors = list(S = c("s1", "s2")), responses = c("r1", "r2"), type = "rd")
BuildPrior
sets up parameter prior distributions for each model
parameter. p1
and p2
refer to the first and second parameters
a prior distribution.
BuildPrior(p1, p2, lower = rep(NA, length(p1)), upper = rep(NA, length(p1)), dists = rep("tnorm", length(p1)), untrans = rep("identity", length(p1)), types = c("tnorm", "beta", "gamma", "lnorm", "unif", "constant", "tnorm2", NA))
BuildPrior(p1, p2, lower = rep(NA, length(p1)), upper = rep(NA, length(p1)), dists = rep("tnorm", length(p1)), untrans = rep("identity", length(p1)), types = c("tnorm", "beta", "gamma", "lnorm", "unif", "constant", "tnorm2", NA))
p1 |
the first parameter of a distribution |
p2 |
the second parameter of a distribution |
lower |
lower support (boundary) |
upper |
upper support (boundary) |
dists |
a vector of character string specifying a distribution. |
untrans |
whether to do log transformation. Default is not |
types |
available distribution types |
Four distribution types are implemented:
Normal and truncated normal, where: p1 = mean, p2 = sd. It specifies a normal distribution when bounds are set -Inf and Inf,
Beta, where: p1 = shape1 and p2 = shape2 (see pbeta). Note the uniform distribution is a special case of the beta with p1 and p2 = 1),
Gamma, where p1 = shape and p2 = scale (see pgamma). Note p2 is scale, not rate,
Lognormal, where p1 = meanlog and p2 = sdlog (see plnorm).
a list of list
Check a parameter vector
check_pvec(p.vector, model)
check_pvec(p.vector, model)
p.vector |
parameter vector |
model |
a model object |
Convert MCMC chains to a data frame for plotting functions
ConvertChains(x, start = 1, end = NA, pll = TRUE)
ConvertChains(x, start = 1, end = NA, pll = TRUE)
x |
posterior samples |
start |
which iteration to start |
end |
end at which iteration |
pll |
a Boolean switch to make posterior log likelihood |
A modified dbeta function
dbeta_lu(x, p1, p2, lower, upper, lg = FALSE)
dbeta_lu(x, p1, p2, lower, upper, lg = FALSE)
x |
quantile |
p1 |
shape1 parameter |
p2 |
shape2 parameter |
lower |
lower bound |
upper |
upper bound |
lg |
logical; if TRUE, return log density. |
A modified dcauchy functions
dcauchy_l(x, p1, p2, lg = FALSE)
dcauchy_l(x, p1, p2, lg = FALSE)
x |
quantile |
p1 |
location parameter |
p2 |
scale parameter |
lg |
log density? |
Used with constant prior
dconstant(x, p1, p2, lower, upper, lg = FALSE)
dconstant(x, p1, p2, lower, upper, lg = FALSE)
x |
quantile |
p1 |
constant value |
p2 |
unused argument |
lower |
dummy varlable |
upper |
dummy varlable |
lg |
log density? |
Calculate deviance for a model object for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood.
## S3 method for class 'model' deviance(object, ...)
## S3 method for class 'model' deviance(object, ...)
object |
posterior samples |
... |
other plotting arguments passing through dot dot dot. |
A modified dgamma function
dgamma_l(x, p1, p2, lower, upper, lg = FALSE)
dgamma_l(x, p1, p2, lower, upper, lg = FALSE)
x |
quantile |
p1 |
shape parameter |
p2 |
scale parameter |
lower |
lower bound |
upper |
upper bound |
lg |
log density? |
Calculate DIC and BPIC.
DIC(object, ...) BPIC(object, ...)
DIC(object, ...) BPIC(object, ...)
object |
posterior samples |
... |
other plotting arguments passing through dot dot dot. |
A modified dlnorm functions
dlnorm_l(x, p1, p2, lower, upper, lg = FALSE)
dlnorm_l(x, p1, p2, lower, upper, lg = FALSE)
x |
quantile |
p1 |
meanlog parameter |
p2 |
sdlog parameter |
lower |
lower bound |
upper |
upper bound |
lg |
log density? |
Random number generation, probability density and cumulative density functions for truncated normal distribution.
dtnorm(x, p1, p2, lower, upper, lg = FALSE) rtnorm(n, p1, p2, lower, upper) ptnorm(q, p1, p2, lower, upper, lt = TRUE, lg = FALSE)
dtnorm(x, p1, p2, lower, upper, lg = FALSE) rtnorm(n, p1, p2, lower, upper) ptnorm(q, p1, p2, lower, upper, lt = TRUE, lg = FALSE)
x , q
|
vector of quantiles; |
p1 |
mean (must be scalar). |
p2 |
standard deviation (must be scalar). |
lower |
lower truncation value (must be scalar). |
upper |
upper truncation value (must be scalar). |
lg |
log probability. If TRUE (default is FALSE) probabilities p are
given as |
n |
number of observations. n must be a scalar. |
lt |
lower tail. If TRUE (default) probabilities are |
a column vector.
## rtn example dat1 <- rtnorm(1e5, 0, 1, 0, Inf) hist(dat1, breaks = "fd", freq = FALSE, xlab = "", main = "Truncated normal distributions") ## dtn example x <- seq(-5, 5, length.out = 1e3) dat1 <- dtnorm(x, 0, 1, -2, 2, 0) plot(x, dat1, type = "l", lwd = 2, xlab = "", ylab= "Density", main = "Truncated normal distributions") ## ptn example x <- seq(-10, 10, length.out = 1e2) mean <- 0 sd <- 1 lower <- 0 upper <- 5 dat1 <- ptnorm(x, 0, 1, 0, 5, lg = TRUE)
## rtn example dat1 <- rtnorm(1e5, 0, 1, 0, Inf) hist(dat1, breaks = "fd", freq = FALSE, xlab = "", main = "Truncated normal distributions") ## dtn example x <- seq(-5, 5, length.out = 1e3) dat1 <- dtnorm(x, 0, 1, -2, 2, 0) plot(x, dat1, type = "l", lwd = 2, xlab = "", ylab= "Density", main = "Truncated normal distributions") ## ptn example x <- seq(-10, 10, length.out = 1e2) mean <- 0 sd <- 1 lower <- 0 upper <- 5 dat1 <- ptnorm(x, 0, 1, 0, 5, lg = TRUE)
effectiveSize
calls effectiveSize
in coda package to
calculate sample sizes.
