Title: | Population Genetics |
---|---|
Description: | Classes and methods for handling genetic data. Includes classes to represent genotypes and haplotypes at single markers up to multiple markers on multiple chromosomes. Function include allele frequencies, flagging homo/heterozygotes, flagging carriers of certain alleles, estimating and testing for Hardy-Weinberg disequilibrium, estimating and testing for linkage disequilibrium, ... |
Authors: | Gregory Warnes, with contributions from Gregor Gorjanc, Friedrich Leisch, and Michael Man. |
Maintainer: | Gregory Warnes <[email protected]> |
License: | GPL |
Version: | 1.3.8.1.3 |
Built: | 2024-11-21 06:39:56 UTC |
Source: | CRAN |
Experimental function to correct confidence intervals at or near boundaries of the parameter space by 'sliding' the interval on the quantile scale.
ci.balance(x, est, confidence=0.95, alpha=1-confidence, minval, maxval, na.rm=TRUE)
ci.balance(x, est, confidence=0.95, alpha=1-confidence, minval, maxval, na.rm=TRUE)
x |
Bootstrap parameter estimates. |
est |
Observed value of the parameter. |
confidence |
Confidence level for the interval. Defaults to 0.95. |
alpha |
Type I error rate (size) for the interval. Defaults to
1- |
minval |
A numeric value specifying the lower bound of the parameter space. Leave unspecified (the default) if there is no lower bound. |
maxval |
A numeric value specifying the upper bound of the parameter space. Leave unspecified (the default) if there is no upper bound. |
na.rm |
logical. Should missing values be removed? |
EXPERIMENTAL FUNCTION:
This function attempts to compute a proper conf
*100%
confidence interval for parameters at or near the boundary of the
parameter space using bootstrapped parameter estimates by 'sliding'
the confidence interval on the quantile scale.
This is accomplished by attempting to place a conf
*100%
interval symmetrically *on the quantile scale* about the observed
value. If a symmetric interval would exceed the observed data at the
upper (lower) end, a one-sided interval is computed with the upper
(lower) boundary fixed at the the upper (lower) boundary of the
parameter space.
A list containing:
ci |
A 2-element vector containing the lower and upper confidence limits. The names of the elements of the vector give the actual quantile values used for the interval or one of the character strings "Upper Boundary" or "Lower Boundary". |
overflow.upper , overflow.lower
|
The number of elements beyond those observed that would be needed to compute a symmetric (on the quantile scale) confidence interval. |
n.above , n.below
|
The number of bootstrap values which are above (below) the observed value. |
lower.n , upper.n
|
The index of the value used for the endpoint of the confidence interval or the character string "Upper Boundary" ("Lower Boundary"). |
Gregory R. Warnes [email protected]
boot
,
bootstrap
,
Used by diseq.ci
.
# These are nonsensical examples which simply exercise the # computation. See the code to diseq.ci for a real example. # # FIXME: Add real example using boot or bootstrap. set.seed(7981357) x <- abs(rnorm(100,1)) ci.balance(x,1, minval=0) ci.balance(x,1) x <- rnorm(100,1) x <- ifelse(x>1, 1, x) ci.balance(x,1, maxval=1) ci.balance(x,1)
# These are nonsensical examples which simply exercise the # computation. See the code to diseq.ci for a real example. # # FIXME: Add real example using boot or bootstrap. set.seed(7981357) x <- abs(rnorm(100,1)) ci.balance(x,1, minval=0) ci.balance(x,1) x <- rnorm(100,1) x <- ifelse(x>1, 1, x) ci.balance(x,1, maxval=1) ci.balance(x,1)
These functions are depreciated.
power.casectrl(...)
power.casectrl(...)
... |
All arguments are ignored |
The power.casectl
function contained serious errors. For some
time, replacements were provided by the BioConductor GeneticsDesign package.
