Package 'ggdmc'

Title: Cognitive Models
Description: Hierarchical Bayesian models. The package provides tools to fit two response time models, using the population-based Markov Chain Monte Carlo.
Authors: Yi-Shin Lin [aut, cre], Andrew Heathcote [aut]
Maintainer: Yi-Shin Lin <[email protected]>
License: GPL-2
Version: 0.2.6.0
Built: 2024-10-22 06:47:46 UTC
Source: CRAN

Help Index


Bind data and models

Description

Binding a data set with a model object. The function also checks whether they are compatible and adds attributes on a data model instance.

Usage

BuildDMI(x, model)

Arguments

x

data as in data frame

model

a model object

Value

a data model instance


Create a model object

Description

A model object consists of arraies with model attributes.

Usage

BuildModel(p.map, responses, factors = list(A = "1"), match.map = NULL,
  constants = numeric(0), type = "norm", posdrift = TRUE,
  verbose = TRUE)

## S3 method for class 'model'
print(x, p.vector = NULL, ...)

## S3 method for class 'dmi'
print(x, ...)

Arguments

p.map

parameter map. This option maps a particular factorial design to model parameters

responses

specifying the response names and levels

factors

specifying a list of factors and their levels

match.map

match map. This option matches stimuli and responses

constants

specifying the parameters with fixed values

type

specifying model type, either "rd" or "norm".

posdrift

a Boolean, switching between enforcing strict postive drift rates by using truncated normal distribution. This option is only useful in "norm" model type.

verbose

Print p.vector, constants and model type

x

a model object

p.vector

parameter vector

...

other arguments

Examples

model <- BuildModel(
        p.map     = list(a = "1", v = "1", z = "1", d = "1", t0 = "1",
                     sv = "1", sz = "1", st0 = "1"),
        constants = c(st0 = 0, d = 0, sz = 0, sv = 0),
        match.map = list(M = list(s1 = "r1", s2 = "r2")),
        factors   = list(S = c("s1", "s2")),
        responses = c("r1", "r2"),
        type      = "rd")

Specifying Parameter Prior Distributions

Description

BuildPrior sets up parameter prior distributions for each model parameter. p1 and p2 refer to the first and second parameters a prior distribution.

Usage

BuildPrior(p1, p2, lower = rep(NA, length(p1)), upper = rep(NA,
  length(p1)), dists = rep("tnorm", length(p1)),
  untrans = rep("identity", length(p1)), types = c("tnorm", "beta",
  "gamma", "lnorm", "unif", "constant", "tnorm2", NA))

Arguments

p1

the first parameter of a distribution

p2

the second parameter of a distribution

lower

lower support (boundary)

upper

upper support (boundary)

dists

a vector of character string specifying a distribution.

untrans

whether to do log transformation. Default is not

types

available distribution types

Details

Four distribution types are implemented:

  1. Normal and truncated normal, where: p1 = mean, p2 = sd. It specifies a normal distribution when bounds are set -Inf and Inf,

  2. Beta, where: p1 = shape1 and p2 = shape2 (see pbeta). Note the uniform distribution is a special case of the beta with p1 and p2 = 1),

  3. Gamma, where p1 = shape and p2 = scale (see pgamma). Note p2 is scale, not rate,

  4. Lognormal, where p1 = meanlog and p2 = sdlog (see plnorm).

Value

a list of list


Does a model object specify a correct p.vector

Description

Check a parameter vector

Usage

check_pvec(p.vector, model)

Arguments

p.vector

parameter vector

model

a model object


Prepare posterior samples for plotting functions version 1

Description

Convert MCMC chains to a data frame for plotting functions

Usage

ConvertChains(x, start = 1, end = NA, pll = TRUE)

Arguments

x

posterior samples

start

which iteration to start

end

end at which iteration

pll

a Boolean switch to make posterior log likelihood


A modified dbeta function

Description

A modified dbeta function

Usage

dbeta_lu(x, p1, p2, lower, upper, lg = FALSE)

Arguments

x

quantile

p1

shape1 parameter

p2

shape2 parameter

lower

lower bound

upper

upper bound

lg

logical; if TRUE, return log density.


A modified dcauchy functions

Description

A modified dcauchy functions

Usage

dcauchy_l(x, p1, p2, lg = FALSE)

Arguments

x

quantile

p1

location parameter

p2

scale parameter

lg

log density?


A pseudo constant function to get constant densities

Description

Used with constant prior

Usage

dconstant(x, p1, p2, lower, upper, lg = FALSE)

Arguments

x

quantile

p1

constant value

p2

unused argument

lower

dummy varlable

upper

dummy varlable

lg

log density?


Calculate the statistics of model complexity

Description

Calculate deviance for a model object for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood.

Usage

## S3 method for class 'model'
deviance(object, ...)

Arguments

object

posterior samples

...

other plotting arguments passing through dot dot dot.