effectiveSize_hyper(x, start, end, digits, verbose) effectiveSize_many(x, start, end, verbose) effectiveSize_one(x, start, end, digits, verbose) effectiveSize(x, hyper = FALSE, start = 1, end = NA, digits = 0, verbose = FALSE)
effectiveSize_hyper(x, start, end, digits, verbose) effectiveSize_many(x, start, end, verbose) effectiveSize_one(x, start, end, digits, verbose) effectiveSize(x, hyper = FALSE, start = 1, end = NA, digits = 0, verbose = FALSE)
x |
posterior samples |
start |
starting iteration |
end |
ending iteraton |
digits |
printing how many digits |
verbose |
printing more information |
hyper |
a Boolean switch to extract hyper attribute |
#################################40 ## effectiveSize example #################################40 ## Not run: es1 <- effectiveSize_one(hsam[[1]], 1, 100, 2, TRUE) es2 <- effectiveSize_one(hsam[[1]], 1, 100, 2, FALSE) es3 <- effectiveSize_many(hsam, 1, 100, TRUE) es4 <- effectiveSize_many(hsam, 1, 100, FALSE) es5 <- effectiveSize_hyper(hsam, 1, 100, 2, TRUE) es6 <- effectiveSize(hsam, TRUE, 1, 100, 2, TRUE) es7 <- effectiveSize(hsam, TRUE, 1, 100, 2, FALSE) es8 <- effectiveSize(hsam, FALSE, 1, 100, 2, TRUE) es9 <- effectiveSize(hsam, FALSE, 1, 100, 2, FALSE) es10 <- effectiveSize(hsam[[1]], FALSE, 1, 100, 2, TRUE) ## End(Not run)
#################################40 ## effectiveSize example #################################40 ## Not run: es1 <- effectiveSize_one(hsam[[1]], 1, 100, 2, TRUE) es2 <- effectiveSize_one(hsam[[1]], 1, 100, 2, FALSE) es3 <- effectiveSize_many(hsam, 1, 100, TRUE) es4 <- effectiveSize_many(hsam, 1, 100, FALSE) es5 <- effectiveSize_hyper(hsam, 1, 100, 2, TRUE) es6 <- effectiveSize(hsam, TRUE, 1, 100, 2, TRUE) es7 <- effectiveSize(hsam, TRUE, 1, 100, 2, FALSE) es8 <- effectiveSize(hsam, FALSE, 1, 100, 2, TRUE) es9 <- effectiveSize(hsam, FALSE, 1, 100, 2, FALSE) es10 <- effectiveSize(hsam[[1]], FALSE, 1, 100, 2, TRUE) ## End(Not run)
gelman
function calls the function, gelman.diag
in the
coda package to calculates PSRF.
gelman(x, hyper = FALSE, start = 1, end = NA, confidence = 0.95, transform = TRUE, autoburnin = FALSE, multivariate = TRUE, split = TRUE, subchain = FALSE, nsubchain = 3, digits = 2, verbose = FALSE, ...) hgelman(x, start = 1, end = NA, confidence = 0.95, transform = TRUE, autoburnin = FALSE, split = TRUE, subchain = FALSE, nsubchain = 3, digits = 2, verbose = FALSE, ...)
gelman(x, hyper = FALSE, start = 1, end = NA, confidence = 0.95, transform = TRUE, autoburnin = FALSE, multivariate = TRUE, split = TRUE, subchain = FALSE, nsubchain = 3, digits = 2, verbose = FALSE, ...) hgelman(x, start = 1, end = NA, confidence = 0.95, transform = TRUE, autoburnin = FALSE, split = TRUE, subchain = FALSE, nsubchain = 3, digits = 2, verbose = FALSE, ...)
x |
posterior samples |
hyper |
a Boolean switch, indicating posterior samples are from hierarchical modeling |
start |
start iteration |
end |
end iteration |
confidence |
confident inteval |
transform |
turn on transform |
autoburnin |
turn on auto burnin |
multivariate |
multivariate Boolean switch |
split |
split whether split mcmc chains; When split is TRUE, the function doubles the number of chains by spliting into 1st and 2nd halves. |
subchain |
whether only calculate a subset of chains |
nsubchain |
indicate how many chains in a subset |
digits |
print out how many digits |
verbose |
print more information |
... |
arguments passing to |
## Not run: rhat1 <- hgelman(hsam); rhat1 rhat2 <- hgelman(hsam, end = 51); rhat2 rhat3 <- hgelman(hsam, confidence = .90); rhat3 rhat4 <- hgelman(hsam, transform = FALSE); rhat4 rhat5 <- hgelman(hsam, autoburnin = TRUE); rhat5 rhat6 <- hgelman(hsam, split = FALSE); rhat6 rhat7 <- hgelman(hsam, subchain = TRUE); rhat7 rhat8 <- hgelman(hsam, subchain = TRUE, nsubchain = 4); rhat9 <- hgelman(hsam, subchain = TRUE, nsubchain = 4, digits = 1, verbose = TRUE); hat1 <- gelman(hsam[[1]], multivariate = FALSE); hat1 hat2 <- gelman(hsam[[1]], hyper = TRUE, verbose = TRUE); hat2 hat3 <- gelman(hsam, hyper = TRUE, verbose = TRUE); hat3 hat4 <- gelman(hsam, multivariate = TRUE, verbose = FALSE); hat5 <- gelman(hsam, multivariate = FALSE, verbose = FALSE); hat6 <- gelman(hsam, multivariate = FALSE, verbose = TRUE); hat7 <- gelman(hsam, multivariate = T, verbose = TRUE); ## End(Not run)
## Not run: rhat1 <- hgelman(hsam); rhat1 rhat2 <- hgelman(hsam, end = 51); rhat2 rhat3 <- hgelman(hsam, confidence = .90); rhat3 rhat4 <- hgelman(hsam, transform = FALSE); rhat4 rhat5 <- hgelman(hsam, autoburnin = TRUE); rhat5 rhat6 <- hgelman(hsam, split = FALSE); rhat6 rhat7 <- hgelman(hsam, subchain = TRUE); rhat7 rhat8 <- hgelman(hsam, subchain = TRUE, nsubchain = 4); rhat9 <- hgelman(hsam, subchain = TRUE, nsubchain = 4, digits = 1, verbose = TRUE); hat1 <- gelman(hsam[[1]], multivariate = FALSE); hat1 hat2 <- gelman(hsam[[1]], hyper = TRUE, verbose = TRUE); hat2 hat3 <- gelman(hsam, hyper = TRUE, verbose = TRUE); hat3 hat4 <- gelman(hsam, multivariate = TRUE, verbose = FALSE); hat5 <- gelman(hsam, multivariate = FALSE, verbose = FALSE); hat6 <- gelman(hsam, multivariate = FALSE, verbose = TRUE); hat7 <- gelman(hsam, multivariate = T, verbose = TRUE); ## End(Not run)
A wrapper function to extract system information from Sys.info
and .Platform
get_os()
get_os()
get_os() ## sysname ## "linux"
get_os() ## sysname ## "linux"
Constructs a matrix, showing how many responses to in each
cell. The function checks whether the format of n
and ns
conform.