In specific, the power.casectl
function used an expected
contingency table to create the test statistic that was
erroneously based on the underlying null, rather than on the
marginal totals of the observed table. In addition, the modeling of
dominant and recessive modes of inheritance had assumed a "perfect"
genotype with no disease, whereas in reality a dominant or recessive
mode of inheritance simply means that two of the genotypes will have
an identical odds ratio compared to the 3rd genotype (the other
homozygote).
Estimate or compute confidence interval for single-marker disequilibrium.
diseq(x, ...) ## S3 method for class 'diseq' print(x, show=c("D","D'","r","R^2","table"), ...) diseq.ci(x, R=1000, conf=0.95, correct=TRUE, na.rm=TRUE, ...)
diseq(x, ...) ## S3 method for class 'diseq' print(x, show=c("D","D'","r","R^2","table"), ...) diseq.ci(x, R=1000, conf=0.95, correct=TRUE, na.rm=TRUE, ...)
x |
genotype or haplotype object. |
show |
a character value or vector indicating which
disequilibrium measures should be displayed. The default is to show
all of the available measures. |
conf |
Confidence level to use when computing the confidence level for D-hat. Defaults to 0.95, should be in (0,1). |
R |
Number of bootstrap iterations to use when computing the confidence interval. Defaults to 1000. |
correct |
See details. |
na.rm |
logical. Should missing values be removed? |
... |
optional parameters passed to |
For a single-gene marker, diseq
computes the Hardy-Weinberg
(dis)equilibrium statistic D, D', r (the correlation coefficient), and
for each pair of allele values, as well as an overall
summary value for each measure across all alleles.
print.diseq
displays the contents of a diseq
object. diseq.ci
computes a bootstrap confidence interval for this estimate.
For consistency, I have applied the standard definitions for D, D', and r from the Linkage Disequilibrium case, replacing all marker probabilities with the appropriate allele probabilities.
Thus, for each allele pair,
D is defined as the half of the raw difference in frequency between the observed number of heterozygotes and the expected number:
D' rescales D to span the range [-1,1]
where, if D > 0:
or if D < 0:
r is the correlation coefficient between two alleles, and can be computed by
where
- defined as the observed probability of
allele 'i',
- defined as the observed probability of
allele 'j', and
- defined as the observed probability of
the allele pair 'ij'.
When there are more than two alleles, the summary values for these statistics are obtained by computing a weighted average of the absolute value of each allele pair, where the weight is determined by the expected frequency. For example:
Bootstrapping is used to generate confidence interval in order to
avoid reliance on parametric assumptions, which will not hold for
alleles with low frequencies (e.g. following a a Chi-square
distribution).
See the function HWE.test
for testing
Hardy-Weinberg Equilibrium, .
diseq
returns an object of class diseq
with components
callfunction call used to create this object
data2-way table of allele pair counts
D.hatmatrix giving the observed count, expected count, observed - expected difference, and estimate of disequilibrium for each pair of alleles as well as an overall disequilibrium value.
TODOmore slots to be documented
diseq.ci
returns an object of class boot.ci
Gregory R. Warnes [email protected]
genotype
,
HWE.test
,
boot
,
boot.ci
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 diseq(g1) diseq.ci(g1) HWE.test(g1) # does the same, plus tests D-hat=0 three.data <- c(rep("A/A",8), rep("C/A",20), rep("C/T",20), rep("C/C",10), rep("T/T",3)) g3 <- genotype(three.data) g3 diseq(g3) diseq.ci(g3, ci.B=10000, ci.type="bca") # only show observed vs expected table print(diseq(g3),show='table')
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 diseq(g1) diseq.ci(g1) HWE.test(g1) # does the same, plus tests D-hat=0 three.data <- c(rep("A/A",8), rep("C/A",20), rep("C/T",20), rep("C/C",10), rep("T/T",3)) g3 <- genotype(three.data) g3 diseq(g3) diseq.ci(g3, ci.B=10000, ci.type="bca") # only show observed vs expected table print(diseq(g3),show='table')
expectedGenotypes
constructs expected genotypes according to
known allele variants, which can be quite tedious with large number of
allele variants. It can handle different level of ploidy.
