Title: | Geostatistical Modelling with Likelihood and Bayes |
---|---|
Description: | Geostatistical modelling facilities using 'SpatRaster' and 'SpatVector' objects are provided. Non-Gaussian models are fit using 'INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>. The 'RandomFields' package is available at <https://www.wim.uni-mannheim.de/schlather/publications/software>. |
Authors: | Patrick Brown [aut, cre, cph] |
Maintainer: | Patrick Brown <[email protected]> |
License: | GPL |
Version: | 2.0.6 |
Built: | 2024-12-17 06:57:05 UTC |
Source: | CRAN |
Distribution of Gaussian Markov Random Field conditional on data observed with noise on the same grid.
conditionalGmrf(param, Yvec, Xmat, NN, template = NULL, mc.cores = 1, cellsPerLoop = 10, ...)
conditionalGmrf(param, Yvec, Xmat, NN, template = NULL, mc.cores = 1, cellsPerLoop = 10, ...)
param |
vector of named parameters |
Yvec |
vector of observed data, or matrix with each column being a realisation. |
Xmat |
Matrix of covariates. |
NN |
nearest neighbour matrix |
template |
Raster on which the GMRF is defined |
mc.cores |
passed to |
cellsPerLoop |
number of cells to compute simultaneously. Larger values consume more memory but result in faster computation. |
... |
additional arguments passed to |
Raster image with layers containing conditional mean and standard deviation.
Patrick Brown
Calculate exceedance probabilities pr(X > threshold) from a fitted geostatistical model.
excProb(x, threshold=0, random=FALSE, template=NULL, templateIdCol=NULL, nuggetInPrediction=TRUE)
excProb(x, threshold=0, random=FALSE, template=NULL, templateIdCol=NULL, nuggetInPrediction=TRUE)
x |
Output from either the |
threshold |
the value which the exceedance probability is calculated with respect to. |
random |
Calculate exceedances for the random effects, rather than the predicted observations (including fixed effects). |
template |
A |
templateIdCol |
The data column in |
nuggetInPrediction |
If |
When x
is the output from lgm
, pr(Y>threshold) is calculated using
the Gaussian distribution using the Kriging mean and conditional variance. When
x
is from the glgm
function,
the marginal posteriors are numerically integrated to obtain pr(X > threshold).
Either a vector of exceedance probabilities or an object of the same class as template
.
data('swissRain') swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissFit = lgm("rain", swissRain, grid=30, boxcox=0.5,fixBoxcox=TRUE, covariates=swissAltitude) swissExc = excProb(swissFit, 20) mycol = c("green","yellow","orange","red") mybreaks = c(0, 0.2, 0.8, 0.9, 1) plot(swissBorder) plot(swissExc, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE) plot(swissBorder, add=TRUE) legend("topleft",legend=mybreaks, col=c(NA,mycol)) if(requireNamespace("INLA", quietly=TRUE) ) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) swissRain$sqrtrain = sqrt(swissRain$rain) swissFit2 = glgm(formula="sqrtrain",data=swissRain, grid=40, covariates=swissAltitude,family="gaussian") swissExc = excProb(swissFit2, threshold=sqrt(30)) swissExc = excProb(swissFit2$inla$marginals.random$space, 0, template=swissFit2$raster) }
data('swissRain') swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissFit = lgm("rain", swissRain, grid=30, boxcox=0.5,fixBoxcox=TRUE, covariates=swissAltitude) swissExc = excProb(swissFit, 20) mycol = c("green","yellow","orange","red") mybreaks = c(0, 0.2, 0.8, 0.9, 1) plot(swissBorder) plot(swissExc, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE) plot(swissBorder, add=TRUE) legend("topleft",legend=mybreaks, col=c(NA,mycol)) if(requireNamespace("INLA", quietly=TRUE) ) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) swissRain$sqrtrain = sqrt(swissRain$rain) swissFit2 = glgm(formula="sqrtrain",data=swissRain, grid=40, covariates=swissAltitude,family="gaussian") swissExc = excProb(swissFit2, threshold=sqrt(30)) swissExc = excProb(swissFit2$inla$marginals.random$space, 0, template=swissFit2$raster) }
This data-set was used by Diggle, Moyeed, Rowlingson, and Thomson (2002) to demonstrate how the model-based geostatistics framework of Diggle et al. (1998) could be adapted to assess the source(s) of extrabinomial variation in the data and, in particular, whether this variation was spatially structured. The malaria prevalence data set consists of measurements of the presence of malarial parasites in blood samples obtained from children in 65 villages in the Gambia. Other child- and village-level indicators include age, bed net use, whether the bed net is treated, whether or not the village belonged to the primary health care structure, and a measure of 'greenness' using a vegetation index.
data(gambiaUTM)
data(gambiaUTM)
A SpatVector
, with column pos
being the binary response for a malaria
diagnosis, as well as other child-level indicators such as netuse
and treated
being measures of bed net use and whether the nets were treated. The column green
is
a village-level measure of greenness. A UTM coordinate reference system is used, where
coordinates are in metres.
http://www.leg.ufpr.br/doku.php/pessoais:paulojus:mbgbook:datasets. For further details on the malaria data, see Thomson et al. (1999).
Diggle, P. J., Moyeed, R. A., Rowlingson, R. and Thomson, M. (2002). Childhood Malaria in the Gambia: A case-study in model-based geostatistics. Journal of the Royal Statistical Society. Series C (Applied Statistics), 51(4): 493-506.
Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model-based geostatistics (with Discussion). Applied Statistics, 47, 299–350.
Thomson, M. C., Connor, S. J., D'Alessandro, U., Rowlingson, B., Diggle, P., Creswell, M. and Greenwood, B. (2004). Predicting malaria infection in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. American Journal of Tropical Medicine and Hygiene, 61: 2-8.
data("gambiaUTM") gambiaUTM = unwrap(gambiaUTM) plot(gambiaUTM, main="gambia data") if(require('mapmisc', quietly=TRUE)) { gambiaTiles = openmap(gambiaUTM, zoom=6, buffer=50*1000) oldpar=map.new(gambiaTiles) plot(gambiaTiles, add=TRUE) plot(gambiaUTM, add=TRUE) scaleBar(gambiaUTM, 'topright') par(oldpar) }
data("gambiaUTM") gambiaUTM = unwrap(gambiaUTM) plot(gambiaUTM, main="gambia data") if(require('mapmisc', quietly=TRUE)) { gambiaTiles = openmap(gambiaUTM, zoom=6, buffer=50*1000) oldpar=map.new(gambiaTiles) plot(gambiaTiles, add=TRUE) plot(gambiaUTM, add=TRUE) scaleBar(gambiaUTM, 'topright') par(oldpar) }
Fits a generalized linear geostatistical model or a log-Gaussian Cox process
using inla
## S4 method for signature 'ANY,ANY,ANY,ANY' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) ## S4 method for signature 'formula,SpatRaster,ANY,ANY' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) ## S4 method for signature 'formula,SpatVector,ANY,ANY' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) ## S4 method for signature 'formula,data.frame,SpatRaster,data.frame' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) lgcp(formula=NULL, data, grid, covariates=NULL, border, ...)
## S4 method for signature 'ANY,ANY,ANY,ANY' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) ## S4 method for signature 'formula,SpatRaster,ANY,ANY' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) ## S4 method for signature 'formula,SpatVector,ANY,ANY' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) ## S4 method for signature 'formula,data.frame,SpatRaster,data.frame' glgm(formula, data, grid, covariates, buffer=0, shape=1, prior, ...) lgcp(formula=NULL, data, grid, covariates=NULL, border, ...)
data |
An object of class |
grid |
Either an integer giving the number of cells in the x direction, or a raster object which will be used for the spatial random effect. If the cells in the raster are not square, the resolution in the y direction will be adjusted to make it so. |
covariates |
Either a single raster, a list of rasters or a raster stack containing covariate values used when
making spatial predictions. Names of the raster layers or list elements correspond to names in the formula. If
a covariate is missing from the data object it will be extracted from the rasters. Defaults to |
formula |
Model formula, defaults to a linear combination of each of the layers in the |
prior |
list with elements named |
shape |
Shape parameter for the Matern correlation function, must be 1 or 2. |
buffer |
Extra space padded around the data bounding box to reduce edge effects. |
border |
boundary of the region on which an LGCP is defined, passed to |
... |
Additional options passed to
|
This function performs Bayesian inference for generalized linear geostatistical models with INLA. The Markov random field approximation on a regular lattice is used for the spatial random effect. The range parameter is the distance at which the correlation is 0.13, or
where is the shape parameter. The range parameter produced by
glgm
multiplies the range parameter from INLA
by the cell size.
Elements of prior
can be named range
, sd
, or sdObs
. Elements can consist of:
a single value giving the prior median for penalized complexity priors (exponential on the sd or 1/range).
a vector c(u=a, alpha=b)
giving an quantile and probability for pc priors. For standard deviations alpha is an upper quantile, for the range parameter b = pr(1/range > 1/a).
a vector c(lower=a, upper=b)
giving a 0.025 and 0.975 quantiles for the sd or range.
a list of the form list(prior='loggamma', param=c(1,2))
passed directly to inla.
a two-column matrix of prior densities for the sd or range.