A modified dgamma function

Description

A modified dgamma function

Usage

dgamma_l(x, p1, p2, lower, upper, lg = FALSE)

Arguments

x

quantile

p1

shape parameter

p2

scale parameter

lower

lower bound

upper

upper bound

lg

log density?


Deviance information criteria

Description

Calculate DIC and BPIC.

Usage

DIC(object, ...)

BPIC(object, ...)

Arguments

object

posterior samples

...

other plotting arguments passing through dot dot dot.


A modified dlnorm functions

Description

A modified dlnorm functions

Usage

dlnorm_l(x, p1, p2, lower, upper, lg = FALSE)

Arguments

x

quantile

p1

meanlog parameter

p2

sdlog parameter

lower

lower bound

upper

upper bound

lg

log density?


Truncated Normal Distribution

Description

Random number generation, probability density and cumulative density functions for truncated normal distribution.

Usage

dtnorm(x, p1, p2, lower, upper, lg = FALSE)

rtnorm(n, p1, p2, lower, upper)

ptnorm(q, p1, p2, lower, upper, lt = TRUE, lg = FALSE)

Arguments

x, q

vector of quantiles;

p1

mean (must be scalar).

p2

standard deviation (must be scalar).

lower

lower truncation value (must be scalar).

upper

upper truncation value (must be scalar).

lg

log probability. If TRUE (default is FALSE) probabilities p are given as log(p).

n

number of observations. n must be a scalar.

lt

lower tail. If TRUE (default) probabilities are P[X <= x], otherwise, P[X > x].

Value

a column vector.

Examples

## rtn example
dat1 <- rtnorm(1e5, 0, 1, 0, Inf)
hist(dat1, breaks = "fd", freq = FALSE, xlab = "",
     main = "Truncated normal distributions")

## dtn example
x <- seq(-5, 5, length.out = 1e3)
dat1 <- dtnorm(x, 0, 1, -2, 2, 0)
plot(x, dat1, type = "l", lwd = 2, xlab = "", ylab= "Density",
     main = "Truncated normal distributions")

## ptn example
x <- seq(-10, 10, length.out = 1e2)
mean <- 0
sd <- 1
lower <- 0
upper <- 5
dat1 <- ptnorm(x, 0, 1, 0, 5, lg = TRUE)

Calculate effective sample sizes

Description

effectiveSize calls effectiveSize in coda package to calculate sample sizes.

Usage

effectiveSize_hyper(x, start, end, digits, verbose)

effectiveSize_many(x, start, end, verbose)

effectiveSize_one(x, start, end, digits, verbose)

effectiveSize(x, hyper = FALSE, start = 1, end = NA, digits = 0,
  verbose = FALSE)

Arguments

x

posterior samples

start

starting iteration

end

ending iteraton

digits

printing how many digits

verbose

printing more information

hyper

a Boolean switch to extract hyper attribute

Examples

#################################40
## effectiveSize example
#################################40
## Not run: 
es1 <- effectiveSize_one(hsam[[1]], 1, 100, 2, TRUE)
es2 <- effectiveSize_one(hsam[[1]], 1, 100, 2, FALSE)
es3 <- effectiveSize_many(hsam, 1, 100, TRUE)
es4 <- effectiveSize_many(hsam, 1, 100, FALSE)
es5 <- effectiveSize_hyper(hsam, 1, 100, 2, TRUE)
es6 <- effectiveSize(hsam, TRUE, 1, 100, 2, TRUE)
es7 <- effectiveSize(hsam, TRUE, 1, 100, 2, FALSE)
es8 <- effectiveSize(hsam, FALSE, 1, 100, 2, TRUE)
es9 <- effectiveSize(hsam, FALSE, 1, 100, 2, FALSE)
es10 <- effectiveSize(hsam[[1]], FALSE, 1, 100, 2, TRUE)

## End(Not run)

Potential scale reduction factor

Description

gelman function calls the function, gelman.diag in the coda package to calculates PSRF.

Usage

gelman(x, hyper = FALSE, start = 1, end = NA, confidence = 0.95,
  transform = TRUE, autoburnin = FALSE, multivariate = TRUE,
  split = TRUE, subchain = FALSE, nsubchain = 3, digits = 2,
  verbose = FALSE, ...)

hgelman(x, start = 1, end = NA, confidence = 0.95,
  transform = TRUE, autoburnin = FALSE, split = TRUE,
  subchain = FALSE, nsubchain = 3, digits = 2, verbose = FALSE,
  ...)

Arguments

x

posterior samples

hyper

a Boolean switch, indicating posterior samples are from hierarchical modeling

start

start iteration

end

end iteration

confidence

confident inteval

transform

turn on transform

autoburnin

turn on auto burnin

multivariate

multivariate Boolean switch

split

split whether split mcmc chains; When split is TRUE, the function doubles the number of chains by spliting into 1st and 2nd halves.

subchain

whether only calculate a subset of chains

nsubchain

indicate how many chains in a subset

digits

print out how many digits

verbose

print more information

...

arguments passing to coda gelman.diag.