GetNsim(model, n, ns)
GetNsim(model, n, ns)
model |
a model object. |
n |
number of trials. |
ns |
number of subjects. |
n
can be:
an integer for a balanced design,
a matrix for an unbalanced design, where rows are subjects and
columns are cells. If the matrix is a row vector, all subjects
have the same n
in each cell. If it is a column vector, all
cells have the same n
. Otherwise each entry specifies the n
for a particular subject x cell combination. See below for concrete
examples.
model <- BuildModel( p.map = list(A = "1", B = "R", t0 = "1", mean_v = "M", sd_v = "M", st0 = "1"), match.map = list(M = list(s1 = 1, s2 = 2)), constants = c(sd_v.false = 1, st0 = 0), factors = list(S = c("s1","s2")), responses = c("r1", "r2"), type = "norm") #######################30 ## Example 1 #######################30 GetNsim(model, ns = 2, n = 1) # [,1] [,2] # [1,] 1 1 # [2,] 1 1 #######################30 ## Example 2 #######################30 n <- matrix(c(1:2), ncol = 1) # [,1] # [1,] 1 ## subject 1 has 1 response for each cell # [2,] 2 ## subject 2 has 2 responses for each cell GetNsim(model, ns = 2, n = n) # [,1] [,2] # [1,] 1 1 # [2,] 2 2 #######################30 ## Example 3 #######################30 n <- matrix(c(1:2), nrow = 1) # [,1] [,2] # [1,] 1 2 GetNsim(model, ns = 2, n = n) # [,1] [,2] # [1,] 1 2 ## subject 1 has 1 response for cell 1 and 2 responses for cell 2 # [2,] 1 2 ## subject 2 has 1 response for cell 1 and 2 responses for cell 2 #######################30 ## Example 4 #######################30 n <- matrix(c(1:4), nrow=2) # [,1] [,2] # [1,] 1 3 # [2,] 2 4 ggdmc::GetNsim(model, ns = 2, n = n) # [,1] [,2] # [1,] 1 3 ## subject 1 has 1 response for cell 1 and 3 responses for cell 2 # [2,] 2 4 ## subject 2 has 2 responses for cell 1 and 4 responses for cell 2
model <- BuildModel( p.map = list(A = "1", B = "R", t0 = "1", mean_v = "M", sd_v = "M", st0 = "1"), match.map = list(M = list(s1 = 1, s2 = 2)), constants = c(sd_v.false = 1, st0 = 0), factors = list(S = c("s1","s2")), responses = c("r1", "r2"), type = "norm") #######################30 ## Example 1 #######################30 GetNsim(model, ns = 2, n = 1) # [,1] [,2] # [1,] 1 1 # [2,] 1 1 #######################30 ## Example 2 #######################30 n <- matrix(c(1:2), ncol = 1) # [,1] # [1,] 1 ## subject 1 has 1 response for each cell # [2,] 2 ## subject 2 has 2 responses for each cell GetNsim(model, ns = 2, n = n) # [,1] [,2] # [1,] 1 1 # [2,] 2 2 #######################30 ## Example 3 #######################30 n <- matrix(c(1:2), nrow = 1) # [,1] [,2] # [1,] 1 2 GetNsim(model, ns = 2, n = n) # [,1] [,2] # [1,] 1 2 ## subject 1 has 1 response for cell 1 and 2 responses for cell 2 # [2,] 1 2 ## subject 2 has 1 response for cell 1 and 2 responses for cell 2 #######################30 ## Example 4 #######################30 n <- matrix(c(1:4), nrow=2) # [,1] [,2] # [1,] 1 3 # [2,] 2 4 ggdmc::GetNsim(model, ns = 2, n = n) # [,1] [,2] # [1,] 1 3 ## subject 1 has 1 response for cell 1 and 3 responses for cell 2 # [2,] 2 4 ## subject 2 has 2 responses for cell 1 and 4 responses for cell 2
The matrix is used to simulate data. Each row represents one set of parameters for a participant.
GetParameterMatrix(x, nsub, prior = NA, ps = NA, seed = NULL)
GetParameterMatrix(x, nsub, prior = NA, ps = NA, seed = NULL)
x |
a model object |
nsub |
number of subjects. |
prior |
a prior object |
ps |
a vector or a matirx. |
seed |
an integer specifying a random seed. |
One must enter either a vector or a matrix as true parameters
to the argument, ps
, when presuming to simulate data based on a
fixed-effect model. When the assumption is to simulate data based on a
random-effect model, one must enter a prior object to the argument,
prior
to first randomly generate a true parameter matrix.
a ns x npar matrix
model <- BuildModel( p.map = list(a ="1", v = "1",z = "1", d = "1", sz = "1", sv = "1", t0 = "1", st0 = "1"), match.map = list(M = list(s1 = "r1", s2 ="r2")), factors = list(S = c("s1", "s2")), constants = c(st0 = 0, d = 0), responses = c("r1", "r2"), type = "rd") p.prior <- BuildPrior( dists = c("tnorm", "tnorm", "beta", "beta", "tnorm", "beta"), p1 = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1), p2 = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1), lower = c(0, -5, NA, NA, 0, NA), upper = c(2, 5, NA, NA, 2, NA)) ## Example 1: Randomly generate 2 sets of true parameters from ## parameter priors (p.prior) GetParameterMatrix(model, 2, p.prior) ## a v z sz sv t0 ## [1,] 1.963067 1.472940 0.9509158 0.5145047 1.344705 0.0850591 ## [2,] 1.512276 -1.995631 0.6981290 0.2626882 1.867853 0.1552828 ## Example 2: Use a user-selected true parameters true.vector <- c(a=1, v=1, z=0.5, sz=0.2, sv=1, t0=.15) GetParameterMatrix(model, 2, NA, true.vector) ## a v z sz sv t0 ## [1,] 1 1 0.5 0.2 1 0.15 ## [2,] 1 1 0.5 0.2 1 0.15 GetParameterMatrix(model, 2, ps = true.vector) ## Example 3: When a user enter arbritary sequence of parameters. ## Note sv is before sz. It should be sz before sv ## See correct sequence, by entering "attr(model, 'p.vector')" ## GetParameterMatrix will rearrange the sequence. true.vector <- c(a=1, v=1, z=0.5, sv=1, sz = .2, t0=.15) GetParameterMatrix(model, 2, NA, true.vector) ## a v z sz sv t0 ## [1,] 1 1 0.5 0.2 1 0.15 ## [2,] 1 1 0.5 0.2 1 0.15
model <- BuildModel( p.map = list(a ="1", v = "1",z = "1", d = "1", sz = "1", sv = "1", t0 = "1", st0 = "1"), match.map = list(M = list(s1 = "r1", s2 ="r2")), factors = list(S = c("s1", "s2")), constants = c(st0 = 0, d = 0), responses = c("r1", "r2"), type = "rd") p.prior <- BuildPrior( dists = c("tnorm", "tnorm", "beta", "beta", "tnorm", "beta"), p1 = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1), p2 = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1), lower = c(0, -5, NA, NA, 0, NA), upper = c(2, 5, NA, NA, 2, NA)) ## Example 1: Randomly generate 2 sets of true parameters from ## parameter priors (p.prior) GetParameterMatrix(model, 2, p.prior) ## a v z sz sv t0 ## [1,] 1.963067 1.472940 0.9509158 0.5145047 1.344705 0.0850591 ## [2,] 1.512276 -1.995631 0.6981290 0.2626882 1.867853 0.1552828 ## Example 2: Use a user-selected true parameters true.vector <- c(a=1, v=1, z=0.5, sz=0.2, sv=1, t0=.15) GetParameterMatrix(model, 2, NA, true.vector) ## a v z sz sv t0 ## [1,] 1 1 0.5 0.2 1 0.15 ## [2,] 1 1 0.5 0.2 1 0.15 GetParameterMatrix(model, 2, ps = true.vector) ## Example 3: When a user enter arbritary sequence of parameters. ## Note sv is before sz. It should be sz before sv ## See correct sequence, by entering "attr(model, 'p.vector')" ## GetParameterMatrix will rearrange the sequence. true.vector <- c(a=1, v=1, z=0.5, sv=1, sz = .2, t0=.15) GetParameterMatrix(model, 2, NA, true.vector) ## a v z sz sv t0 ## [1,] 1 1 0.5 0.2 1 0.15 ## [2,] 1 1 0.5 0.2 1 0.15
Extract parameter names from a model object
GetPNames(x)
GetPNames(x)
x |
a model object |
ggdmc uses the population-based Markov chain Monte Carlo to conduct Bayesian computation on cognitive models.