A list with two components named inla
, raster
, and parameters
. inla
contains the results of the call to the
inla
function. raster
is a raster stack with the following layers:
random. |
mean, sd, X0.0??quant: Posterior mean, standard deviation, and quantiles of the random effect |
predict. |
mean, sd, X0.0??quant: same for linear predictors, on the link scale |
predict.exp |
posterior mean of the exponential of the linear predictor |
predict.invlogit |
Only supplied if a binomial response variable was used. |
parameters
contains a list with elements:
summary |
a table with parameter estimates and posterior quantiles |
range , sd
|
prior and posterior distributions of range and standard deviations |
inla
in the INLA
package,
https://www.r-inla.org
# geostatistical model for the swiss rainfall data if(requireNamespace("INLA", quietly=TRUE) ) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) } require("geostatsp") data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissRain$lograin = log(swissRain$rain) swissFit = glgm(formula="lograin", data=swissRain, grid=30, covariates=swissAltitude, family="gaussian", buffer=2000, prior = list(sd=1, range=100*1000, sdObs = 2), control.inla = list(strategy='gaussian') ) if(!is.null(swissFit$parameters) ) { swissExc = excProb(swissFit, threshold=log(25)) swissExcRE = excProb(swissFit$inla$marginals.random$space, log(1.5),template=swissFit$raster) swissFit$parameters$summary matplot( swissFit$parameters$range$postK[,'x'], swissFit$parameters$range$postK[,c('y','prior')], type="l", lty=1, xlim = c(0, 1000), xlab = 'km', ylab='dens') legend('topright', lty=1, col=1:2, legend=c('post','prior')) plot(swissFit$raster[["predict.exp"]]) mycol = c("green","yellow","orange","red") mybreaks = c(0, 0.2, 0.8, 0.95, 1) plot(swissBorder) plot(swissExc, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE) plot(swissBorder, add=TRUE) legend("topleft",legend=mybreaks, fill=c(NA,mycol)) plot(swissBorder) plot(swissExcRE, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE) plot(swissBorder, add=TRUE) legend("topleft",legend=mybreaks, fill=c(NA,mycol)) } # a log-Gaussian Cox process example myPoints = vect(cbind(rbeta(100,2,2), rbeta(100,3,4))) mycov = rast(matrix(rbinom(100, 1, 0.5), 10, 10), extent=ext(0, 1, 0, 1)) names(mycov)="x1" if(requireNamespace("INLA", quietly=TRUE) ) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) } res = lgcp( formula=~factor(x1), data=myPoints, grid=squareRaster(ext(0,1,0,1), 20), covariates=mycov, prior=list(sd=c(0.9, 1.1), range=c(0.4, 0.41), control.inla = list(strategy='gaussian'), verbose=TRUE) ) if(length(res$parameters)) { plot(res$raster[["predict.exp"]]) plot(myPoints,add=TRUE,col="#0000FF30",cex=0.5) }
# geostatistical model for the swiss rainfall data if(requireNamespace("INLA", quietly=TRUE) ) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) } require("geostatsp") data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissRain$lograin = log(swissRain$rain) swissFit = glgm(formula="lograin", data=swissRain, grid=30, covariates=swissAltitude, family="gaussian", buffer=2000, prior = list(sd=1, range=100*1000, sdObs = 2), control.inla = list(strategy='gaussian') ) if(!is.null(swissFit$parameters) ) { swissExc = excProb(swissFit, threshold=log(25)) swissExcRE = excProb(swissFit$inla$marginals.random$space, log(1.5),template=swissFit$raster) swissFit$parameters$summary matplot( swissFit$parameters$range$postK[,'x'], swissFit$parameters$range$postK[,c('y','prior')], type="l", lty=1, xlim = c(0, 1000), xlab = 'km', ylab='dens') legend('topright', lty=1, col=1:2, legend=c('post','prior')) plot(swissFit$raster[["predict.exp"]]) mycol = c("green","yellow","orange","red") mybreaks = c(0, 0.2, 0.8, 0.95, 1) plot(swissBorder) plot(swissExc, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE) plot(swissBorder, add=TRUE) legend("topleft",legend=mybreaks, fill=c(NA,mycol)) plot(swissBorder) plot(swissExcRE, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE) plot(swissBorder, add=TRUE) legend("topleft",legend=mybreaks, fill=c(NA,mycol)) } # a log-Gaussian Cox process example myPoints = vect(cbind(rbeta(100,2,2), rbeta(100,3,4))) mycov = rast(matrix(rbinom(100, 1, 0.5), 10, 10), extent=ext(0, 1, 0, 1)) names(mycov)="x1" if(requireNamespace("INLA", quietly=TRUE) ) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) } res = lgcp( formula=~factor(x1), data=myPoints, grid=squareRaster(ext(0,1,0,1), 20), covariates=mycov, prior=list(sd=c(0.9, 1.1), range=c(0.4, 0.41), control.inla = list(strategy='gaussian'), verbose=TRUE) ) if(length(res$parameters)) { plot(res$raster[["predict.exp"]]) plot(myPoints,add=TRUE,col="#0000FF30",cex=0.5) }
calls the function of the same name in INLA
inla.models()
inla.models()
a list
Perform spatial prediction, producing a raster of predictions and conditional standard deviations.
krigeLgm(formula, data, grid, covariates = NULL, param, expPred = FALSE, nuggetInPrediction = TRUE, mc.cores=getOption("mc.cores", 1L))
krigeLgm(formula, data, grid, covariates = NULL, param, expPred = FALSE, nuggetInPrediction = TRUE, mc.cores=getOption("mc.cores", 1L))
formula |
Either a model formula, or a data frame of linear covariates. |
data |
A |
grid |
Either a |
covariates |
The spatial covariates used in prediction, either a |
param |
A vector of named model parameters, as produced by |
expPred |
Should the predictions be exponentiated, defaults to |
nuggetInPrediction |
If |
mc.cores |
passed to |
Given the model parameters and observed data, conditional means and variances of the spatial random field are computed.
A raster is returned with the following layers:
fixed |
Estimated means from the fixed effects portion of the model |
random |
Predicted random effect |
krige.var |
Conditional variance of predicted random effect (on the transformed scale if applicable) |
predict |
Prediction of the response, sum of fixed and random effects. If exp.pred is TRUE, gives predictions on the exponentiated scale, and half of krige.var is added prior to exponentiating |
predict.log |
If exp.pred=TRUE, the prediction of the logged process. |
predict.boxcox |
If a box cox transformation was used, the prediction of the process on the transformed scale. |
If the prediction locations are different for fixed and random effects (typically coarser for the random effects), a list with two raster stacks is returned.
prediction |
A raster stack as above, though the random effect prediction is resampled to the same locations as the fixed effects. |
random |
the predictions and conditional variance of the random effects, on the same
raster as |
data('swissRain') swissAltitude = unwrap(swissAltitude) swissRain = unwrap(swissRain) swissRain$lograin = log(swissRain$rain) swissRain[[names(swissAltitude)]] = extract(swissAltitude, swissRain, ID=FALSE) swissFit = likfitLgm(data=swissRain, formula=lograin~ CHE_alt, param=c(range=46500, nugget=0.05,shape=1, anisoAngleDegrees=35, anisoRatio=12), paramToEstimate = c("range","nugget", "anisoAngleDegrees", "anisoRatio") ) myTrend = swissFit$model$formula myParams = swissFit$param swissBorder = unwrap(swissBorder) swissKrige = krigeLgm( data=swissRain, formula = myTrend, covariates = swissAltitude, param=myParams, grid = squareRaster(swissBorder, 40), expPred=TRUE) plot(swissKrige[["predict"]], main="predicted rain") plot(swissBorder, add=TRUE)
data('swissRain') swissAltitude = unwrap(swissAltitude) swissRain = unwrap(swissRain) swissRain$lograin = log(swissRain$rain) swissRain[[names(swissAltitude)]] = extract(swissAltitude, swissRain, ID=FALSE) swissFit = likfitLgm(data=swissRain, formula=lograin~ CHE_alt, param=c(range=46500, nugget=0.05,shape=1, anisoAngleDegrees=35, anisoRatio=12), paramToEstimate = c("range","nugget", "anisoAngleDegrees", "anisoRatio") ) myTrend = swissFit$model$formula myParams = swissFit$param swissBorder = unwrap(swissBorder) swissKrige = krigeLgm( data=swissRain, formula = myTrend, covariates = swissAltitude, param=myParams, grid = squareRaster(swissBorder, 40), expPred=TRUE) plot(swissKrige[["predict"]], main="predicted rain") plot(swissBorder, add=TRUE)
Calculate MLE's of model parameters and perform spatial prediction.
## S4 method for signature 'missing,ANY,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'numeric,ANY,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'character,ANY,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,numeric,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,missing' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,list' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,SpatRaster' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,data.frame' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatRaster,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,data.frame,SpatRaster,data.frame' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...)
## S4 method for signature 'missing,ANY,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'numeric,ANY,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'character,ANY,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,numeric,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,missing' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,list' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,SpatRaster' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatVector,SpatRaster,data.frame' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,SpatRaster,ANY,ANY' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...) ## S4 method for signature 'formula,data.frame,SpatRaster,data.frame' lgm( formula, data, grid, covariates, buffer=0, shape=1, boxcox=1, nugget = 0, expPred=FALSE, nuggetInPrediction=TRUE, reml=TRUE,mc.cores=1, aniso=FALSE, fixShape=TRUE, fixBoxcox=TRUE, fixNugget = FALSE, ...)
formula |
A model formula for the fixed effects, or a character string specifying the response variable. |
data |
A |
grid |
Either a |
covariates |
The spatial covariates used in prediction, either a |
shape |
Order of the Matern correlation |
boxcox |
Box-Cox transformation parameter (or vector of parameters), set to 1 for no transformation. |
nugget |
Value for the nugget effect (observation error) variance, or vector of such values. |
expPred |
Should the predictions be exponentiated, defaults to |
nuggetInPrediction |
If |
reml |
If |
mc.cores |
If |
aniso |
Set to |
fixShape |
Set to |
fixBoxcox |
Set to |
fixNugget |
Set to |
buffer |
Extra distance to add around |
... |
Additional arguments passed to |
When data
is a SpatVector
, parameters are estimated using optim
to maximize
the
log-likelihood function computed by likfitLgm
and spatial prediction accomplished with krigeLgm
.
With data
being a Raster
object, a Markov Random Field approximation to the Matern is used (experimental). Parameters to
be estimated should be provided as vectors of possible values, with optimization only considering the parameter values supplied.