expectedGenotypes(x, alleles=allele.names(x), ploidy=2, sort=TRUE, haplotype=FALSE) expectedHaplotypes(x, alleles=allele.names(x), ploidy=2, sort=TRUE, haplotype=TRUE)
expectedGenotypes(x, alleles=allele.names(x), ploidy=2, sort=TRUE, haplotype=FALSE) expectedHaplotypes(x, alleles=allele.names(x), ploidy=2, sort=TRUE, haplotype=TRUE)
x |
genotype or haplotype |
alleles |
character, vector of allele names |
ploidy |
numeric, number of chromosome sets i.e. 2 for human autosomal genes |
sort |
logical, sort genotypes according to order of alleles in
|
haplotype |
logical, construct haplotypes i.e. ordered genotype |
At least one of x
or alleles
must be given.
expectedHaplotypes()
just calls expectedGenotypes()
with
argument haplotype=TRUE
.
A character vector with genotype names as "alele1/alele2" for diploid
example. Length of output is for genotype (unordered
genotype) and
for haplotype (ordered genotype) for
allele variants.
Gregor Gorjanc
## On genotype prp <- c("ARQ/ARQ", "ARQ/ARQ", "ARR/ARQ", "AHQ/ARQ", "ARQ/ARQ") alleles <- c("ARR", "AHQ", "ARH", "ARQ", "VRR", "VRQ") expectedGenotypes(as.genotype(prp)) expectedGenotypes(as.genotype(prp, alleles=alleles)) expectedGenotypes(as.genotype(prp, alleles=alleles, reorder="yes")) ## Only allele names expectedGenotypes(alleles=alleles) expectedGenotypes(alleles=alleles, ploidy=4) ## Haplotype expectedHaplotypes(alleles=alleles) expectedHaplotypes(alleles=alleles, ploidy=4)[1:20]
## On genotype prp <- c("ARQ/ARQ", "ARQ/ARQ", "ARR/ARQ", "AHQ/ARQ", "ARQ/ARQ") alleles <- c("ARR", "AHQ", "ARH", "ARQ", "VRR", "VRQ") expectedGenotypes(as.genotype(prp)) expectedGenotypes(as.genotype(prp, alleles=alleles)) expectedGenotypes(as.genotype(prp, alleles=alleles, reorder="yes")) ## Only allele names expectedGenotypes(alleles=alleles) expectedGenotypes(alleles=alleles, ploidy=4) ## Haplotype expectedHaplotypes(alleles=alleles) expectedHaplotypes(alleles=alleles, ploidy=4)[1:20]
genotype
creates a genotype object.
haplotype
creates a haplotype object.
is.genotype
returns TRUE
if x
is of class
genotype
is.haplotype
returns TRUE
if x
is of class
haplotype
as.genotype
attempts to coerce its argument into an object of
class genotype
.
as.genotype.allele.count
converts allele counts (0,1,2) into
genotype pairs ("A/A", "A/B", "B/B").
as.haplotype
attempts to coerce its argument into an object of
class haplotype
.
nallele
returns the number of alleles in an object of class
genotype
.
genotype(a1, a2=NULL, alleles=NULL, sep="/", remove.spaces=TRUE, reorder = c("yes", "no", "default", "ascii", "freq"), allow.partial.missing=FALSE, locus=NULL, genotypeOrder=NULL) haplotype(a1, a2=NULL, alleles=NULL, sep="/", remove.spaces=TRUE, reorder="no", allow.partial.missing=FALSE, locus=NULL, genotypeOrder=NULL) is.genotype(x) is.haplotype(x) as.genotype(x, ...) ## S3 method for class 'allele.count' as.genotype(x, alleles=c("A","B"), ... ) as.haplotype(x, ...) ## S3 method for class 'genotype' print(x, ...) nallele(x)
genotype(a1, a2=NULL, alleles=NULL, sep="/", remove.spaces=TRUE, reorder = c("yes", "no", "default", "ascii", "freq"), allow.partial.missing=FALSE, locus=NULL, genotypeOrder=NULL) haplotype(a1, a2=NULL, alleles=NULL, sep="/", remove.spaces=TRUE, reorder="no", allow.partial.missing=FALSE, locus=NULL, genotypeOrder=NULL) is.genotype(x) is.haplotype(x) as.genotype(x, ...) ## S3 method for class 'allele.count' as.genotype(x, alleles=c("A","B"), ... ) as.haplotype(x, ...) ## S3 method for class 'genotype' print(x, ...) nallele(x)
x |
either an object of class |
a1 , a2
|
vector(s) or matrix containing two alleles for each individual. See details, below. |
alleles |
names (and order if |
sep |
character separator or column number used to divide
alleles when |
remove.spaces |
logical indicating whether spaces and tabs will be removed from a1 and a2 before processing. |
reorder |
how should alleles within an individual be reordered.