Yi-Shin Lin <[email protected]>
Andrew Heathcote <[email protected]>
Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M. &
Matzke, D., (2018). Dynamic model of choice.
Behavior Research Methods.
https://doi.org/10.3758/s13428-018-1067-y.
Turner, B. M., & Sederberg P. B. (2012). Approximate Bayesian computation
with differential evolution, Journal of Mathematical Psychology, 56,
375–385.
Ter Braak (2006). A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239-249.
The function tests whether we have drawn enough samples.
iseffective(x, minN, nfun, verbose = FALSE)
iseffective(x, minN, nfun, verbose = FALSE)
x |
posterior samples |
minN |
specify the size of minimal effective samples |
nfun |
specify to use the |
verbose |
print more information |
The function tests whether Markov chains converge prematurelly:
isflat(x, p1 = 1/3, p2 = 1/3, cut_location = 0.25, cut_scale = Inf, verbose = FALSE)
isflat(x, p1 = 1/3, p2 = 1/3, cut_location = 0.25, cut_scale = Inf, verbose = FALSE)
x |
posterior samples |
p1 |
the range of the head of MCMC chains |
p2 |
the range of the tail of the MCMC chains |
cut_location |
how far away a location chains been considered as stuck |
cut_scale |
how far away a scale chains been considered as stuck |
verbose |
print more information |
The function tests whether Markov chains are mixed well.
ismixed(x, cut = 1.01, split = TRUE, verbose = FALSE)
ismixed(x, cut = 1.01, split = TRUE, verbose = FALSE)
x |
posterior samples |
cut |
psrf criterion for well mixed |
split |
whether to split MCMC chains. This is an argument passing to
|
verbose |
print more information |
The function tests whether Markov chains encounter a parameter
region that is difficult to search. CheckConverged
is
a wrapper function running the four checking functions,
isstuck
, isflat
, ismixed
and iseffective
.
isstuck(x, hyper = FALSE, cut = 10, start = 1, end = NA, verbose = FALSE) CheckConverged(x)
isstuck(x, hyper = FALSE, cut = 10, start = 1, end = NA, verbose = FALSE) CheckConverged(x)
x |
posterior samples |
hyper |
a Boolean switch, extracting hyper attribute. |
cut |
the criteria for suggesting abnormal chains found |
start |
start iteration |
end |
end iteration |
verbose |
print more information |
These function calculate log likelihoods. likelihood_rd
implements
the equations in Voss, Rothermund, and Voss (2004). These equations
calculate diffusion decision model (Ratcliff & Mckoon, 2008). Specifically,
this function implements Voss, Rothermund, and Voss's (2004) equations A1
to A4 (page 1217) in C++.
likelihood(pvector, data, min_lik = 1e-10)
likelihood(pvector, data, min_lik = 1e-10)
pvector |
a parameter vector |
data |
data model instance |
min_lik |
minimal likelihood. |
a vector
Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the
parameters of the diffusion model: An empirical validation.
Memory & Cognition, 32(7), 1206-1220.
Ratcliff, R. (1978). A theory of memory retrival. Psychological
Review, 85, 238-255.
model <- BuildModel( p.map = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1", st0 = "1"), match.map = list(M = list(s1 = 1, s2 = 2)), factors = list(S = c("s1", "s2")), constants = c(st0 = 0, sd_v = 1), responses = c("r1", "r2"), type = "norm") p.vector <- c(A = .25, B = .35, t0 = .2, mean_v.true = 1, mean_v.false = .25) dat <- simulate(model, 1e3, ps = p.vector) dmi <- BuildDMI(dat, model) den <- likelihood(p.vector, dmi) model <- BuildModel( p.map = list(a = "1", v = "1", z = "1", d = "1", t0 = "1", sv = "1", sz = "1", st0 = "1"), constants = c(st0 = 0, d = 0), match.map = list(M = list(s1 = "r1", s2 = "r2")), factors = list(S = c("s1", "s2")), responses = c("r1", "r2"), type = "rd") p.vector <- c(a = 1, v = 1, z = 0.5, sz = 0.25, sv = 0.2, t0 = .15) dat <- simulate(model, 1e2, ps = p.vector) dmi <- BuildDMI(dat, model) den <- likelihood (p.vector, dmi)
model <- BuildModel( p.map = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1", st0 = "1"), match.map = list(M = list(s1 = 1, s2 = 2)), factors = list(S = c("s1", "s2")), constants = c(st0 = 0, sd_v = 1), responses = c("r1", "r2"), type = "norm") p.vector <- c(A = .25, B = .35, t0 = .2, mean_v.true = 1, mean_v.false = .25) dat <- simulate(model, 1e3, ps = p.vector) dmi <- BuildDMI(dat, model) den <- likelihood(p.vector, dmi) model <- BuildModel( p.map = list(a = "1", v = "1", z = "1", d = "1", t0 = "1", sv = "1", sz = "1", st0 = "1"), constants = c(st0 = 0, d = 0), match.map = list(M = list(s1 = "r1", s2 = "r2")), factors = list(S = c("s1", "s2")), responses = c("r1", "r2"), type = "rd") p.vector <- c(a = 1, v = 1, z = 0.5, sz = 0.25, sv = 0.2, t0 = .15) dat <- simulate(model, 1e2, ps = p.vector) dmi <- BuildDMI(dat, model) den <- likelihood (p.vector, dmi)
Create a MCMC list
mcmc_list.model(x, start = 1, end = NA, pll = TRUE)
mcmc_list.model(x, start = 1, end = NA, pll = TRUE)
x |
posterior samples |
start |
start from which iteration |
end |
end at which iteration |
pll |
a Boolean switch for calculating posterior log-likelihood |
Calculate each chain separately for the mean (across many MCMC iterations)
of posterior log-likelihood. If the difference of the means and
the median (across chains) of the mean of posterior is greater than the
cut
, chains are considered stuck. The default value for cut
is 10. unstick
manually removes stuck chains from posterior samples.