A list is returned which includes a SpatRaster
named predict
having layers:
fixed |
Estimated means from the fixed effects portion of the model |
random |
Predicted random effect |
krigeSd |
Conditional standard deviation of predicted random effect (on the transformed scale if applicable) |
predict |
Prediction of the response, sum of predicted fixed and random effects. For Box-Cox or log-transformed data on the natural (untransformed) scale. |
predict.log |
If |
predict.boxcox |
If a box cox transformation was used, the prediction of the process on the transformed scale. |
In addition, the element summery
contains a table of parameter estimates and confidence intervals. optim
contains the
output from the call to the optim
function.
data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissRes = lgm( formula="rain", data=swissRain[1:60,], grid=20, covariates=swissAltitude, boxcox=0.5, fixBoxcox=TRUE, shape=1, fixShape=TRUE, aniso=FALSE, nugget=0, fixNugget=FALSE, nuggetInPrediction=FALSE ) swissRes$summary plot(swissRes$predict[["predict"]], main="predicted rain") plot(swissBorder, add=TRUE)
data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissRes = lgm( formula="rain", data=swissRain[1:60,], grid=20, covariates=swissAltitude, boxcox=0.5, fixBoxcox=TRUE, shape=1, fixShape=TRUE, aniso=FALSE, nugget=0, fixNugget=FALSE, nuggetInPrediction=FALSE ) swissRes$summary plot(swissRes$predict[["predict"]], main="predicted rain") plot(swissBorder, add=TRUE)
Maximum likelihood (ML) or restricted maximum likelihood (REML) parameter estimation for (transformed) Gaussian random fields.
likfitLgm(formula, data, paramToEstimate = c("range","nugget"), reml=TRUE, coordinates=data, param=NULL, upper=NULL,lower=NULL, parscale=NULL, verbose=FALSE) loglikLgm(param, data, formula, coordinates=data, reml=TRUE, minustwotimes=TRUE, moreParams=NULL)
likfitLgm(formula, data, paramToEstimate = c("range","nugget"), reml=TRUE, coordinates=data, param=NULL, upper=NULL,lower=NULL, parscale=NULL, verbose=FALSE) loglikLgm(param, data, formula, coordinates=data, reml=TRUE, minustwotimes=TRUE, moreParams=NULL)
formula |
A formula for the fixed effects portion of the model, specifying a response and covariates.
Alternately, |
data |
An object of class |
coordinates |
A |
param |
A vector of model parameters, with named elements being amongst
|
reml |
Whether to use Restricted Likelihood rather than Likelihood, defaults to |
paramToEstimate |
Vector of names of model parameters to estimate, with parameters excluded from this list being fixed. The variance parameter and regression coefficients are always estimated even if not listed. |
lower |
Named vector of lower bounds for model parameters passed to |
upper |
Upper bounds, as above. |
parscale |
Named vector of scaling of parameters passed as |
minustwotimes |
Return -2 times the log likelihood rather than the likelihood |
moreParams |
Vector of additional parameters, combined with |
verbose |
if |
likfitLgm
produces list with elements
parameters |
Maximum Likelihood Estimates of model parameters |
varBetaHat |
Variance matrix of the estimated regression parameters |
optim |
results from |
trend |
Either formula for the fixed effects or names of the columns
of the model matrix, depending on |
summary |
a table of parameter estimates, standard errors, confidence intervals, p values, and a logical value indicating whether each parameter was estimated as opposed to fixed. |
resid |
residuals, being the observations minus the fixed effects, on the transformed scale. |
loglikLgm
returns a scalar value, either the log likelihood or -2 times the
log likelihood. Attributes of this result include the vector of
parameters (including the MLE's computed for the variance and coefficients),
and the variance matrix of the coefficient MLE's.
n=40 mydat = vect( cbind(runif(n), seq(0,1,len=n)), atts=data.frame(cov1 = rnorm(n), cov2 = rpois(n, 0.5)) ) # simulate a random field trueParam = c(variance=2^2, range=0.35, shape=2, nugget=0.5^2) set.seed(1) oneSim = RFsimulate(model=trueParam,x=mydat) values(mydat) = cbind(values(mydat) , values(oneSim)) # add fixed effects mydat$Y = -3 + 0.5*mydat$cov1 + 0.2*mydat$cov2 + mydat$sim + rnorm(length(mydat), 0, sd=sqrt(trueParam["nugget"])) plot(mydat, "sim", col=rainbow(10), main="U") plot(mydat, "Y", col=rainbow(10), main="Y") myres = likfitLgm( formula=Y ~ cov1 + cov2, data=mydat, param=c(range=0.1,nugget=0.1,shape=2), paramToEstimate = c("range","nugget") ) myres$summary[,1:4] # plot variograms of data, true model, and estimated model myv = variog(mydat, formula=Y ~ cov1 + cov2,option="bin", max.dist=0.5) # myv will be NULL if geoR isn't installed if(!is.null(myv)){ plot(myv, ylim=c(0, max(c(1.2*sum(trueParam[c("variance", "nugget")]),myv$v))), main="variograms") distseq = seq(0, 0.5, len=50) lines(distseq, sum(myres$param[c("variance", "nugget")]) - matern(distseq, param=myres$param), col='blue', lwd=3) lines(distseq, sum(trueParam[c("variance", "nugget")]) - matern(distseq, param=trueParam), col='red') legend("bottomright", fill=c("black","red","blue"), legend=c("data","true","MLE")) } # without a nugget myresNoN = likfitLgm( formula=Y ~ cov1 + cov2, data=mydat, param=c(range=0.1,nugget=0,shape=1), paramToEstimate = c("range") ) myresNoN$summary[,1:4] # plot variograms of data, true model, and estimated model myv = variog(mydat, formula=Y ~ cov1 + cov2,option="bin", max.dist=0.5) if(!is.null(myv)){ plot(myv, ylim=c(0, max(c(1.2*sum(trueParam[c("variance", "nugget")]),myv$v))), main="variograms") distseq = seq(0, 0.5, len=50) lines(distseq, sum(myres$param[c("variance", "nugget")]) - matern(distseq, param=myres$param), col='blue', lwd=3) lines(distseq, sum(trueParam[c("variance", "nugget")]) - matern(distseq, param=trueParam), col='red') lines(distseq, sum(myresNoN$param[c("variance", "nugget")]) - matern(distseq, param=myresNoN$param), col='green', lty=2, lwd=3) legend("bottomright", fill=c("black","red","blue","green"), legend=c("data","true","MLE","no N")) } # calculate likelihood temp=loglikLgm(param=myres$param, data=mydat, formula = Y ~ cov1 + cov2, reml=FALSE, minustwotimes=FALSE) # an anisotropic example trueParamAniso = param=c(variance=2^2, range=0.2, shape=2, nugget=0,anisoRatio=4,anisoAngleDegrees=10, nugget=0) mydat$U = geostatsp::RFsimulate(trueParamAniso,mydat)$sim mydat$Y = -3 + 0.5*mydat$cov1 + 0.2*mydat$cov2 + mydat$U + rnorm(length(mydat), 0, sd=sqrt(trueParamAniso["nugget"])) oldpar = par(no.readonly = TRUE) par(mfrow=c(1,2), mar=rep(0.1, 4)) plot(mydat, col=as.character(cut(mydat$U, breaks=50, labels=heat.colors(50))), pch=16, main="aniso") plot(mydat, col=as.character(cut(mydat$Y, breaks=50, labels=heat.colors(50))), pch=16,main="iso") myres = likfitLgm( formula=Y ~ cov1 + cov2, data=mydat, param=c(range=0.1,nugget=0,shape=2, anisoAngleDegrees=0, anisoRatio=2), paramToEstimate = c("range","nugget","anisoRatio","anisoAngleDegrees") ) myres$summary par(oldpar) par(mfrow=c(1,2)) myraster = rast(nrows=30,ncols=30,xmin=0,xmax=1,ymin=0,ymax=1) covEst = matern(myraster, y=c(0.5, 0.5), par=myres$param) covTrue = matern(myraster, y=c(0.5, 0.5), par=trueParamAniso) plot(covEst, main="estimate") plot(covTrue, main="true") par(oldpar)
n=40 mydat = vect( cbind(runif(n), seq(0,1,len=n)), atts=data.frame(cov1 = rnorm(n), cov2 = rpois(n, 0.5)) ) # simulate a random field trueParam = c(variance=2^2, range=0.35, shape=2, nugget=0.5^2) set.seed(1) oneSim = RFsimulate(model=trueParam,x=mydat) values(mydat) = cbind(values(mydat) , values(oneSim)) # add fixed effects mydat$Y = -3 + 0.5*mydat$cov1 + 0.2*mydat$cov2 + mydat$sim + rnorm(length(mydat), 0, sd=sqrt(trueParam["nugget"])) plot(mydat, "sim", col=rainbow(10), main="U") plot(mydat, "Y", col=rainbow(10), main="Y") myres = likfitLgm( formula=Y ~ cov1 + cov2, data=mydat, param=c(range=0.1,nugget=0.1,shape=2), paramToEstimate = c("range","nugget") ) myres$summary[,1:4] # plot variograms of data, true model, and estimated model myv = variog(mydat, formula=Y ~ cov1 + cov2,option="bin", max.dist=0.5) # myv will be NULL if geoR isn't installed if(!is.null(myv)){ plot(myv, ylim=c(0, max(c(1.2*sum(trueParam[c("variance", "nugget")]),myv$v))), main="variograms") distseq = seq(0, 0.5, len=50) lines(distseq, sum(myres$param[c("variance", "nugget")]) - matern(distseq, param=myres$param), col='blue', lwd=3) lines(distseq, sum(trueParam[c("variance", "nugget")]) - matern(distseq, param=trueParam), col='red') legend("bottomright", fill=c("black","red","blue"), legend=c("data","true","MLE")) } # without a nugget myresNoN = likfitLgm( formula=Y ~ cov1 + cov2, data=mydat, param=c(range=0.1,nugget=0,shape=1), paramToEstimate = c("range") ) myresNoN$summary[,1:4] # plot variograms of data, true model, and estimated model myv = variog(mydat, formula=Y ~ cov1 + cov2,option="bin", max.dist=0.5) if(!is.null(myv)){ plot(myv, ylim=c(0, max(c(1.2*sum(trueParam[c("variance", "nugget")]),myv$v))), main="variograms") distseq = seq(0, 0.5, len=50) lines(distseq, sum(myres$param[c("variance", "nugget")]) - matern(distseq, param=myres$param), col='blue', lwd=3) lines(distseq, sum(trueParam[c("variance", "nugget")]) - matern(distseq, param=trueParam), col='red') lines(distseq, sum(myresNoN$param[c("variance", "nugget")]) - matern(distseq, param=myresNoN$param), col='green', lty=2, lwd=3) legend("bottomright", fill=c("black","red","blue","green"), legend=c("data","true","MLE","no N")) } # calculate likelihood temp=loglikLgm(param=myres$param, data=mydat, formula = Y ~ cov1 + cov2, reml=FALSE, minustwotimes=FALSE) # an anisotropic example trueParamAniso = param=c(variance=2^2, range=0.2, shape=2, nugget=0,anisoRatio=4,anisoAngleDegrees=10, nugget=0) mydat$U = geostatsp::RFsimulate(trueParamAniso,mydat)$sim mydat$Y = -3 + 0.5*mydat$cov1 + 0.2*mydat$cov2 + mydat$U + rnorm(length(mydat), 0, sd=sqrt(trueParamAniso["nugget"])) oldpar = par(no.readonly = TRUE) par(mfrow=c(1,2), mar=rep(0.1, 4)) plot(mydat, col=as.character(cut(mydat$U, breaks=50, labels=heat.colors(50))), pch=16, main="aniso") plot(mydat, col=as.character(cut(mydat$Y, breaks=50, labels=heat.colors(50))), pch=16,main="iso") myres = likfitLgm( formula=Y ~ cov1 + cov2, data=mydat, param=c(range=0.1,nugget=0,shape=2, anisoAngleDegrees=0, anisoRatio=2), paramToEstimate = c("range","nugget","anisoRatio","anisoAngleDegrees") ) myres$summary par(oldpar) par(mfrow=c(1,2)) myraster = rast(nrows=30,ncols=30,xmin=0,xmax=1,ymin=0,ymax=1) covEst = matern(myraster, y=c(0.5, 0.5), par=myres$param) covTrue = matern(myraster, y=c(0.5, 0.5), par=trueParamAniso) plot(covEst, main="estimate") plot(covTrue, main="true") par(oldpar)
Location and prevalence data from villages, elevation an vegetation index for the study region.