Examples

## Not run: 
rhat1 <- hgelman(hsam); rhat1
rhat2 <- hgelman(hsam, end = 51); rhat2
rhat3 <- hgelman(hsam, confidence = .90); rhat3
rhat4 <- hgelman(hsam, transform = FALSE); rhat4
rhat5 <- hgelman(hsam, autoburnin = TRUE); rhat5
rhat6 <- hgelman(hsam, split = FALSE); rhat6
rhat7 <- hgelman(hsam, subchain = TRUE); rhat7
rhat8 <- hgelman(hsam, subchain = TRUE, nsubchain = 4);
rhat9 <- hgelman(hsam, subchain = TRUE, nsubchain = 4,
digits = 1, verbose = TRUE);

hat1 <- gelman(hsam[[1]], multivariate = FALSE); hat1
hat2 <- gelman(hsam[[1]], hyper = TRUE, verbose = TRUE); hat2
hat3 <- gelman(hsam, hyper = TRUE, verbose = TRUE); hat3
hat4 <- gelman(hsam, multivariate = TRUE, verbose = FALSE);
hat5 <- gelman(hsam, multivariate = FALSE, verbose = FALSE);
hat6 <- gelman(hsam, multivariate = FALSE, verbose = TRUE);
hat7 <- gelman(hsam, multivariate = T, verbose = TRUE);

## End(Not run)

Retrieve information of operating system

Description

A wrapper function to extract system information from Sys.info and .Platform

Usage

get_os()

Examples

get_os()
## sysname
## "linux"

Get a n-cell matrix

Description

Constructs a matrix, showing how many responses to in each cell. The function checks whether the format of n and ns conform.

Usage

GetNsim(model, n, ns)

Arguments

model

a model object.

n

number of trials.

ns

number of subjects.

Details

n can be:

  1. an integer for a balanced design,

  2. a matrix for an unbalanced design, where rows are subjects and columns are cells. If the matrix is a row vector, all subjects have the same n in each cell. If it is a column vector, all cells have the same n. Otherwise each entry specifies the n for a particular subject x cell combination. See below for concrete examples.

Examples

model <- BuildModel(
  p.map     = list(A = "1", B = "R", t0 = "1", mean_v = "M", sd_v = "M",
                  st0 = "1"),
  match.map = list(M = list(s1 = 1, s2 = 2)),
  constants = c(sd_v.false = 1, st0 = 0),
  factors   = list(S = c("s1","s2")),
  responses = c("r1", "r2"),
  type      = "norm")

#######################30
## Example 1
#######################30
GetNsim(model, ns = 2, n = 1)
#      [,1] [,2]
# [1,]    1    1
# [2,]    1    1

#######################30
## Example 2
#######################30
n <- matrix(c(1:2), ncol = 1)
#      [,1]
# [1,]    1  ## subject 1 has 1 response for each cell
# [2,]    2  ## subject 2 has 2 responses for each cell

GetNsim(model, ns = 2, n = n)
#      [,1] [,2]
# [1,]    1    1
# [2,]    2    2

#######################30
## Example 3
#######################30
n <- matrix(c(1:2), nrow = 1)
#      [,1] [,2]
# [1,]    1    2
GetNsim(model, ns = 2, n = n)
#     [,1] [,2]
# [1,]   1    2 ## subject 1 has 1 response for cell 1 and 2 responses for cell 2
# [2,]   1    2 ## subject 2 has 1 response for cell 1 and 2 responses for cell 2

#######################30
## Example 4
#######################30
n <- matrix(c(1:4), nrow=2)
#      [,1] [,2]
# [1,]    1    3
# [2,]    2    4
ggdmc::GetNsim(model, ns = 2, n = n)
#      [,1] [,2]
# [1,]    1    3 ## subject 1 has 1 response for cell 1 and 3 responses for cell 2
# [2,]    2    4 ## subject 2 has 2 responses for cell 1 and 4 responses for cell 2

Constructs a ns x npar matrix,

Description

The matrix is used to simulate data. Each row represents one set of parameters for a participant.

Usage

GetParameterMatrix(x, nsub, prior = NA, ps = NA, seed = NULL)

Arguments

x

a model object

nsub

number of subjects.

prior

a prior object

ps

a vector or a matirx.

seed

an integer specifying a random seed.

Details

One must enter either a vector or a matrix as true parameters to the argument, ps, when presuming to simulate data based on a fixed-effect model. When the assumption is to simulate data based on a random-effect model, one must enter a prior object to the argument, prior to first randomly generate a true parameter matrix.