PickStuck(x, hyper = FALSE, cut = 10, start = 1, end = NA, verbose = FALSE, digits = 2)
PickStuck(x, hyper = FALSE, cut = 10, start = 1, end = NA, verbose = FALSE, digits = 2)
x |
posterior samples |
hyper |
whether x are hierarhcial samples |
cut |
a criterion deciding if a chain is stuck. |
start |
start to evaluate from which iteration. |
end |
end at which iteration for evaeuation. |
verbose |
a boolean switch to print more information |
digits |
print how many digits. Default is 2 |
PickStuck
gives an index vector; unstick
gives a DMC
sample.
model <- BuildModel( p.map = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1", st0 = "1"), match.map = list(M = list(s1 = 1, s2 = 2)), factors = list(S = c("s1", "s2")), constants = c(st0 = 0, sd_v = 1), responses = c("r1", "r2"), type = "norm") p.vector <- c(A = .75, B = .25, t0 = .2, mean_v.true = 2.5, mean_v.false = 1.5) p.prior <- BuildPrior( dists = c("tnorm", "tnorm", "beta", "tnorm", "tnorm"), p1 = c(A = .3, B = .3, t0 = 1, mean_v.true = 1, mean_v.false = 0), p2 = c(1, 1, 1, 3, 3), lower = c(0, 0, 0, NA, NA), upper = c(NA,NA, 1, NA, NA)) ## Not run: dat <- simulate(model, 30, ps = p.vector) dmi <- BuildDMI(dat, model) sam <- run(StartNewsamples(dmi, p.prior)) bad <- PickStuck(sam) ## End(Not run)
model <- BuildModel( p.map = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1", st0 = "1"), match.map = list(M = list(s1 = 1, s2 = 2)), factors = list(S = c("s1", "s2")), constants = c(st0 = 0, sd_v = 1), responses = c("r1", "r2"), type = "norm") p.vector <- c(A = .75, B = .25, t0 = .2, mean_v.true = 2.5, mean_v.false = 1.5) p.prior <- BuildPrior( dists = c("tnorm", "tnorm", "beta", "tnorm", "tnorm"), p1 = c(A = .3, B = .3, t0 = 1, mean_v.true = 1, mean_v.false = 0), p2 = c(1, 1, 1, 3, 3), lower = c(0, 0, 0, NA, NA), upper = c(NA,NA, 1, NA, NA)) ## Not run: dat <- simulate(model, 30, ps = p.vector) dmi <- BuildDMI(dat, model) sam <- run(StartNewsamples(dmi, p.prior)) bad <- PickStuck(sam) ## End(Not run)
plot_prior
plots one member in a prior object. plot.prior
plots all members in a prior object.
plot_prior(i, prior, xlim = NA, natural = TRUE, npoint = 100, trans = NA, save = FALSE, ...) ## S3 method for class 'prior' plot(x, save = FALSE, ps = NULL, ...)
plot_prior(i, prior, xlim = NA, natural = TRUE, npoint = 100, trans = NA, save = FALSE, ...) ## S3 method for class 'prior' plot(x, save = FALSE, ps = NULL, ...)
i |
an integer or a character string indicating which parameter to plot |
prior |
a prior object |
xlim |
set the range of on x axis. This is usually the range for each parameter. |
natural |
default TRUE. |
npoint |
default to plot 100 |
trans |
default NA. trans can be a scalar or vector. |
save |
whether to save the data out |
... |
other plotting arguments passing through dot dot dot. |
x |
a prior object |
ps |
true parameter vectors or matrix in the case of many observation units |
p.prior <- BuildPrior( dists = rep("tnorm", 7), p1 = c(a = 2, v.f1 = 4, v.f2 = 3, z = 0.5, sv = 1, sz = 0.3, t0 = 0.3), p2 = c(a = 0.5, v.f1 = .5, v.f2 = .5, z = 0.1, sv = .3, sz = 0.1, t0 = 0.05), lower = c(0,-5, -5, 0, 0, 0, 0), upper = c(5, 7, 7, 1, 2, 1, 1)) plot_prior("a", p.prior) plot_prior(2, p.prior) plot(p.prior)
p.prior <- BuildPrior( dists = rep("tnorm", 7), p1 = c(a = 2, v.f1 = 4, v.f2 = 3, z = 0.5, sv = 1, sz = 0.3, t0 = 0.3), p2 = c(a = 0.5, v.f1 = .5, v.f2 = .5, z = 0.1, sv = .3, sz = 0.1, t0 = 0.05), lower = c(0,-5, -5, 0, 0, 0, 0), upper = c(5, 7, 7, 1, 2, 1, 1)) plot_prior("a", p.prior) plot_prior(2, p.prior) plot(p.prior)
a convenient function to rearrange p.prior
or an element in a
pp.prior
as a data frame for inspection.
## S3 method for class 'prior' print(x, ...)
## S3 method for class 'prior' print(x, ...)
x |
a list of prior distributions list, usually created by
|
... |
other arguments |
a data frame listing prior distributions and their settings
pop.mean <- c(a=1, v.f1=1, v.f2=.2, z=.5, sz=.3, sv.f1=.25, sv.f2=.23, t0=.3) pop.scale <- c(a=.2, v.f1=.2, v.f2=.2, z=.1, sz=.05, sv.f1=.05, sv.f2=.05, t0=.05) p.prior <- BuildPrior( dists = rep("tnorm", 8), p1 = pop.mean, p2 = pop.scale, lower = c(0, -5, -5, 0, 0, 0, 0, 0), upper = c(2, 5, 5, 1, 2, 2, 1, 1)) print(p.prior)
pop.mean <- c(a=1, v.f1=1, v.f2=.2, z=.5, sz=.3, sv.f1=.25, sv.f2=.23, t0=.3) pop.scale <- c(a=.2, v.f1=.2, v.f2=.2, z=.1, sz=.05, sv.f1=.05, sv.f2=.05, t0=.05) p.prior <- BuildPrior( dists = rep("tnorm", 8), p1 = pop.mean, p2 = pop.scale, lower = c(0, -5, -5, 0, 0, 0, 0, 0), upper = c(2, 5, 5, 1, 2, 2, 1, 1)) print(p.prior)
A wrapper function for generating random numbers of either
the model type, rd
, or norm
.