data("loaloa")
data("loaloa")
loaloa
is a SpatVector
containing the data, with columns N
being the number
of individuals tested and y
being the number of positives.
elevationLoa
is a raster of elevation data.
eviLoa
is a raster of vegetation index for a specific date. ltLoa
is land type.
ltLoa
is a raster of land types. 1 2 5 6 7 8 9 10 11 12 13 14 15
tempLoa
is a raster of average temperature in degrees C.
http://www.leg.ufpr.br/doku.php/pessoais:paulojus:mbgbook:datasets for the loaloa data, https://lpdaac.usgs.gov/data/ for EVI and land type and https://srtm.csi.cgiar.org for the elevation data.
data("loaloa") loaloa = unwrap(loaloa) plot(loaloa, main="loaloa villages") # elevation elevationLoa = unwrap(elevationLoa) plot(elevationLoa, col=terrain.colors(100), main="elevation") points(loaloa) # vegetation index eviLoa = unwrap(eviLoa) plot(eviLoa, main="evi") points(loaloa) tempLoa = unwrap(tempLoa) plot(tempLoa, main="temperature") points(loaloa) # land type, a categorical variable ltLoa = unwrap(ltLoa) plot(ltLoa) if(requireNamespace("mapmisc")){ mapmisc::legendBreaks("bottomleft",ltLoa, bty='n') } points(loaloa)
data("loaloa") loaloa = unwrap(loaloa) plot(loaloa, main="loaloa villages") # elevation elevationLoa = unwrap(elevationLoa) plot(elevationLoa, col=terrain.colors(100), main="elevation") points(loaloa) # vegetation index eviLoa = unwrap(eviLoa) plot(eviLoa, main="evi") points(loaloa) tempLoa = unwrap(tempLoa) plot(tempLoa, main="temperature") points(loaloa) # land type, a categorical variable ltLoa = unwrap(ltLoa) plot(ltLoa) if(requireNamespace("mapmisc")){ mapmisc::legendBreaks("bottomleft",ltLoa, bty='n') } points(loaloa)
Returns the Matern covariance for the distances supplied.
matern( x, param=c(range=1, variance=1, shape=1), type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## S3 method for class 'SpatVector' matern(x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## Default S3 method: matern( x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## S3 method for class 'dist' matern( x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## S3 method for class 'SpatRaster' matern( x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) fillParam(param)
matern( x, param=c(range=1, variance=1, shape=1), type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## S3 method for class 'SpatVector' matern(x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## Default S3 method: matern( x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## S3 method for class 'dist' matern( x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) ## S3 method for class 'SpatRaster' matern( x, param, type=c('variance','cholesky','precision', 'inverseCholesky'), y=NULL) fillParam(param)
x |
A vector or matrix of distances, or |
param |
A vector of named model parameters with, at a minimum names
|
type |
specifies if the variance matrix, the Cholesky decomposition of the variance matrix, the precision matrix, or the inverse of the Cholesky L matrix is returned. |
y |
Covariance is calculated for the distance between locations in
|
The formula for the Matern correlation function is
The range
argument is sqrt(8*shape)*phi.geoR, sqrt(8*shape)*scale.whittle.RandomFields, and
2*scale.matern.RandomFields.
Geometric anisotropy is only available when
x
is a SpatRaster
or SpatVector
. The parameter 'anisoAngle' refers to
rotation of the coordinates anti-clockwise by the specified amount prior to
calculating distances, which has the effect that the contours of the correlation function
are rotated clockwise by this amount. anisoRatio
is the amount the Y coordinates are
divided by
by post rotation prior to calculating distances. A large value of anisoRatio
makes the Y coordinates smaller and increases the correlation in the
Y direction.
When x
or y
are rasters, cells are indexed row-wise
starting at the top left.
When x
is a vector or matrix or object of class dist
, a vector or matrix
of covariances is returned.
With x
being SpatVector
, y
must also be SpatVector
and
a matrix of correlations between x
and y
is returned.
When x
is a Raster, and y
is a single location
a Raster of covariances between each pixel centre of x
and y
is returned.
param=c(shape=2.5,range=1,variance=1) u=seq(0,4,len=200) uscale = sqrt(8*param['shape'])* u / param['range'] theMaterns = cbind( dist=u, manual= param['variance']* 2^(1- param['shape']) * ( 1/gamma(param['shape']) ) * uscale^param['shape'] * besselK(uscale , param['shape']), geostatsp=geostatsp::matern(u, param=param) ) head(theMaterns) matplot(theMaterns[,'dist'], theMaterns[,c('manual','geostatsp')], col=c('red','blue'), type='l', xlab='dist', ylab='var') legend('topright', fill=c('red','blue'), legend=c('manual','geostatsp')) # example with raster myraster = rast(nrows=40,ncols=60,extent=ext(-3, 3,-2,2)) param = c(range=2, shape=2, anisoRatio=2, anisoAngleDegrees=-25,variance=20) # plot correlation of each cell with the origin myMatern = matern(myraster, y=c(0,0), param=param) plot(myMatern, main="anisortopic matern") # correlation matrix for all cells with each other myraster = rast(nrows=4,ncols=6,extent = ext(-3, 3, -2, 2)) myMatern = matern(myraster, param=c(range=2, shape=2)) dim(myMatern) # plot the cell ID's values(myraster) = seq(1, ncell(myraster)) mydf = as.data.frame(myraster, xy=TRUE) plot(mydf$x, mydf$y, type='n', main="cell ID's") text(mydf$x, mydf$y, mydf$lyr.1) # correlation between bottom-right cell and top right cell is myMatern[6,24] # example with points mypoints = vect( cbind(runif(8), runif(8)) ) # variance matrix from points m1=matern(mypoints, param=c(range=2,shape=1.4,variance=4,nugget=1)) # cholesky of variance from distances c2=matern(dist(crds(mypoints)), param=c(range=2,shape=1.4,variance=4,nugget=1),type='cholesky') # check it's correct quantile(as.vector(m1- tcrossprod(c2))) # example with vector of distances range=3 distVec = seq(0, 2*range, len=100) shapeSeq = c(0.5, 1, 2,20) theCov = NULL for(D in shapeSeq) { theCov = cbind(theCov, matern(distVec, param=c(range=range, shape=D))) } matplot(distVec, theCov, type='l', lty=1, xlab='distance', ylab='correlation', main="matern correlations") legend("right", fill=1:length(shapeSeq), legend=shapeSeq,title='shape') # exponential distVec2 = seq(0, max(distVec), len=20) points(distVec2, exp(-2*(distVec2/range)),cex=1.5, pch=5) # gaussian points(distVec2, exp(-2*(distVec2/range)^2), col='blue',cex=1.5, pch=5) legend("bottomleft", pch=5, col=c('black','blue'), legend=c('exp','gau')) # comparing to geoR and RandomFields if (requireNamespace("RandomFields", quietly = TRUE) & requireNamespace("geoR", quietly = TRUE) ) { covGeoR = covRandomFields = NULL for(D in shapeSeq) { covGeoR = cbind(covGeoR, geoR::matern(distVec, phi=range/sqrt(8*D), kappa=D)) covRandomFields = cbind(covRandomFields, RandomFields::RFcov(x=distVec, model=RandomFields::RMmatern(nu=D, var=1, scale=range/2) )) } matpoints(distVec, covGeoR, cex=0.5, pch=1) matpoints(distVec, covRandomFields, cex=0.5, pch=2) legend("topright", lty=c(1,NA,NA), pch=c(NA, 1, 2), legend=c("geostatsp","geoR","RandomFields")) }
param=c(shape=2.5,range=1,variance=1) u=seq(0,4,len=200) uscale = sqrt(8*param['shape'])* u / param['range'] theMaterns = cbind( dist=u, manual= param['variance']* 2^(1- param['shape']) * ( 1/gamma(param['shape']) ) * uscale^param['shape'] * besselK(uscale , param['shape']), geostatsp=geostatsp::matern(u, param=param) ) head(theMaterns) matplot(theMaterns[,'dist'], theMaterns[,c('manual','geostatsp')], col=c('red','blue'), type='l', xlab='dist', ylab='var') legend('topright', fill=c('red','blue'), legend=c('manual','geostatsp')) # example with raster myraster = rast(nrows=40,ncols=60,extent=ext(-3, 3,-2,2)) param = c(range=2, shape=2, anisoRatio=2, anisoAngleDegrees=-25,variance=20) # plot correlation of each cell with the origin myMatern = matern(myraster, y=c(0,0), param=param) plot(myMatern, main="anisortopic matern") # correlation matrix for all cells with each other myraster = rast(nrows=4,ncols=6,extent = ext(-3, 3, -2, 2)) myMatern = matern(myraster, param=c(range=2, shape=2)) dim(myMatern) # plot the cell ID's values(myraster) = seq(1, ncell(myraster)) mydf = as.data.frame(myraster, xy=TRUE) plot(mydf$x, mydf$y, type='n', main="cell ID's") text(mydf$x, mydf$y, mydf$lyr.1) # correlation between bottom-right cell and top right cell is myMatern[6,24] # example with points mypoints = vect( cbind(runif(8), runif(8)) ) # variance matrix from points m1=matern(mypoints, param=c(range=2,shape=1.4,variance=4,nugget=1)) # cholesky of variance from distances c2=matern(dist(crds(mypoints)), param=c(range=2,shape=1.4,variance=4,nugget=1),type='cholesky') # check