Value

a ns x npar matrix

Examples

model <- BuildModel(
p.map     = list(a ="1", v = "1",z = "1", d = "1", sz = "1", sv = "1",
            t0 = "1", st0 = "1"),
match.map = list(M = list(s1 = "r1", s2 ="r2")),
factors   = list(S = c("s1", "s2")),
constants = c(st0 = 0, d = 0),
responses = c("r1", "r2"),
type      = "rd")

p.prior <- BuildPrior(
  dists = c("tnorm", "tnorm", "beta", "beta", "tnorm", "beta"),
  p1    = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1),
  p2    = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1),
  lower = c(0, -5, NA, NA, 0, NA),
  upper = c(2,  5, NA, NA, 2, NA))

## Example 1: Randomly generate 2 sets of true parameters from
## parameter priors (p.prior)
GetParameterMatrix(model, 2, p.prior)
##            a         v         z        sz       sv        t0
## [1,] 1.963067  1.472940 0.9509158 0.5145047 1.344705 0.0850591
## [2,] 1.512276 -1.995631 0.6981290 0.2626882 1.867853 0.1552828

## Example 2: Use a user-selected true parameters
true.vector  <- c(a=1, v=1, z=0.5, sz=0.2, sv=1, t0=.15)
GetParameterMatrix(model, 2, NA, true.vector)
##      a v   z  sz sv   t0
## [1,] 1 1 0.5 0.2  1 0.15
## [2,] 1 1 0.5 0.2  1 0.15
GetParameterMatrix(model, 2, ps = true.vector)

## Example 3: When a user enter arbritary sequence of parameters.
## Note sv is before sz. It should be sz before sv
## See correct sequence, by entering "attr(model, 'p.vector')"
## GetParameterMatrix will rearrange the sequence.
true.vector  <- c(a=1, v=1, z=0.5, sv=1, sz = .2, t0=.15)
GetParameterMatrix(model, 2, NA, true.vector)
##      a v   z  sz sv   t0
## [1,] 1 1 0.5 0.2  1 0.15
## [2,] 1 1 0.5 0.2  1 0.15

Extract parameter names from a model object

Description

Extract parameter names from a model object

Usage

GetPNames(x)

Arguments

x

a model object


Bayeisan computation of response time models

Description

ggdmc uses the population-based Markov chain Monte Carlo to conduct Bayesian computation on cognitive models.

Author(s)

Yi-Shin Lin <[email protected]>
Andrew Heathcote <[email protected]>

References

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M. & Matzke, D., (2018). Dynamic model of choice. Behavior Research Methods. https://doi.org/10.3758/s13428-018-1067-y.

Turner, B. M., & Sederberg P. B. (2012). Approximate Bayesian computation with differential evolution, Journal of Mathematical Psychology, 56, 375–385.

Ter Braak (2006). A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239-249.


Model checking functions

Description

The function tests whether we have drawn enough samples.

Usage

iseffective(x, minN, nfun, verbose = FALSE)

Arguments

x

posterior samples

minN

specify the size of minimal effective samples

nfun

specify to use the mean or median function to calculate effective samples

verbose

print more information


Model checking functions

Description

The function tests whether Markov chains converge prematurelly:

Usage

isflat(x, p1 = 1/3, p2 = 1/3, cut_location = 0.25, cut_scale = Inf,
  verbose = FALSE)

Arguments

x

posterior samples

p1

the range of the head of MCMC chains

p2

the range of the tail of the MCMC chains

cut_location

how far away a location chains been considered as stuck

cut_scale

how far away a scale chains been considered as stuck

verbose

print more information


Model checking functions

Description

The function tests whether Markov chains are mixed well.

Usage

ismixed(x, cut = 1.01, split = TRUE, verbose = FALSE)

Arguments

x

posterior samples

cut

psrf criterion for well mixed

split

whether to split MCMC chains. This is an argument passing to gelman function

verbose

print more information

See Also

gelman)


Model checking functions

Description

The function tests whether Markov chains encounter a parameter region that is difficult to search. CheckConverged is a wrapper function running the four checking functions, isstuck, isflat, ismixed and iseffective.

Usage

isstuck(x, hyper = FALSE, cut = 10, start = 1, end = NA,
  verbose = FALSE)

CheckConverged(x)

Arguments

x

posterior samples

hyper

a Boolean switch, extracting hyper attribute.

cut

the criteria for suggesting abnormal chains found

start

start iteration

end

end iteration

verbose

print more information


Calculate log likelihoods

Description

These function calculate log likelihoods. likelihood_rd implements the equations in Voss, Rothermund, and Voss (2004). These equations calculate diffusion decision model (Ratcliff & Mckoon, 2008). Specifically, this function implements Voss, Rothermund, and Voss's (2004) equations A1 to A4 (page 1217) in C++.

Usage

likelihood(pvector, data, min_lik = 1e-10)

Arguments

pvector

a parameter vector

data

data model instance

min_lik

minimal likelihood.

Value

a vector

References

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 1206-1220.

Ratcliff, R. (1978). A theory of memory retrival. Psychological Review, 85, 238-255.