random(type, pmat, n, seed = NULL)
random(type, pmat, n, seed = NULL)
type |
a character string of the model type |
pmat |
a matrix of response x parameter |
n |
number of observations |
seed |
an integer specifying a random seed |
rlba_norm
, only slightly faster than maker
, calls C++
function directly.
rlba_norm(n, A, b, mean_v, sd_v, t0, st0, posdrift)
rlba_norm(n, A, b, mean_v, sd_v, t0, st0, posdrift)
n |
is the numbers of observation. |
A |
start point upper bound, a vector of a scalar. |
b |
decision threshold, a vector or a scalar. |
mean_v |
mean drift rate vector |
sd_v |
standard deviation of drift rate vector |
t0 |
nondecision time, a vector. |
st0 |
nondecision time variation, a vector. |
posdrift |
if exclude negative drift rates |
a n x 2 matrix of RTs (first column) and responses (second column).
Probability density functions and random generation for parameter prior distributions.
rprior(prior, n = 1)
rprior(prior, n = 1)
prior |
a list of list usually created by BuildPrior to store the information about parameter prior distributions. |
n |
number of observations/random draws |
p.prior <- BuildPrior( dists = c("tnorm", "tnorm", "beta", "tnorm", "beta", "beta"), p1 = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1), p2 = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1), lower = c(0,-5, NA, NA, 0, NA), upper = c(2, 5, NA, NA, 2, NA)) rprior(p.prior, 9) ## a v z sz sv t0 ## [1,] 0.97413686 0.78446178 0.9975199 -0.5264946 0.5364492 0.55415052 ## [2,] 0.72870190 0.97151662 0.8516604 1.6008591 0.3399731 0.96520848 ## [3,] 1.63153685 1.96586939 0.9260939 0.7041254 0.4138329 0.78367440 ## [4,] 1.55866180 1.43657110 0.6152371 0.1290078 0.2957604 0.23027759 ## [5,] 1.32520281 -0.07328408 0.2051155 2.4040387 0.9663111 0.06127237 ## [6,] 0.49628528 -0.19374770 0.5142829 2.1452972 0.4335482 0.38410626 ## [7,] 0.03655549 0.77223432 0.1739831 1.4431507 0.6257398 0.63228368 ## [8,] 0.71197612 -1.15798082 0.8265523 0.3813370 0.4465184 0.23955415 ## [9,] 0.38049166 3.32132034 0.9888108 0.9684292 0.8437480 0.13502154 pvec <- c(a=1, v=1, z=0.5, sz=0.25, sv=0.2,t0=.15) p.prior <- BuildPrior( dists = rep("tnorm", 6), p1 = c(a=2, v=2.5, z=0.5, sz=0.3, sv=1, t0=0.3), p2 = c(a=0.5, v=.5, z=0.1, sz=0.1, sv=.3, t0=0.05) * 5, lower = c(0,-5, 0, 0, 0, 0), upper = c(5, 7, 2, 2, 2, 2))
p.prior <- BuildPrior( dists = c("tnorm", "tnorm", "beta", "tnorm", "beta", "beta"), p1 = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1), p2 = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1), lower = c(0,-5, NA, NA, 0, NA), upper = c(2, 5, NA, NA, 2, NA)) rprior(p.prior, 9) ## a v z sz sv t0 ## [1,] 0.97413686 0.78446178 0.9975199 -0.5264946 0.5364492 0.55415052 ## [2,] 0.72870190 0.97151662 0.8516604 1.6008591 0.3399731 0.96520848 ## [3,] 1.63153685 1.96586939 0.9260939 0.7041254 0.4138329 0.78367440 ## [4,] 1.55866180 1.43657110 0.6152371 0.1290078 0.2957604 0.23027759 ## [5,] 1.32520281 -0.07328408 0.2051155 2.4040387 0.9663111 0.06127237 ## [6,] 0.49628528 -0.19374770 0.5142829 2.1452972 0.4335482 0.38410626 ## [7,] 0.03655549 0.77223432 0.1739831 1.4431507 0.6257398 0.63228368 ## [8,] 0.71197612 -1.15798082 0.8265523 0.3813370 0.4465184 0.23955415 ## [9,] 0.38049166 3.32132034 0.9888108 0.9684292 0.8437480 0.13502154 pvec <- c(a=1, v=1, z=0.5, sz=0.25, sv=0.2,t0=.15) p.prior <- BuildPrior( dists = rep("tnorm", 6), p1 = c(a=2, v=2.5, z=0.5, sz=0.3, sv=1, t0=0.3), p2 = c(a=0.5, v=.5, z=0.1, sz=0.1, sv=.3, t0=0.05) * 5, lower = c(0,-5, 0, 0, 0, 0), upper = c(5, 7, 2, 2, 2, 2))
Simulate response time data either for one subject or multiple subjects.
The simulation is based on a model object. For one subject, one must supply
a true parameter vector to the ps
argument.
## S3 method for class 'model' simulate(object, nsim = NA, seed = NULL, nsub = NA, prior = NA, ps = NA, ...)
## S3 method for class 'model' simulate(object, nsim = NA, seed = NULL, nsub = NA, prior = NA, ps = NA, ...)
object |
a model object. |
nsim |
number of trials / responses. |
seed |
a user specified random seed. |
nsub |
number of subjects |
prior |
a prior object |
ps |
a true parameter vector or matrix. |
... |
additional optional arguments. |
For multiple subjects, one can enter a matrix (or a row vector) as true
parameters. Each row is to generate data separately for a subject. This is
the fixed-effect model. To generate data based on a random-effect
model, one must supply a prior object. In this case, ps
argument
is unused. Note in some cases, a random-effect model may fail to draw data
from the model, because true parameters are randomly drawn from
a prior object. This would happen sometimes in diffusion model, because
certain parameter combinations are considered invalid.
ps
can be a row vector, in which case each subject has identical
parameters. It can also be a matrix with one row per subject, in which
case it must have ns
rows. The true values will be saved as
parameters
attribute in the output object.
a data frame
Fit a hierarchical or a fixed-effect model, using Bayeisan optimisation. We use a specific type of pMCMC algorithm, the DE-MCMC. This particular sampling method includes crossover and two different migration operators. The migration operators are similar to random-walk algorithm. They wouold be less efficient to find the target parameter space, if been used alone.