it's correct quantile(as.vector(m1- tcrossprod(c2))) # example with vector of distances range=3 distVec = seq(0, 2*range, len=100) shapeSeq = c(0.5, 1, 2,20) theCov = NULL for(D in shapeSeq) { theCov = cbind(theCov, matern(distVec, param=c(range=range, shape=D))) } matplot(distVec, theCov, type='l', lty=1, xlab='distance', ylab='correlation', main="matern correlations") legend("right", fill=1:length(shapeSeq), legend=shapeSeq,title='shape') # exponential distVec2 = seq(0, max(distVec), len=20) points(distVec2, exp(-2*(distVec2/range)),cex=1.5, pch=5) # gaussian points(distVec2, exp(-2*(distVec2/range)^2), col='blue',cex=1.5, pch=5) legend("bottomleft", pch=5, col=c('black','blue'), legend=c('exp','gau')) # comparing to geoR and RandomFields if (requireNamespace("RandomFields", quietly = TRUE) & requireNamespace("geoR", quietly = TRUE) ) { covGeoR = covRandomFields = NULL for(D in shapeSeq) { covGeoR = cbind(covGeoR, geoR::matern(distVec, phi=range/sqrt(8*D), kappa=D)) covRandomFields = cbind(covRandomFields, RandomFields::RFcov(x=distVec, model=RandomFields::RMmatern(nu=D, var=1, scale=range/2) )) } matpoints(distVec, covGeoR, cex=0.5, pch=1) matpoints(distVec, covRandomFields, cex=0.5, pch=2) legend("topright", lty=c(1,NA,NA), pch=c(NA, 1, 2), legend=c("geostatsp","geoR","RandomFields")) }
Produces the precision matrix for a Gaussian random field on a regular square lattice, using a Markov random field approximation.
maternGmrfPrec(N, ...) ## S3 method for class 'dgCMatrix' maternGmrfPrec(N, param=c(variance=1, range=1, shape=1, cellSize=1), adjustEdges=FALSE,...) ## Default S3 method: maternGmrfPrec(N, Ny=N, param=c(variance=1, range=1, shape=1, cellSize=1), adjustEdges=FALSE, ...) NNmat(N, Ny=N, nearest=3, adjustEdges=FALSE) ## S3 method for class 'SpatRaster' NNmat(N, Ny=N, nearest=3, adjustEdges=FALSE) ## Default S3 method: NNmat(N, Ny=N, nearest=3, adjustEdges=FALSE)
maternGmrfPrec(N, ...) ## S3 method for class 'dgCMatrix' maternGmrfPrec(N, param=c(variance=1, range=1, shape=1, cellSize=1), adjustEdges=FALSE,...) ## Default S3 method: maternGmrfPrec(N, Ny=N, param=c(variance=1, range=1, shape=1, cellSize=1), adjustEdges=FALSE, ...) NNmat(N, Ny=N, nearest=3, adjustEdges=FALSE) ## S3 method for class 'SpatRaster' NNmat(N, Ny=N, nearest=3, adjustEdges=FALSE) ## Default S3 method: NNmat(N, Ny=N, nearest=3, adjustEdges=FALSE)
N |
Number of grid cells in the x direction, or a matrix denoting nearest neighbours. |
Ny |
Grid cells in the y direction, defaults to |
param |
Vector of model parameters, with named elements: |
adjustEdges |
If |
nearest |
Number of nearest neighbours to compute |
... |
Additional arguments passed to |
The numbering of cells
is consistent with the terra
package. Cell 1 is the top left cell, with cell 2 being the cell to the right and numbering
continuing row-wise.
The
nearest neighbour matrix N
has: N[i,j]=1
if i=j
;
takes a value 2 if i
and j
are first ‘rook’ neighbours;
3 if they are first ‘bishop’ neighbours; 4 if they are second ‘rook’ neighbours; 5
if ‘knight’ neighbours; and 6 if third ‘rook’ neighbours.
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0 0 0 6 0 0 0 [2,] 0 0 5 4 5 0 0 [3,] 0 5 3 2 3 5 0 [4,] 6 4 2 1 2 4 6 [5,] 0 5 3 2 3 5 0 [6,] 0 0 5 4 5 0 0 [7,] 0 0 0 6 0 0 0
A sparse matrix dsCMatrix-class
object, containing a precision matrix for a
Gaussian random field or (from the NNmat
function) a matrix denoting neighbours.
# produces the matrix above matrix(NNmat(11, 11, nearest=5)[,11*5+6],11, 11) params=c(range = 3, shape=2, variance=5^2) myGrid = squareRaster(ext(0,20,0,10), 40) # precision matrix without adjusting for edge effects precMat =maternGmrfPrec(N=myGrid, param=params) attributes(precMat)$info$precisionEntries midcell = cellFromRowCol(myGrid, round(nrow(myGrid)/2), round(ncol(myGrid)/2)) # the middle cell edgeCell = cellFromRowCol(myGrid, 5,5)# cell near corner # show precision of middle cell precMid=matrix(precMat[,midcell], nrow(myGrid), ncol(myGrid), byrow=TRUE) precMid[round(nrow(precMid)/2) + seq(-5, 5), round(ncol(precMid)/2) + seq(-3, 3)] # and with the adjustment precMatCorr =maternGmrfPrec( N = myGrid, param=params, adjustEdges=TRUE) # variance matrices varMat = Matrix::solve(precMat) varMatCorr = Matrix::solve(precMatCorr) # compare covariance matrix to the matern xseq = seq(-ymax(myGrid), ymax(myGrid), len=1000)/1.5 plot(xseq, matern(xseq, param=params), type = 'l',ylab='cov', xlab='dist', ylim=c(0, params["variance"]*1.1), main="matern v gmrf") # middle cell varMid=matrix(varMat[,midcell], nrow(myGrid), ncol(myGrid), byrow=TRUE) varMidCorr=matrix(varMatCorr[,midcell], nrow(myGrid), ncol(myGrid), byrow=TRUE) xseqMid = yFromRow(myGrid) - yFromCell(myGrid, midcell) points(xseqMid, varMid[,colFromCell(myGrid, midcell)], col='red') points(xseqMid, varMidCorr[,colFromCell(myGrid, midcell)], col='blue', cex=0.5) # edge cells varEdge=matrix(varMat[,edgeCell], nrow(myGrid), ncol(myGrid), byrow=TRUE) varEdgeCorr = matrix(varMatCorr[,edgeCell], nrow(myGrid), ncol(myGrid), byrow=TRUE) xseqEdge = yFromRow(myGrid) - yFromCell(myGrid, edgeCell) points(xseqEdge, varEdge[,colFromCell(myGrid, edgeCell)], pch=3,col='red') points(xseqEdge, varEdgeCorr[,colFromCell(myGrid, edgeCell)], pch=3, col='blue') legend("topright", lty=c(1, NA, NA, NA, NA), pch=c(NA, 1, 3, 16, 16), col=c('black','black','black','red','blue'), legend=c('matern', 'middle','edge','unadj', 'adj') ) # construct matern variance matrix myraster = attributes(precMat)$raster covMatMatern = matern(myraster, param=params) prodUncor = crossprod(covMatMatern, precMat) prodCor = crossprod(covMatMatern, precMatCorr) quantile(Matrix::diag(prodUncor),na.rm=TRUE) quantile(Matrix::diag(prodCor),na.rm=TRUE) quantile(prodUncor[lower.tri(prodUncor,diag=FALSE)],na.rm=TRUE) quantile(prodCor[lower.tri(prodCor,diag=FALSE)],na.rm=TRUE)
# produces the matrix above matrix(NNmat(11, 11, nearest=5)[,11*5+6],11, 11) params=c(range = 3, shape=2, variance=5^2) myGrid = squareRaster(ext(0,20,0,10), 40) # precision matrix without adjusting for edge effects precMat =maternGmrfPrec(N=myGrid, param=params) attributes(precMat)$info$precisionEntries midcell = cellFromRowCol(myGrid, round(nrow(myGrid)/2), round(ncol(myGrid)/2)) # the middle cell edgeCell = cellFromRowCol(myGrid, 5,5)# cell near corner # show precision of middle cell precMid=matrix(precMat[,midcell], nrow(myGrid), ncol(myGrid), byrow=TRUE) precMid[round(nrow(precMid)/2) + seq(-5, 5), round(ncol(precMid)/2) + seq(-3, 3)] # and with the adjustment precMatCorr =maternGmrfPrec( N = myGrid, param=params, adjustEdges=TRUE) # variance matrices varMat = Matrix::solve(precMat) varMatCorr = Matrix::solve(precMatCorr) # compare covariance matrix to the matern xseq = seq(-ymax(myGrid), ymax(myGrid), len=1000)/1.5 plot(xseq, matern(xseq, param=params), type = 'l',ylab='cov', xlab='dist', ylim=c(0, params["variance"]*1.1), main="matern v gmrf") # middle cell varMid=matrix(varMat[,midcell], nrow(myGrid), ncol(myGrid), byrow=TRUE) varMidCorr=matrix(varMatCorr[,midcell], nrow(myGrid), ncol(myGrid), byrow=TRUE) xseqMid = yFromRow(myGrid) - yFromCell(myGrid, midcell) points(xseqMid, varMid[,colFromCell(myGrid, midcell)], col='red') points(xseqMid, varMidCorr[,colFromCell(myGrid, midcell)], col='blue', cex=0.5) # edge cells varEdge=matrix(varMat[,edgeCell], nrow(myGrid), ncol(myGrid), byrow=TRUE) varEdgeCorr = matrix(varMatCorr[,edgeCell], nrow(myGrid), ncol(myGrid), byrow=TRUE) xseqEdge = yFromRow(myGrid) - yFromCell(myGrid, edgeCell) points(xseqEdge, varEdge[,colFromCell(myGrid, edgeCell)], pch=3,col='red') points(xseqEdge, varEdgeCorr[,colFromCell(myGrid, edgeCell)], pch=3, col='blue') legend("topright", lty=c(1, NA, NA, NA, NA), pch=c(NA, 1, 3, 16, 16), col=c('black','black','black','red','blue'), legend=c('matern', 'middle','edge','unadj', 'adj') ) # construct matern variance matrix myraster = attributes(precMat)$raster covMatMatern = matern(myraster, param=params) prodUncor = crossprod(covMatMatern, precMat) prodCor = crossprod(covMatMatern, precMatCorr) quantile(Matrix::diag(prodUncor),na.rm=TRUE) quantile(Matrix::diag(prodCor),na.rm=TRUE) quantile(prodUncor[lower.tri(prodUncor,diag=FALSE)],na.rm=TRUE) quantile(prodCor[lower.tri(prodCor,diag=FALSE)],na.rm=TRUE)
Locations of murders in Toronto 1990-2014
data("murder")
data("murder")
murder
is a SpatVector
object of murder locations. torontoPdens
,
torontoIncome
, and torontoNight
are rasters containing
population density (per hectare), median household income, and ambient light
respectively. torontoBorder
is a SpatVector
of the boundary of
the city of Toronto.