Examples

model <- BuildModel(
p.map     = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1",
            st0 = "1"),
match.map = list(M = list(s1 = 1, s2 = 2)),
factors   = list(S = c("s1", "s2")),
constants = c(st0 = 0, sd_v = 1),
responses = c("r1", "r2"),
type      = "norm")

p.vector <- c(A = .25, B = .35,  t0 = .2, mean_v.true = 1, mean_v.false = .25)
dat <- simulate(model, 1e3,  ps = p.vector)
dmi <- BuildDMI(dat, model)
den <- likelihood(p.vector, dmi)

model <- BuildModel(
p.map     = list(a = "1", v = "1", z = "1", d = "1", t0 = "1", sv = "1",
            sz = "1", st0 = "1"),
constants = c(st0 = 0, d = 0),
match.map = list(M = list(s1 = "r1", s2 = "r2")),
factors   = list(S = c("s1", "s2")),
responses = c("r1", "r2"),
type      = "rd")

p.vector <- c(a = 1, v = 1, z = 0.5, sz = 0.25, sv = 0.2, t0 = .15)
dat <- simulate(model, 1e2, ps = p.vector)
dmi <- BuildDMI(dat, model)
den <- likelihood (p.vector, dmi)

Create a MCMC list

Description

Create a MCMC list

Usage

mcmc_list.model(x, start = 1, end = NA, pll = TRUE)

Arguments

x

posterior samples

start

start from which iteration

end

end at which iteration

pll

a Boolean switch for calculating posterior log-likelihood


Which chains get stuck

Description

Calculate each chain separately for the mean (across many MCMC iterations) of posterior log-likelihood. If the difference of the means and the median (across chains) of the mean of posterior is greater than the cut, chains are considered stuck. The default value for cut is 10. unstick manually removes stuck chains from posterior samples.

Usage

PickStuck(x, hyper = FALSE, cut = 10, start = 1, end = NA,
  verbose = FALSE, digits = 2)

Arguments

x

posterior samples

hyper

whether x are hierarhcial samples

cut

a criterion deciding if a chain is stuck.

start

start to evaluate from which iteration.

end

end at which iteration for evaeuation.

verbose

a boolean switch to print more information

digits

print how many digits. Default is 2

Value

PickStuck gives an index vector; unstick gives a DMC sample.

Examples

model <- BuildModel(
p.map     = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1", st0 = "1"),
match.map = list(M = list(s1 = 1, s2 = 2)),
factors   = list(S = c("s1", "s2")),
constants = c(st0 = 0, sd_v = 1),
responses = c("r1", "r2"),
type      = "norm")
p.vector <- c(A = .75, B = .25, t0 = .2, mean_v.true = 2.5, mean_v.false = 1.5)

p.prior <- BuildPrior(
  dists = c("tnorm", "tnorm", "beta", "tnorm", "tnorm"),
  p1    = c(A = .3, B = .3, t0 = 1, mean_v.true = 1, mean_v.false = 0),
  p2    = c(1, 1,   1, 3, 3),
  lower = c(0,  0,  0, NA, NA),
  upper = c(NA,NA,  1, NA, NA))

## Not run: 
dat <- simulate(model, 30, ps = p.vector)
dmi <- BuildDMI(dat, model)
sam <- run(StartNewsamples(dmi, p.prior))
bad <- PickStuck(sam)

## End(Not run)

Plot prior distributions

Description

plot_prior plots one member in a prior object. plot.prior plots all members in a prior object.

Usage

plot_prior(i, prior, xlim = NA, natural = TRUE, npoint = 100,
  trans = NA, save = FALSE, ...)

## S3 method for class 'prior'
plot(x, save = FALSE, ps = NULL, ...)

Arguments

i

an integer or a character string indicating which parameter to plot

prior

a prior object

xlim

set the range of on x axis. This is usually the range for each parameter.

natural

default TRUE.

npoint

default to plot 100

trans

default NA. trans can be a scalar or vector.

save

whether to save the data out

...

other plotting arguments passing through dot dot dot.

x

a prior object

ps

true parameter vectors or matrix in the case of many observation units

Examples

p.prior <- BuildPrior(
           dists = rep("tnorm", 7),
           p1    = c(a = 2,   v.f1 = 4,  v.f2 = 3,  z = 0.5, sv = 1,
                     sz = 0.3, t0 = 0.3),
           p2    = c(a = 0.5, v.f1 = .5, v.f2 = .5, z = 0.1, sv = .3,
                     sz = 0.1, t0 = 0.05),
           lower = c(0,-5, -5, 0, 0, 0, 0),
           upper = c(5, 7,  7, 1, 2, 1, 1))

plot_prior("a", p.prior)
plot_prior(2, p.prior)
plot(p.prior)

Print Prior Distribution

Description

a convenient function to rearrange p.prior or an element in a pp.prior as a data frame for inspection.

