Title: | Generalised Exponential Poisson and Poisson Exponential Distributions |
---|---|
Description: | Maximum likelihood estimation, random values generation, density computation and other functions for the exponential-Poisson generalised exponential-Poisson and Poisson-exponential distributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). "Poisson-exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128--144. <doi:10.1080/02664763.2016.1268571>. Louzada F., Ramos, P. L. and Ferreira, H. P. (2020). "Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence". Communications in Statistics--Simulation and Computation, 49(4): 1024--1043. <doi:10.1080/03610918.2018.1491988>. Barreto-Souza W. and Cribari-Neto F. (2009). "A generalization of the exponential-Poisson distribution". Statistics and Probability Letters, 79(24): 2493--2500. <doi:10.1016/j.spl.2009.09.003>. |
Authors: | Michail Tsagris [aut, cre], Sofia Piperaki [aut] |
Maintainer: | Michail Tsagris <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0 |
Built: | 2024-11-22 06:25:57 UTC |
Source: | CRAN |
The package offers sime functions (including MLE) for the exponential-Poisson (EP), the generalised EP (GEP) and the Poisson-exponential (PE) distributions.
Package: | geppe |
Type: | Package |
Version: | 1.0 |
Date: | 2024-06-23 |
License: | GPL-2 |
Michail Tsagris [email protected].
Michail Tsagris [email protected] and Sofia Piperaki [email protected].
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
Density computation of the GEP, EP and PE distributions.
depois(x, beta, lambda, logged = FALSE) dgep(x, beta, alpha, lambda, logged = FALSE) dpe(x, theta, lambda, logged = FALSE)
depois(x, beta, lambda, logged = FALSE) dgep(x, beta, alpha, lambda, logged = FALSE) dpe(x, theta, lambda, logged = FALSE)
x |
A numerical vector with non-negative values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
logged |
Should the logarithm of the density values be computed? The default value is FALSE. |
The density values of the GEP, EP and PE distributions are computed.
The density function of the EP is given by
The density function of the GEP is given by
The density function of the PE is given by
A vector with the (logged) density values.
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki [email protected] and Michail Tsagris [email protected].
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
x <- rgep(100, 1, 2, 3) y <- dgep(x, 1, 2, 3, logged = TRUE) sum(y)
x <- rgep(100, 1, 2, 3) y <- dgep(x, 1, 2, 3, logged = TRUE) sum(y)
Distribution function of the GEP, EP and PE distributions.
pepois(x, beta, lambda) pgep(x, beta, alpha, lambda) ppe(x, theta, lambda)
pepois(x, beta, lambda) pgep(x, beta, alpha, lambda) ppe(x, theta, lambda)
x |
A numerical vector with non-negative values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
The cumulative distribution values of the GEP, EP and PE distributions are computed.
The probability function of the EP is given by
The probability function of the GEP is given by
The probability function of the PE is given by
A vector with the cumulative distribution density values.
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki [email protected] and Michail Tsagris [email protected].
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
x <- rgep(100, 1, 2, 3) y <- pgep(x, 1, 2, 3)
x <- rgep(100, 1, 2, 3) y <- pgep(x, 1, 2, 3)
Maximum likelihood estimation of the GEP, EP and PE distributions.
epois.mle(x) gep.mle(x) pe.mle(x)
epois.mle(x) gep.mle(x) pe.mle(x)
x |
A numerical vector with non negative values. |
Maximum likelihood estimation of the EP, GEP and PE distributions is performed.
A list including:
param |
A vector with the estimated values of |
loglik |
The log-likelihood value of the distribution. |
Michail Tsagris.
R implementation and documentation: Michail Tsagris [email protected].
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
x <- repois( 1000, 1, 3) epois.mle(x)
x <- repois( 1000, 1, 3) epois.mle(x)
Quantile function of the GEP, EP and PE distributions.
qepois(p, beta, lambda) qgep(p, beta, alpha, lambda) qpe(p, theta, lambda)
qepois(p, beta, lambda) qgep(p, beta, alpha, lambda) qpe(p, theta, lambda)
p |
A numerical vector with probability values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
The quantiles of the GEP, EP and PE distributions are computed.
The quantile function of the EP is given by
The quantile function of the GEP is given by
The quantile function of the PE is given by
A vector with the quantile values.
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki [email protected] and Michail Tsagris [email protected].
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
y <- qgep(seq(0.1, 0.9, by = 0.1), 1, 2, 3)
y <- qgep(seq(0.1, 0.9, by = 0.1), 1, 2, 3)
Random values generation from the GEP, EP and PE distributions.
repois(n, beta, lambda) rgep(n, beta, alpha, lambda) rpe(n, theta, lambda)
repois(n, beta, lambda) rgep(n, beta, alpha, lambda) rpe(n, theta, lambda)
n |
The sample size. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
In order to generate values from these distributions the inverse rejection sampling is used.
A vector with generated values from the GEP, EP or the PE distribution.
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki [email protected] and Michail Tsagris [email protected].
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
x <- rgep(100, 1, 2, 3)
x <- rgep(100, 1, 2, 3)