Murder data:https://mdl.library.utoronto.ca/collections/geospatial-data/toronto-homicide-data-1990-2013,
Lights: https://ngdc.noaa.gov/eog/viirs/download_ut_mos.html
Boundary files: https://www150.statcan.gc.ca/n1/en/catalogue/92-160-X
Income: https://www150.statcan.gc.ca/n1/en/catalogue/97-551-X2006007
data("murder") murder= unwrap(murder) torontoBorder = unwrap(torontoBorder) plot(torontoBorder) points(murder, col="#0000FF40", cex=0.5) data("torontoPop") torontoNight = unwrap(torontoNight) torontoIncome = unwrap(torontoIncome) torontoPdens = unwrap(torontoPdens) # light plot(torontoNight, main="Toronto ambient light") plot(torontoBorder, add=TRUE) points(murder, col="#0000FF40", cex=0.5) # income plot(torontoIncome, main="Toronto Income") points(murder, col="#0000FF40", cex=0.5) plot(torontoBorder, add=TRUE) # population density plot(torontoPdens, main="Toronto pop dens") points(murder, col="#0000FF40", cex=0.5) plot(torontoBorder, add=TRUE)
data("murder") murder= unwrap(murder) torontoBorder = unwrap(torontoBorder) plot(torontoBorder) points(murder, col="#0000FF40", cex=0.5) data("torontoPop") torontoNight = unwrap(torontoNight) torontoIncome = unwrap(torontoIncome) torontoPdens = unwrap(torontoPdens) # light plot(torontoNight, main="Toronto ambient light") plot(torontoBorder, add=TRUE) points(murder, col="#0000FF40", cex=0.5) # income plot(torontoIncome, main="Toronto Income") points(murder, col="#0000FF40", cex=0.5) plot(torontoBorder, add=TRUE) # population density plot(torontoPdens, main="Toronto pop dens") points(murder, col="#0000FF40", cex=0.5) plot(torontoBorder, add=TRUE)
Creates a penalized complexity prior for the range parameter
pcPriorRange(q, p=0.5, cellSize=1)
pcPriorRange(q, p=0.5, cellSize=1)
q |
Lower quantile for the range parameter |
p |
probability that the range is below this quantile, defaults to the median |
cellSize |
size of grid cells, can be a raster. |
q is the quantile in spatial units, usually meters, and the scale parameter follows an exponential distribution. A prior PC prior distribution for the range parameter in units of grid cells, which INLA requires, is computed.
A list with
lambda |
parameter for the exponential distribution (for scale in units of cells), in the same parametrization as dexp |
priorScale |
matrix with x and y columns with prior of scale parameter |
priorRange |
matris with x and y columns with prior of range parameter, in meters (or original spatial units) |
inla |
character string specifying this prior in inla's format |
# pr(range < 100km) = 0.1, 200m grid cells x = pcPriorRange(q=100*1000, p=0.1, cellSize = 200) rangeSeq = seq(0, 1000, len=1001) plot(rangeSeq, x$dprior$range(rangeSeq*1000)*1000, type='l', xlab="range, 1000's km", ylab='dens') cat(x$inla)
# pr(range < 100km) = 0.1, 200m grid cells x = pcPriorRange(q=100*1000, p=0.1, cellSize = 200) rangeSeq = seq(0, 1000, len=1001) plot(rangeSeq, x$dprior$range(rangeSeq*1000)*1000, type='l', xlab="range, 1000's km", ylab='dens') cat(x$inla)
Converts a summary table for model parameters on the log scale to the natural or exponentiated scale.
postExp(x, exclude = grep('^(range|aniso|shape|boxcox)', rownames(x)), invLogit=FALSE)
postExp(x, exclude = grep('^(range|aniso|shape|boxcox)', rownames(x)), invLogit=FALSE)
x |
a matrix or data frame as returned by |
exclude |
vector of parameters not transformed, defaults to the range parameter |
invLogit |
Converts intercept parameter to inverse-logit scale when |
a summary table for log or exponentially transformed model parameters
require("geostatsp") data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissRain$lograin = log(swissRain$rain) if(requireNamespace('INLA', quietly=TRUE)) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) swissFit = glgm(formula="lograin", data=swissRain, grid=20, covariates=swissAltitude/1000, family="gaussian", prior = list(sd=1, range=100*1000, sdObs = 2), control.inla = list(strategy='gaussian', int.strategy='eb'), control.mode = list(theta=c(1.6542995, 0.7137123,2.2404179)) ) if(length(swissFit$parameters)) { postExp(swissFit$parameters$summary) } }
require("geostatsp") data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissRain$lograin = log(swissRain$rain) if(requireNamespace('INLA', quietly=TRUE)) { INLA::inla.setOption(num.threads=2) # not all versions of INLA support blas.num.threads try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE) swissFit = glgm(formula="lograin", data=swissRain, grid=20, covariates=swissAltitude/1000, family="gaussian", prior = list(sd=1, range=100*1000, sdObs = 2), control.inla = list(strategy='gaussian', int.strategy='eb'), control.mode = list(theta=c(1.6542995, 0.7137123,2.2404179)) ) if(length(swissFit$parameters)) { postExp(swissFit$parameters$summary) } }
Calculates profile likelihoods and approximate joint confidence regions for covariance parameters in linear geostatistical models.
profLlgm(fit, mc.cores = 1, ...) informationLgm(fit, ...)
profLlgm(fit, mc.cores = 1, ...) informationLgm(fit, ...)
fit |
Output from the |
mc.cores |
Passed to |
... |
For |
one or more vectors |
of parameter values |
logL |
A vector, matrix, or multi-dimensional array of profile likelihood values for every combination of parameter values supplied. |
full |
Data frame with profile likelihood values and estimates of model parameters |
prob , breaks
|
vector of probabilities and chi-squared derived likelihood values associated with those probabilities |
MLE , maxLogL
|
Maximum Likelihood Estimates of parameters and log likelihood evaluated at these values |
basepars |
combination of starting values for parameters re-estimated for each profile likelihood and values of parameters which are fixed. |
col |
vector of colours with one element fewer than the number of probabilities |
ci , ciLong
|
when only one parameter is varying, a matrix of confidence intervals (in both wide and long format) is returned. |
Patrick Brown
# this example is time consuming # the following 'if' statement ensures the CRAN # computer doesn't run it if(interactive() | Sys.info()['user'] =='patrick') { library('geostatsp') data('swissRain') swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissFit = lgm(data=swissRain, formula=rain~ CHE_alt, grid=10, covariates=swissAltitude, shape=1, fixShape=TRUE, boxcox=0.5, fixBoxcox=TRUE, aniso=TRUE,reml=TRUE, param=c(anisoAngleDegrees=37,anisoRatio=7.5, range=50000)) x=profLlgm(swissFit, anisoAngleDegrees=seq(30, 43 , len=4) ) plot(x[[1]],x[[2]], xlab=names(x)[1], ylab='log L', ylim=c(min(x[[2]]),x$maxLogL), type='n') abline(h=x$breaks[-1], col=x$col, lwd=1.5) axis(2,at=x$breaks,labels=x$prob,line=-1.2, tick=FALSE, las=1,padj=1.2,hadj=0) abline(v=x$ciLong$par, lty=2, col=x$col[as.character(x$ciLong$prob)]) lines(x[[1]],x[[2]], col='black') }
# this example is time consuming # the following 'if' statement ensures the CRAN # computer doesn't run it if(interactive() | Sys.info()['user'] =='patrick') { library('geostatsp') data('swissRain') swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissFit = lgm(data=swissRain, formula=rain~ CHE_alt, grid=10, covariates=swissAltitude, shape=1, fixShape=TRUE, boxcox=0.5, fixBoxcox=TRUE, aniso=TRUE,reml=TRUE, param=c(anisoAngleDegrees=37,anisoRatio=7.5, range=50000)) x=profLlgm(swissFit, anisoAngleDegrees=seq(30, 43 , len=4) ) plot(x[[1]],x[[2]], xlab=names(x)[1], ylab='log L', ylim=c(min(x[[2]]),x$maxLogL), type='n') abline(h=x$breaks[-1], col=x$col, lwd=1.5) axis(2,at=x$breaks,labels=x$prob,line=-1.2, tick=FALSE, las=1,padj=1.2,hadj=0) abline(v=x$ciLong$par, lty=2, col=x$col[as.character(x$ciLong$prob)]) lines(x[[1]],x[[2]], col='black') }
This function simulates conditional and unconditional Gaussian random fields, calling the function in the RandomFields package of the same name.