Usage

## S3 method for class 'prior'
print(x, ...)

Arguments

x

a list of prior distributions list, usually created by BuildPrior

...

other arguments

Value

a data frame listing prior distributions and their settings

Examples

pop.mean  <- c(a=1,  v.f1=1,  v.f2=.2, z=.5, sz=.3,  sv.f1=.25, sv.f2=.23,
               t0=.3)
pop.scale <- c(a=.2, v.f1=.2, v.f2=.2, z=.1, sz=.05, sv.f1=.05, sv.f2=.05,
               t0=.05)

p.prior <- BuildPrior(
  dists = rep("tnorm", 8),
  p1    = pop.mean,
  p2    = pop.scale,
  lower = c(0, -5, -5, 0, 0, 0, 0, 0),
  upper = c(2,  5,  5, 1, 2, 2, 1, 1))

print(p.prior)

Generate random numbers

Description

A wrapper function for generating random numbers of either the model type, rd, or norm.

Usage

random(type, pmat, n, seed = NULL)

Arguments

type

a character string of the model type

pmat

a matrix of response x parameter

n

number of observations

seed

an integer specifying a random seed


Generate Random Deviates of the LBA Distribution

Description

rlba_norm, only slightly faster than maker, calls C++ function directly.

Usage

rlba_norm(n, A, b, mean_v, sd_v, t0, st0, posdrift)

Arguments

n

is the numbers of observation.

A

start point upper bound, a vector of a scalar.

b

decision threshold, a vector or a scalar.

mean_v

mean drift rate vector

sd_v

standard deviation of drift rate vector

t0

nondecision time, a vector.

st0

nondecision time variation, a vector.

posdrift

if exclude negative drift rates

Value

a n x 2 matrix of RTs (first column) and responses (second column).


Parameter Prior Distributions

Description

Probability density functions and random generation for parameter prior distributions.

Usage

rprior(prior, n = 1)

Arguments

prior

a list of list usually created by BuildPrior to store the information about parameter prior distributions.

n

number of observations/random draws

Examples

p.prior <- BuildPrior(
 dists = c("tnorm", "tnorm", "beta", "tnorm", "beta", "beta"),
 p1    = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1),
 p2    = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1),
 lower = c(0,-5, NA, NA, 0, NA),
 upper = c(2, 5, NA, NA, 2, NA))

rprior(p.prior, 9)
##               a           v         z         sz        sv         t0
## [1,] 0.97413686  0.78446178 0.9975199 -0.5264946 0.5364492 0.55415052
## [2,] 0.72870190  0.97151662 0.8516604  1.6008591 0.3399731 0.96520848
## [3,] 1.63153685  1.96586939 0.9260939  0.7041254 0.4138329 0.78367440
## [4,] 1.55866180  1.43657110 0.6152371  0.1290078 0.2957604 0.23027759
## [5,] 1.32520281 -0.07328408 0.2051155  2.4040387 0.9663111 0.06127237
## [6,] 0.49628528 -0.19374770 0.5142829  2.1452972 0.4335482 0.38410626
## [7,] 0.03655549  0.77223432 0.1739831  1.4431507 0.6257398 0.63228368
## [8,] 0.71197612 -1.15798082 0.8265523  0.3813370 0.4465184 0.23955415
## [9,] 0.38049166  3.32132034 0.9888108  0.9684292 0.8437480 0.13502154

pvec <- c(a=1, v=1, z=0.5, sz=0.25, sv=0.2,t0=.15)
p.prior  <- BuildPrior(
  dists = rep("tnorm", 6),
  p1    = c(a=2,   v=2.5, z=0.5, sz=0.3, sv=1,  t0=0.3),
  p2    = c(a=0.5, v=.5,  z=0.1, sz=0.1, sv=.3, t0=0.05) * 5,
  lower = c(0,-5, 0, 0, 0, 0),
  upper = c(5, 7, 2, 2, 2, 2))

Simulate response time data

Description

Simulate response time data either for one subject or multiple subjects. The simulation is based on a model object. For one subject, one must supply a true parameter vector to the ps argument.

Usage

## S3 method for class 'model'
simulate(object, nsim = NA, seed = NULL, nsub = NA,
  prior = NA, ps = NA, ...)

Arguments

object

a model object.

nsim

number of trials / responses. n can be a single number for a balanced design or a matrix for an unbalanced design, where rows are subjects and columns are design cells. If the matrix has one row then all subjects have the same n in each cell, if it has one column then all cells have the same n; Otherwise each entry specifies the n for a particular subject x design cell combination.

seed

a user specified random seed.

nsub

number of subjects

prior

a prior object

ps

a true parameter vector or matrix.

...

additional optional arguments.

Details

For multiple subjects, one can enter a matrix (or a row vector) as true parameters. Each row is to generate data separately for a subject. This is the fixed-effect model. To generate data based on a random-effect model, one must supply a prior object. In this case, ps argument is unused. Note in some cases, a random-effect model may fail to draw data from the model, because true parameters are randomly drawn from a prior object. This would happen sometimes in diffusion model, because certain parameter combinations are considered invalid.

ps can be a row vector, in which case each subject has identical parameters. It can also be a matrix with one row per subject, in which case it must have ns rows. The true values will be saved as parameters attribute in the output object.