StartNewsamples(data, prior = NULL, nmc = 200, thin = 1, nchain = NULL, report = 100, rp = 0.001, gammamult = 2.38, pm0 = 0.05, pm1 = 0.05, block = TRUE, ncore = 1) run(samples, nmc = 500, thin = 1, report = 100, rp = 0.001, gammamult = 2.38, pm0 = 0, pm1 = 0, block = TRUE, ncore = 1, add = FALSE)
StartNewsamples(data, prior = NULL, nmc = 200, thin = 1, nchain = NULL, report = 100, rp = 0.001, gammamult = 2.38, pm0 = 0.05, pm1 = 0.05, block = TRUE, ncore = 1) run(samples, nmc = 500, thin = 1, report = 100, rp = 0.001, gammamult = 2.38, pm0 = 0, pm1 = 0, block = TRUE, ncore = 1, add = FALSE)
data |
data model instance(s) |
prior |
prior objects. For hierarchical model, this must be a list with three sets of prior distributions. Each is respectively named, "pprior", "location", and "scale". |
nmc |
number of Monte Carlo samples |
thin |
thinning length |
nchain |
number of chains |
report |
progress report interval |
rp |
tuning parameter 1 |
gammamult |
tuning parameter 2. This is the step size. |
pm0 |
probability of migration type 0 (Hu & Tsui, 2010) |
pm1 |
probability of migration type 1 (Turner et al., 2013) |
block |
Only for hierarchical modeling. A Boolean switch for update one parameter at a time |
ncore |
Only for non-hierarchical, fixed-effect models with many subjects. |
samples |
posterior samples. |
add |
Boolean whether to add new samples |
Calculate summary statistics for posterior samples
summary_mcmc_list(object, prob = c(0.025, 0.25, 0.5, 0.75, 0.975), ...)
summary_mcmc_list(object, prob = c(0.025, 0.25, 0.5, 0.75, 0.975), ...)
object |
posterior samples |
prob |
summary quantile summary |
... |
other arguments passing in |
This calls seven different variants of summary function to summarise posterior samples
## S3 method for class 'model' summary(object, hyper = FALSE, start = 1, end = NA, hmeans = FALSE, hci = FALSE, prob = c(0.025, 0.25, 0.5, 0.75, 0.975), recovery = FALSE, ps = NA, type = 1, verbose = FALSE, digits = 2, ...)
## S3 method for class 'model' summary(object, hyper = FALSE, start = 1, end = NA, hmeans = FALSE, hci = FALSE, prob = c(0.025, 0.25, 0.5, 0.75, 0.975), recovery = FALSE, ps = NA, type = 1, verbose = FALSE, digits = 2, ...)
object |
posterior samples |
hyper |
whether to summarise hyper parameters |
start |
start from which iteration. |
end |
end at which iteration. For example, set
|
hmeans |
a boolean switch indicating to calculate mean of hyper parameters |
hci |
boolean switch; whether to calculate credible intervals of hyper parameters |
prob |
a numeric vector, indicating the quantiles to calculate |
recovery |
a boolean switch indicating if samples are from a recovery study |
ps |
true parameter values. This is only for recovery studies |
type |
calculate type 1 or 2 hyper parameters |
verbose |
print more information |
digits |
printing digits |
... |
other arguments |
## Not run: est1 <- summary(hsam[[1]], FALSE) est2 <- summary(hsam[[1]], FALSE, 1, 100) est3 <- summary(hsam) est4 <- summary(hsam, verbose = TRUE) est5 <- summary(hsam, verbose = FALSE) hest1 <- summary(hsam, TRUE) ## End(Not run)
## Not run: est1 <- summary(hsam[[1]], FALSE) est2 <- summary(hsam[[1]], FALSE, 1, 100) est3 <- summary(hsam) est4 <- summary(hsam, verbose = TRUE) est5 <- summary(hsam, verbose = FALSE) hest1 <- summary(hsam, TRUE) ## End(Not run)
TableParameters
arranges the values in a parameter
vector and creates a response x parameter matrix. The matrix is used
by the likelihood function, assigning a trial to a cell for calculating
probability densities.
TableParameters(p.vector, cell, model, n1order)
TableParameters(p.vector, cell, model, n1order)
p.vector |
a parameter vector |
cell |
a string or an integer indicating a design cell, e.g.,
|
model |
a model object |
n1order |
a Boolean switch, indicating using node 1 ordering. This is only for LBA-like models and its n1PDF likelihood function. |
each row corresponding to the model parameter for a response.
When n1.order
is FALSE, TableParameters returns a martix without
rearranging into node 1 order. For example, this is used in
the simulate
function. By default n1.order
is TRUE.
m1 <- BuildModel( p.map = list(a = "1", v = "F", z = "1", d = "1", sz = "1", sv = "F", t0 = "1", st0 = "1"), match.map = list(M = list(s1 = "r1", s2 = "r2")), factors = list(S = c("s1", "s2"), F = c("f1","f2")), constants = c(st0 = 0, d = 0), responses = c("r1","r2"), type = "rd") m2 <- BuildModel( p.map = list(A = "1", B = "1", mean_v = "M", sd_v = "1", t0 = "1", st0 = "1"), constants = c(st0 = 0, sd_v = 1), match.map = list(M = list(s1 = 1, s2 = 2)), factors = list(S = c("s1", "s2")), responses = c("r1", "r2"), type = "norm") pvec1 <- c(a = 1.15, v.f1 = -0.10, v.f2 = 3, z = 0.74, sz = 1.23, sv.f1 = 0.11, sv.f2 = 0.21, t0 = 0.87) pvec2 <- c(A = .75, B = .25, mean_v.true = 2.5, mean_v.false = 1.5, t0 = .2) print(m1, pvec1) print(m2, pvec2) accMat1 <- TableParameters(pvec1, "s1.f1.r1", m1, FALSE) accMat2 <- TableParameters(pvec2, "s1.r1", m2, FALSE) ## a v t0 z d sz sv st0 ## 1.15 -0.1 0.87 0.26 0 1.23 0.11 0 ## 1.15 -0.1 0.87 0.26 0 1.23 0.11 0 ## A b t0 mean_v sd_v st0 ## 0.75 1 0.2 2.5 1 0 ## 0.75 1 0.2 1.5 1 0
m1 <- BuildModel( p.map = list(a = "1", v = "F", z = "1", d = "1", sz = "1", sv = "F", t0 = "1", st0 = "1"), match.map = list(M = list(s1 = "r1", s2 = "r2")), factors = list(S = c("s1", "s2"), F = c("f1","f2")), constants = c(st0 = 0, d = 0), responses = c("r1","r2"), type = "rd") m2 <- BuildModel( p.map = list(A = "1", B = "1", mean_v = "M", sd_v = "1", t0 = "1", st0 = "1"), constants = c(st0 = 0, sd_v = 1), match.map = list(M = list(s1 = 1, s2 = 2)), factors = list(S = c("s1", "s2")), responses = c("r1", "r2"), type = "norm") pvec1 <- c(a = 1.15, v.f1 = -0.10, v.f2 = 3, z = 0.74, sz = 1.23, sv.f1 = 0.11, sv.f2 = 0.21, t0 = 0.87) pvec2 <- c(A = .75, B = .25, mean_v.true = 2.5, mean_v.false = 1.5, t0 = .2) print(m1, pvec1) print(m2, pvec2) accMat1 <- TableParameters(pvec1, "s1.f1.r1", m1, FALSE) accMat2 <- TableParameters(pvec2, "s1.r1", m2, FALSE) ## a v t0 z d sz sv st0 ## 1.15 -0.1 0.87 0.26 0 1.23 0.11 0 ## 1.15 -0.1 0.87 0.26 0 1.23 0.11 0 ## A b t0 mean_v sd_v st0 ## 0.75 1 0.2 2.5 1 0 ## 0.75 1 0.2 1.5 1 0
Extracts the parameter array (ie theta) from posterior samples of a partiipant and convert it to a coda mcmc.list.