## S4 method for signature 'ANY,SpatRaster' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'numeric,SpatRaster' RFsimulate(model, x,data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'numeric,SpatVector' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'RMmodel,SpatRaster' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'RMmodel,SpatVector' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'matrix,SpatRaster' RFsimulate(model, x, data=NULL, err.model=NULL, n = nrow(model), ...) ## S4 method for signature 'matrix,SpatVector' RFsimulate(model, x, data=NULL, err.model=NULL, n = nrow(model), ...) ## S4 method for signature 'data.frame,ANY' RFsimulate(model, x, data=NULL, err.model=NULL, n = nrow(model), ...) modelRandomFields(param, includeNugget=FALSE)
## S4 method for signature 'ANY,SpatRaster' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'numeric,SpatRaster' RFsimulate(model, x,data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'numeric,SpatVector' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'RMmodel,SpatRaster' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'RMmodel,SpatVector' RFsimulate(model, x, data=NULL, err.model=NULL, n = 1, ...) ## S4 method for signature 'matrix,SpatRaster' RFsimulate(model, x, data=NULL, err.model=NULL, n = nrow(model), ...) ## S4 method for signature 'matrix,SpatVector' RFsimulate(model, x, data=NULL, err.model=NULL, n = nrow(model), ...) ## S4 method for signature 'data.frame,ANY' RFsimulate(model, x, data=NULL, err.model=NULL, n = nrow(model), ...) modelRandomFields(param, includeNugget=FALSE)
model |
object of class
|
x |
Object of type |
data |
For conditional simulation and random imputing only.
If |
err.model |
For conditional simulation and random imputing only. |
n |
number of realizations to generate. |
... |
for advanced use:
further options and control parameters for the simulation
that are passed to and processed by
|
param |
A vector of named parameters |
includeNugget |
If |
If model
is a matrix, a different set of parameters is used for each simulation. If
data
has the same number of columns as model
has rows,
a different column i
is used with parameters in row i
.
An object of the same class as x
.
Patrick E. Brown [email protected]
RFsimulate
in the RandomFields
package
library('geostatsp') # exclude this line to use the RandomFields package options(useRandomFields = FALSE) model1 <- c(var=5, range=1,shape=0.5) myraster = rast(nrows=20,ncols=30,extent = ext(0,6,0,4), crs="+proj=utm +zone=17 +datum=NAD27 +units=m +no_defs") set.seed(0) simu <- RFsimulate(model1, x=myraster, n=3) plot(simu[['sim2']]) xPoints = suppressWarnings(as.points(myraster)) # conditional simulation firstSample = RFsimulate( c(model1, nugget=1), x=xPoints[seq(1,ncell(myraster), len=100), ], n=3 ) secondSample = RFsimulate( model = cbind(var=5:3, range=seq(0.05, 0.25, len=3), shape=seq(0.5, 1.5, len=3)), err.model = 1, x= myraster, data=firstSample,n=4 ) plot(secondSample)
library('geostatsp') # exclude this line to use the RandomFields package options(useRandomFields = FALSE) model1 <- c(var=5, range=1,shape=0.5) myraster = rast(nrows=20,ncols=30,extent = ext(0,6,0,4), crs="+proj=utm +zone=17 +datum=NAD27 +units=m +no_defs") set.seed(0) simu <- RFsimulate(model1, x=myraster, n=3) plot(simu[['sim2']]) xPoints = suppressWarnings(as.points(myraster)) # conditional simulation firstSample = RFsimulate( c(model1, nugget=1), x=xPoints[seq(1,ncell(myraster), len=100), ], n=3 ) secondSample = RFsimulate( model = cbind(var=5:3, range=seq(0.05, 0.25, len=3), shape=seq(0.5, 1.5, len=3)), err.model = 1, x= myraster, data=firstSample,n=4 ) plot(secondSample)
This data-set was used by Diggle, Tawn and Moyeed (1998) to illustrate
the model-based geostatistical methodology introduced in the paper.
discussed in the paper. The radionuclide concentration data set consists
of measurements of -ray counts at
locations.
data(rongelapUTM)
data(rongelapUTM)
A SpatVector
, with columns count
being the
radiation count and time
being the length of time
the measurement was taken for. A UTM coordinate reference system is used, where coordinates are in metres.
http://www.leg.ufpr.br/doku.php/pessoais:paulojus:mbgbook:datasets. For further details on the radionuclide concentration data, see Diggle,Harper and Simon (1997), Diggle, Tawn and Moyeed (1998) and Christensen (2004).
Christensen, O. F. (2004). Monte Carlo maximum likelihood in model-based geostatistics. Journal of computational and graphical statistics 13 702-718.
Diggle, P. J., Harper, L. and Simon, S. L. (1997). Geostatistical analysis of residual contamination from nuclea testing. In: Statistics for the environment 3: pollution assesment and control (eds. V. Barnet and K. F. Turkmann), Wiley, Chichester, 89-107.
Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model-based geostatistics (with Discussion). Applied Statistics, 47, 299–350.
data("rongelapUTM") rongelapUTM = unwrap(rongelapUTM) plot(rongelapUTM, main="Rongelap island") if(require('mapmisc')) { bgMap = openmap(rongelapUTM, buffer=300, maxTiles=2) plot(bgMap) points(rongelapUTM, cex=0.4) scaleBar(rongelapUTM, 'left') }
data("rongelapUTM") rongelapUTM = unwrap(rongelapUTM) plot(rongelapUTM, main="Rongelap island") if(require('mapmisc')) { bgMap = openmap(rongelapUTM, buffer=300, maxTiles=2) plot(bgMap) points(rongelapUTM, cex=0.4) scaleBar(rongelapUTM, 'left') }
Give covariates and model parameters, simulates a log-Gaussian Cox process
simLgcp(param, covariates=NULL, betas=NULL, offset=NULL, rasterTemplate=covariates[[1]], n=1, ...) simPoissonPP(intensity)
simLgcp(param, covariates=NULL, betas=NULL, offset=NULL, rasterTemplate=covariates[[1]], n=1, ...) simPoissonPP(intensity)
param |
A vector of named model parameters with, at a minimum names
|
covariates |
Either a raster stack or list of rasters and |
betas |
Coefficients for the covariates |
offset |
Vector of character strings corresponding to elements of |
rasterTemplate |
Raster on which the latent surface is simulated, defaults to the first covariate. |
n |
number of realisations to simulate |
... |
additional arguments, see
|
intensity |
Raster of the intensity of a Poisson point process. |
A list with a events
element containing the event locations and a SpatRaster
element
containing a raster stack of the covariates, spatial random effect, and intensity.
mymodel = c(mean=-0.5, variance=1, range=2, shape=2) myraster = rast(nrows=15,ncols=20,xmin=0,xmax=10,ymin=0,ymax=7.5) # some covariates, deliberately with a different resolution than myraster covA = covB = myoffset = rast(ext(myraster), 10, 10) values(covA) = as.vector(matrix(1:10, 10, 10)) values(covB) = as.vector(matrix(1:10, 10, 10, byrow=TRUE)) values(myoffset) = round(seq(-1, 1, len=ncell(myoffset))) myCovariate = list(a=covA, b=covB, offsetFooBar = myoffset) myLgcp=simLgcp(param=mymodel, covariates=myCovariate, betas=c(a=-0.1, b=0.25), offset='offsetFooBar', rasterTemplate=myraster) plot(myLgcp$raster[["intensity"]], main="lgcp") points(myLgcp$events) myIntensity = exp(-1+0.2*myCovariate[["a"]]) myPoissonPP = simPoissonPP(myIntensity)[[1]] plot(myIntensity, main="Poisson pp") points(myPoissonPP)
mymodel = c(mean=-0.5, variance=1, range=2, shape=2) myraster = rast(nrows=15,ncols=20,xmin=0,xmax=10,ymin=0,ymax=7.5) # some covariates, deliberately with a different resolution than myraster covA = covB = myoffset = rast(ext(myraster), 10, 10) values(covA) = as.vector(matrix(1:10, 10, 10)) values(covB) = as.vector(matrix(1:10, 10, 10, byrow=TRUE)) values(myoffset) = round(seq(-1, 1, len=ncell(myoffset))) myCovariate = list(a=covA, b=covB, offsetFooBar = myoffset) myLgcp=simLgcp(param=mymodel, covariates=myCovariate, betas=c(a=-0.1, b=0.25), offset='offsetFooBar', rasterTemplate=myraster) plot(myLgcp$raster[["intensity"]], main="lgcp") points(myLgcp$events) myIntensity = exp(-1+0.2*myCovariate[["a"]]) myPoissonPP = simPoissonPP(myIntensity)[[1]] plot(myIntensity, main="Poisson pp") points(myPoissonPP)
Calculate ROC curves using model fits to simulated spatial data
spatialRoc(fit, rr = c(1, 1.2, 1.5, 2), truth, border=NULL, random = FALSE, prob = NULL, spec = seq(0,1,by=0.01))
spatialRoc(fit, rr = c(1, 1.2, 1.5, 2), truth, border=NULL, random = FALSE, prob = NULL, spec = seq(0,1,by=0.01))
fit |
A fitted model from the |
rr |
Vector of relative risks exceedance probabilities will be calculated for. Values
are on the natural scale, with |
truth |
True value of the spatial surface, or result from |
border |
optional, |
random |
compute ROC's for relative intensity ( |
prob |
Vector of exceedance probabilities |
spec |
Vector of specificities for the resulting ROC's to be computed for. |
Fitted models are used to calculate exceedance probabilities, and
a location is judged to be above an rr
threshold if this
exceedance probability is above a specified probability threshold.