Value

a data frame


Start new model fits

Description

Fit a hierarchical or a fixed-effect model, using Bayeisan optimisation. We use a specific type of pMCMC algorithm, the DE-MCMC. This particular sampling method includes crossover and two different migration operators. The migration operators are similar to random-walk algorithm. They wouold be less efficient to find the target parameter space, if been used alone.

Usage

StartNewsamples(data, prior = NULL, nmc = 200, thin = 1,
  nchain = NULL, report = 100, rp = 0.001, gammamult = 2.38,
  pm0 = 0.05, pm1 = 0.05, block = TRUE, ncore = 1)

run(samples, nmc = 500, thin = 1, report = 100, rp = 0.001,
  gammamult = 2.38, pm0 = 0, pm1 = 0, block = TRUE, ncore = 1,
  add = FALSE)

Arguments

data

data model instance(s)

prior

prior objects. For hierarchical model, this must be a list with three sets of prior distributions. Each is respectively named, "pprior", "location", and "scale".

nmc

number of Monte Carlo samples

thin

thinning length

nchain

number of chains

report

progress report interval

rp

tuning parameter 1

gammamult

tuning parameter 2. This is the step size.

pm0

probability of migration type 0 (Hu & Tsui, 2010)

pm1

probability of migration type 1 (Turner et al., 2013)

block

Only for hierarchical modeling. A Boolean switch for update one parameter at a time

ncore

Only for non-hierarchical, fixed-effect models with many subjects.

samples

posterior samples.

add

Boolean whether to add new samples


Summary statistic for posterior samples

Description

Calculate summary statistics for posterior samples

Usage

summary_mcmc_list(object, prob = c(0.025, 0.25, 0.5, 0.75, 0.975), ...)

Arguments

object

posterior samples

prob

summary quantile summary

...

other arguments passing in


Summarise posterior samples

Description

This calls seven different variants of summary function to summarise posterior samples

Usage

## S3 method for class 'model'
summary(object, hyper = FALSE, start = 1, end = NA,
  hmeans = FALSE, hci = FALSE, prob = c(0.025, 0.25, 0.5, 0.75,
  0.975), recovery = FALSE, ps = NA, type = 1, verbose = FALSE,
  digits = 2, ...)

Arguments

object

posterior samples

hyper

whether to summarise hyper parameters

start

start from which iteration.

end

end at which iteration. For example, set start = 101 and end = 1000, instructs the function to calculate from 101 to 1000 iteration.

hmeans

a boolean switch indicating to calculate mean of hyper parameters

hci

boolean switch; whether to calculate credible intervals of hyper parameters

prob

a numeric vector, indicating the quantiles to calculate

recovery

a boolean switch indicating if samples are from a recovery study

ps

true parameter values. This is only for recovery studies

type

calculate type 1 or 2 hyper parameters

verbose

print more information

digits

printing digits

...

other arguments

Examples

## Not run: 
est1 <- summary(hsam[[1]], FALSE)
est2 <- summary(hsam[[1]], FALSE, 1, 100)

est3 <- summary(hsam)
est4 <- summary(hsam, verbose = TRUE)
est5 <- summary(hsam, verbose = FALSE)

hest1 <- summary(hsam, TRUE)

## End(Not run)

Table response and parameter

Description

TableParameters arranges the values in a parameter vector and creates a response x parameter matrix. The matrix is used by the likelihood function, assigning a trial to a cell for calculating probability densities.

Usage

TableParameters(p.vector, cell, model, n1order)

Arguments

p.vector

a parameter vector

cell

a string or an integer indicating a design cell, e.g., s1.f1.r1 or 1. Note the integer cannot exceed the number of cell. One can check this by entering length(dimnames(model)).

model

a model object

n1order

a Boolean switch, indicating using node 1 ordering. This is only for LBA-like models and its n1PDF likelihood function.

Value

each row corresponding to the model parameter for a response. When n1.order is FALSE, TableParameters returns a martix without rearranging into node 1 order. For example, this is used in the simulate function. By default n1.order is TRUE.