theta2mcmclist(x, start = 1, end = NA, split = FALSE, subchain = FALSE, nsubchain = 3, thin = NA) phi2mcmclist(x, start = 1, end = NA, split = FALSE, subchain = FALSE, nsubchain = 3)
theta2mcmclist(x, start = 1, end = NA, split = FALSE, subchain = FALSE, nsubchain = 3, thin = NA) phi2mcmclist(x, start = 1, end = NA, split = FALSE, subchain = FALSE, nsubchain = 3)
x |
posterior samples |
start |
start iteration |
end |
end iteraton |
split |
whether to divide one MCMC sequence into two sequences. |
subchain |
boolean swith convert only a subset of chains |
nsubchain |
indicate the number of chains in the subset |
thin |
thinning lenght of the posterior samples |
phi2mcmclist
extracts the phi parameter array, which stores
the location and scale parameters at the hyper level.
## Not run: model <- BuildModel( p.map = list(a = "RACE", v = c("S", "RACE"), z = "RACE", d = "1", sz = "1", sv = "1", t0 = c("S", "RACE"), st0 = "1"), match.map = list(M = list(gun = "shoot", non = "not")), factors = list(S = c("gun", "non"), RACE = c("black", "white")), constants = c(st0 = 0, d = 0, sz = 0, sv = 0), responses = c("shoot", "not"), type = "rd") pnames <- GetPNames(model) npar <- length(pnames) pop.mean <- c(1, 1, 2.5, 2.5, 2.5, 2.5, .50, .50, .4, .4, .4, .4) pop.scale <- c(.15, .15, 1, 1, 1, 1, .05, .05, .05, .05, .05, .05) names(pop.mean) <- pnames names(pop.scale) <- pnames pop.prior <- BuildPrior( dists = rep("tnorm", npar), p1 = pop.mean, p2 = pop.scale, lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)), upper = c(rep(5, 2), rep(7, 4), rep(2, 6))) p.prior <- BuildPrior( dists = rep("tnorm", npar), p1 = pop.mean, p2 = pop.scale*10, lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)), upper = c(rep(10, 2), rep(NA, 4), rep(5, 6))) mu.prior <- BuildPrior( dists = rep("tnorm", npar), p1 = pop.mean, p2 = pop.scale*10, lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)), upper = c(rep(10, 2), rep(NA, 4), rep(5, 6))) sigma.prior <- BuildPrior( dists = rep("beta", npar), p1 = rep(1, npar), p2 = rep(1, npar), upper = rep(2, npar)) names(sigma.prior) <- GetPNames(model) priors <- list(pprior=p.prior, location=mu.prior, scale=sigma.prior) dat <- simulate(model, nsim = 10, nsub = 10, prior = pop.prior) dmi <- BuildDMI(dat, model) ps <- attr(dat, "parameters") fit0 <- StartNewsamples(dmi, priors) fit <- run(fit0) tmp1 <- theta2mcmclist(fit[[1]]) tmp2 <- theta2mcmclist(fit[[2]], start = 10, end = 90) tmp3 <- theta2mcmclist(fit[[3]], split = TRUE) tmp4 <- theta2mcmclist(fit[[4]], subchain = TRUE) tmp5 <- theta2mcmclist(fit[[5]], subchain = TRUE, nsubchain = 4) tmp6 <- theta2mcmclist(fit[[6]], thin = 2) ## End(Not run)
## Not run: model <- BuildModel( p.map = list(a = "RACE", v = c("S", "RACE"), z = "RACE", d = "1", sz = "1", sv = "1", t0 = c("S", "RACE"), st0 = "1"), match.map = list(M = list(gun = "shoot", non = "not")), factors = list(S = c("gun", "non"), RACE = c("black", "white")), constants = c(st0 = 0, d = 0, sz = 0, sv = 0), responses = c("shoot", "not"), type = "rd") pnames <- GetPNames(model) npar <- length(pnames) pop.mean <- c(1, 1, 2.5, 2.5, 2.5, 2.5, .50, .50, .4, .4, .4, .4) pop.scale <- c(.15, .15, 1, 1, 1, 1, .05, .05, .05, .05, .05, .05) names(pop.mean) <- pnames names(pop.scale) <- pnames pop.prior <- BuildPrior( dists = rep("tnorm", npar), p1 = pop.mean, p2 = pop.scale, lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)), upper = c(rep(5, 2), rep(7, 4), rep(2, 6))) p.prior <- BuildPrior( dists = rep("tnorm", npar), p1 = pop.mean, p2 = pop.scale*10, lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)), upper = c(rep(10, 2), rep(NA, 4), rep(5, 6))) mu.prior <- BuildPrior( dists = rep("tnorm", npar), p1 = pop.mean, p2 = pop.scale*10, lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)), upper = c(rep(10, 2), rep(NA, 4), rep(5, 6))) sigma.prior <- BuildPrior( dists = rep("beta", npar), p1 = rep(1, npar), p2 = rep(1, npar), upper = rep(2, npar)) names(sigma.prior) <- GetPNames(model) priors <- list(pprior=p.prior, location=mu.prior, scale=sigma.prior) dat <- simulate(model, nsim = 10, nsub = 10, prior = pop.prior) dmi <- BuildDMI(dat, model) ps <- attr(dat, "parameters") fit0 <- StartNewsamples(dmi, priors) fit <- run(fit0) tmp1 <- theta2mcmclist(fit[[1]]) tmp2 <- theta2mcmclist(fit[[2]], start = 10, end = 90) tmp3 <- theta2mcmclist(fit[[3]], split = TRUE) tmp4 <- theta2mcmclist(fit[[4]], subchain = TRUE) tmp5 <- theta2mcmclist(fit[[5]], subchain = TRUE, nsubchain = 4) tmp6 <- theta2mcmclist(fit[[6]], thin = 2) ## End(Not run)
Unstick posterios samples (One subject)
unstick_one(x, bad)
unstick_one(x, bad)
x |
posterior samples |
bad |
a numeric vector, indicating which chains to remove |