Each raster cell of the true surface is categorized as being either true positive, false
positive, true negative, and false negative and sensitivity and specificity computed.
ROC curves are produced by varying the probability threshold.
An array, with dimension 1 being probability threshold, dimension 2
being the relative risk threshold, dimension 3 being sensitivity and specificity.
If fit
is a list of model fits, dimension 4 corresponds to elements of fit
.
Patrick Brown
Given a raster object, an extent, or a bounding box, a raster of with square cells and having the extent and number of cells specified is returned.
## S4 method for signature 'matrix' squareRaster(x,cells=NULL, buffer=0) ## S4 method for signature 'SpatRaster' squareRaster(x,cells=NULL, buffer=0) ## S4 method for signature 'SpatVector' squareRaster(x,cells=NULL, buffer=0) ## S4 method for signature 'SpatExtent' squareRaster(x,cells=NULL, buffer=0)
## S4 method for signature 'matrix' squareRaster(x,cells=NULL, buffer=0) ## S4 method for signature 'SpatRaster' squareRaster(x,cells=NULL, buffer=0) ## S4 method for signature 'SpatVector' squareRaster(x,cells=NULL, buffer=0) ## S4 method for signature 'SpatExtent' squareRaster(x,cells=NULL, buffer=0)
x |
A spatial object |
cells |
The number of cells in the x direction. If NULL the number of columns of x is used. |
buffer |
Additional area to add around the resulting raster |
A SpatRaster
with square cells
myraster = rast(matrix(0,10,10),extent=c(0,10,0,12.3)) squareRaster(myraster) squareRaster(myraster, buffer=3, cells=20) squareRaster(ext(myraster), cells=10)
myraster = rast(matrix(0,10,10),extent=c(0,10,0,12.3)) squareRaster(myraster) squareRaster(myraster, buffer=3, cells=20) squareRaster(ext(myraster), cells=10)
This function is intended to be used prior to passing covariates to krigeLgm in order for the rasters for all covariates to have the same projection and same resolution.
stackRasterList(x, template = x[[1]], method = "near", mc.cores=NULL) spdfToBrick(x, template, logSumExpected=FALSE, pattern = '^expected_[[:digit:]]+$' )
stackRasterList(x, template = x[[1]], method = "near", mc.cores=NULL) spdfToBrick(x, template, logSumExpected=FALSE, pattern = '^expected_[[:digit:]]+$' )
x |
A list of |
template |
A raster whose projection and resolution all other rasters will be aligned with. |
method |
The method to use, either "near", or "bilinear". Can be a vector of the same length as x to specify different methods for each raster. If |
mc.cores |
If non-null, |
logSumExpected |
return the log of the sum of offsets |
pattern |
expression to identify layers to rasterize in |
A raster brick, with one layer for each variable.
myCrs = crs("+proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs") x = list(a=rast(matrix(1:9, 3, 3), extent=ext(0,1,0,1), crs=myCrs), b=rast(matrix(1:25, 5, 5), extent=ext(-1, 2, -1, 2), crs=myCrs) ) mystack = stackRasterList(x) mystack mylist = list( a=rast(matrix(1:36, 6, 6,byrow=TRUE), extent=ext(0,1000,0,1000), crs=myCrs), b=rast(matrix(1:144, 12, 12), extent=ext(-200, 200, -200, 200), crs=myCrs), c=rast(matrix(1:100, 10, 10), extent=ext(-5000,5000,-5000,5000), crs=myCrs) ) mystack = stackRasterList(mylist, mc.cores=1) mystack plot(mystack[["b"]], main="stack b") plot(mystack[['a']],add=TRUE,col=grey(seq(0,1,len=12)),alpha=0.8,legend=FALSE)
myCrs = crs("+proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs") x = list(a=rast(matrix(1:9, 3, 3), extent=ext(0,1,0,1), crs=myCrs), b=rast(matrix(1:25, 5, 5), extent=ext(-1, 2, -1, 2), crs=myCrs) ) mystack = stackRasterList(x) mystack mylist = list( a=rast(matrix(1:36, 6, 6,byrow=TRUE), extent=ext(0,1000,0,1000), crs=myCrs), b=rast(matrix(1:144, 12, 12), extent=ext(-200, 200, -200, 200), crs=myCrs), c=rast(matrix(1:100, 10, 10), extent=ext(-5000,5000,-5000,5000), crs=myCrs) ) mystack = stackRasterList(mylist, mc.cores=1) mystack plot(mystack[["b"]], main="stack b") plot(mystack[['a']],add=TRUE,col=grey(seq(0,1,len=12)),alpha=0.8,legend=FALSE)
Data from the SIC-97 project: Spatial Interpolation Comparison.
data("swissRain")
data("swissRain")
swissRain
is a SpatVector
100 daily rainfall
measurements made in Switzerland on the 8th of May 1986.
swissAltitude
is a raster of elevation data, and swissLandType
is a raster
of land cover types.
https://wiki.52north.org/AI_GEOSTATS/AI_GEOSTATSData and https://srtm.csi.cgiar.org and https://lpdaac.usgs.gov/data/
data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissLandType = unwrap(swissLandType) plot(swissAltitude, main="elevation") points(swissRain) plot(swissBorder, add=TRUE) # land type, a categorical variable commonValues = sort(table(values(swissLandType)),decreasing=TRUE)[1:5] commonValues=commonValues[!names(commonValues)==0] thelevels = levels(swissLandType)[[1]]$ID thebreaks = c(-0.5, 0.5+thelevels) thecol = rep(NA, length(thelevels)) names(thecol) = as.character(thelevels) thecol[names(commonValues)] = rainbow(length(commonValues)) plot(swissLandType, breaks=thebreaks, col=thecol,legend=FALSE, main="land type") points(swissRain) plot(swissBorder, add=TRUE) legend("left",fill=thecol[names(commonValues)], legend=substr(levels(swissLandType)[[1]][ match(as.integer(names(commonValues)), levels(swissLandType)[[1]]$ID), "Category"], 1,12), bg= 'white' )
data("swissRain") swissRain = unwrap(swissRain) swissAltitude = unwrap(swissAltitude) swissBorder = unwrap(swissBorder) swissLandType = unwrap(swissLandType) plot(swissAltitude, main="elevation") points(swissRain) plot(swissBorder, add=TRUE) # land type, a categorical variable commonValues = sort(table(values(swissLandType)),decreasing=TRUE)[1:5] commonValues=commonValues[!names(commonValues)==0] thelevels = levels(swissLandType)[[1]]$ID thebreaks = c(-0.5, 0.5+thelevels) thecol = rep(NA, length(thelevels)) names(thecol) = as.character(thelevels) thecol[names(commonValues)] = rainbow(length(commonValues)) plot(swissLandType, breaks=thebreaks, col=thecol,legend=FALSE, main="land type") points(swissRain) plot(swissBorder, add=TRUE) legend("left",fill=thecol[names(commonValues)], legend=substr(levels(swissLandType)[[1]][ match(as.integer(names(commonValues)), levels(swissLandType)[[1]]$ID), "Category"], 1,12), bg= 'white' )
A raster image of Swiss rain and elevation, and a nearest neighbour matrix corresponding to this raster.
data(swissRainR)
data(swissRainR)
swissRainR
is a RasterBrick of Swiss elevation and
precipitation, and swissNN
is a matrix of nearest neighbours.
See examples
data('swissRainR') swissRainR = unwrap(swissRainR) plot(swissRainR[['prec7']]) plot(swissRainR[['alt']]) swissNN[1:4,1:5]
data('swissRainR') swissRainR = unwrap(swissRainR) plot(swissRainR[['prec7']]) plot(swissRainR[['alt']]) swissNN[1:4,1:5]
These are wrappers for
variog
in the geoR
package
and
variog.mc.env
in the geoR
package.
variog(geodata, ...) ## S3 method for class 'SpatVector' variog(geodata, formula, ...) ## Default S3 method: variogMcEnv(geodata, ...) ## S3 method for class 'SpatVector' variogMcEnv(geodata, formula, ...)
variog(geodata, ...) ## S3 method for class 'SpatVector' variog(geodata, formula, ...) ## Default S3 method: variogMcEnv(geodata, ...) ## S3 method for class 'SpatVector' variogMcEnv(geodata, formula, ...)
geodata |
An object of class |
formula |
A formula specifying the response variable and fixed effects portion of the model. The variogram is performed on the residuals. |
... |
additional arguments passed to |
As variog
in the geoR
package
and
variog.mc.env
in the geoR
package
variog
in the geoR
package and
variog.mc.env
in the geoR
package
data("swissRain") swissRain = unwrap(swissRain) swissRain$lograin = log(swissRain$rain) swissv= variog(swissRain, formula=lograin ~ 1,option="bin") swissEnv = variogMcEnv(swissRain, lograin ~ 1, obj.var=swissv,nsim=9) if(!is.null(swissv)){ plot(swissv, env=swissEnv, main = "Swiss variogram") }
data("swissRain") swissRain = unwrap(swissRain) swissRain$lograin = log(swissRain$rain) swissv= variog(swissRain, formula=lograin ~ 1,option="bin") swissEnv = variogMcEnv(swissRain, lograin ~ 1, obj.var=swissv,nsim=9) if(!is.null(swissv)){ plot(swissv, env=swissEnv, main = "Swiss variogram") }
Mercer and Hall wheat yield data, based on version in Cressie (1993), p. 455.
data(wheat)
data(wheat)
wheat
is a raster where the values refer to wheat yields.
data("wheat") wheat = unwrap(wheat) plot(wheat, main="Mercer and Hall Data")
data("wheat") wheat = unwrap(wheat) plot(wheat, main="Mercer and Hall Data")