Examples

m1 <- BuildModel(
  p.map     = list(a = "1", v = "F", z = "1", d = "1", sz = "1", sv = "F",
                   t0 = "1", st0 = "1"),
  match.map = list(M = list(s1 = "r1", s2 = "r2")),
  factors   = list(S = c("s1", "s2"), F = c("f1","f2")),
  constants = c(st0 = 0, d = 0),
  responses = c("r1","r2"),
  type      = "rd")

m2 <- BuildModel(
  p.map = list(A = "1", B = "1", mean_v = "M", sd_v = "1",
    t0 = "1", st0 = "1"),
  constants = c(st0 = 0, sd_v = 1),
  match.map = list(M = list(s1 = 1, s2 = 2)),
  factors   = list(S = c("s1", "s2")),
  responses = c("r1", "r2"),
  type      = "norm")

pvec1 <- c(a = 1.15, v.f1 = -0.10, v.f2 = 3, z = 0.74, sz = 1.23,
           sv.f1 = 0.11, sv.f2 = 0.21, t0 = 0.87)
pvec2 <- c(A = .75, B = .25, mean_v.true = 2.5, mean_v.false = 1.5,
           t0 = .2)

print(m1, pvec1)
print(m2, pvec2)

accMat1 <- TableParameters(pvec1, "s1.f1.r1", m1, FALSE)
accMat2 <- TableParameters(pvec2, "s1.r1",    m2, FALSE)

##    a    v   t0    z d   sz   sv st0
## 1.15 -0.1 0.87 0.26 0 1.23 0.11   0
## 1.15 -0.1 0.87 0.26 0 1.23 0.11   0

##    A b  t0 mean_v sd_v st0
## 0.75 1 0.2    2.5    1   0
## 0.75 1 0.2    1.5    1   0

Convert theta to a mcmc List

Description

Extracts the parameter array (ie theta) from posterior samples of a partiipant and convert it to a coda mcmc.list.

Usage

theta2mcmclist(x, start = 1, end = NA, split = FALSE,
  subchain = FALSE, nsubchain = 3, thin = NA)

phi2mcmclist(x, start = 1, end = NA, split = FALSE,
  subchain = FALSE, nsubchain = 3)

Arguments

x

posterior samples

start

start iteration

end

end iteraton

split

whether to divide one MCMC sequence into two sequences.

subchain

boolean swith convert only a subset of chains

nsubchain

indicate the number of chains in the subset

thin

thinning lenght of the posterior samples

Details

phi2mcmclist extracts the phi parameter array, which stores the location and scale parameters at the hyper level.

Examples

## Not run: 
model <- BuildModel(
p.map     = list(a = "RACE", v = c("S", "RACE"), z = "RACE", d = "1",
            sz = "1", sv = "1", t0 = c("S", "RACE"), st0 = "1"),
match.map = list(M = list(gun = "shoot", non = "not")),
factors   = list(S = c("gun", "non"), RACE = c("black", "white")),
constants = c(st0 = 0, d = 0, sz = 0, sv = 0),
responses = c("shoot", "not"),
type      = "rd")

pnames <- GetPNames(model)
npar   <- length(pnames)
pop.mean  <- c(1, 1, 2.5, 2.5, 2.5, 2.5, .50, .50, .4, .4, .4, .4)
pop.scale <- c(.15, .15, 1, 1, 1, 1, .05, .05, .05, .05, .05, .05)
names(pop.mean)  <- pnames
names(pop.scale) <- pnames
pop.prior <- BuildPrior(
  dists = rep("tnorm", npar),
  p1    = pop.mean,
  p2    = pop.scale,
  lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)),
  upper = c(rep(5, 2), rep(7, 4), rep(2, 6)))
p.prior <- BuildPrior(
  dists = rep("tnorm", npar),
  p1    = pop.mean,
  p2    = pop.scale*10,
  lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)),
  upper = c(rep(10, 2), rep(NA, 4), rep(5, 6)))
mu.prior <- BuildPrior(
  dists = rep("tnorm", npar),
  p1    = pop.mean,
  p2    = pop.scale*10,
  lower = c(rep(0,  2), rep(-5, 4), rep(0, 6)),
  upper = c(rep(10, 2), rep(NA, 4), rep(5, 6)))
sigma.prior <- BuildPrior(
  dists = rep("beta", npar),
  p1    = rep(1, npar),
  p2    = rep(1, npar),
  upper = rep(2, npar))
names(sigma.prior) <- GetPNames(model)
priors <- list(pprior=p.prior, location=mu.prior, scale=sigma.prior)
dat    <- simulate(model, nsim = 10, nsub = 10, prior = pop.prior)
dmi    <- BuildDMI(dat, model)
ps     <- attr(dat, "parameters")

fit0 <- StartNewsamples(dmi, priors)
fit  <- run(fit0)

tmp1 <- theta2mcmclist(fit[[1]])
tmp2 <- theta2mcmclist(fit[[2]], start = 10, end = 90)
tmp3 <- theta2mcmclist(fit[[3]], split = TRUE)
tmp4 <- theta2mcmclist(fit[[4]], subchain = TRUE)
tmp5 <- theta2mcmclist(fit[[5]], subchain = TRUE, nsubchain = 4)
tmp6 <- theta2mcmclist(fit[[6]], thin = 2)

## End(Not run)

Unstick posterios samples (One subject)

Description

Unstick posterios samples (One subject)

Usage

unstick_one(x, bad)

Arguments

x

posterior samples

bad

a numeric vector, indicating which chains to remove