If |
allow.partial.missing |
logical indicating whether one allele is
permitted to be missing. When set to |
locus |
object of class locus, gene, or marker, holding information about the source of this genotype. |
genotypeOrder |
character, vector of genotype/haplotype names so that further functions can sort genotypes/haplotypes in wanted order |
... |
optional arguments |
Genotype objects hold information on which gene or marker alleles were observed for different individuals. For each individual, two alleles are recorded.
The genotype class considers the stored alleles to be unordered, i.e., "C/T" is equivalent to "T/C". The haplotype class considers the order of the alleles to be significant so that "C/T" is distinct from "T/C".
When calling genotype
or haplotype
:
If only a1
is provided and is a character vector, it is
assumed that each element encodes both alleles. In this case, if
sep
is a character string, a1
is assumed to be coded
as "Allele1<sep>Allele2". If sep
is a numeric value, it is
assumed that character locations 1:sep
contain allele 1 and
that remaining locations contain allele 2.
If a1
is a matrix, it is assumed that column 1 contains
allele 1 and column 2 contains allele 2.
If a1
and a2
are both provided, each is assumed to
contain one allele value so that the genotype for an individual is
obtained by paste(a1,a2,sep="/")
.
If remove.spaces
is TRUE, (the default) any whitespace
contained in a1
and a2
is removed when the genotypes are
created. If whitespace is used as the separator, (eg "C C", "C T",
...), be sure to set remove.spaces to FALSE.
When the alleles are explicitly specified using the alleles
argument, all potential alleles not present in the list will be
converted to NA
.
NOTE: genotype
assumes that the order of the alleles is not important
(E.G., "A/C" == "C/A"). Use class haplotype
if order is significant.
If genotypeOrder=NULL
(the default setting), then
expectedGenotypes
is used to get standard sorting order.
Only unique values in genotypeOrder
are used, which in turns
means that the first occurrence prevails. When genotypeOrder
is
given some genotype names, but not all that appear in the data, the
rest (those in the data and possible combinations based on allele
variants) is automatically added at the end of
genotypeOrder
. This puts "missing" genotype names at the end of
sort order. This feature is especially useful when there are a lot of
allele variants and especially in haplotypes. See examples.
The genotype class extends "factor" and haplotype extends genotype. Both classes have the following attributes:
levels |
character vector of possible genotype/haplotype values
stored coded by |
allele.names |
character vector of possible alleles. For a SNP, these might be c("A","T"). For a variable length dinucleotyde repeat this might be c("136","138","140","148"). |
allele.map |
matrix encoding how the factor levels correspond to
alleles. See the source code to |
genotypeOrder |
character, genotype/haplotype names in defined order that can used for sorting in various functions. Note that this slot stores both ordered and unordered genotypes i.e. "A/B" and "B/A". |
Gregory R. Warnes [email protected] and Friedrich Leisch.
HWE.test
,
allele
,
homozygote
,
heterozygote
,
carrier
,
summary.genotype
,
allele.count
,
sort.genotype
,
genotypeOrder
,
locus
,
gene
,
marker
, and
%in%
for default %in% method
# several examples of genotype data in different formats example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 example.data2 <- c("C-C","C-T","C-C","T-T","C-C", "C-C","C-C","C-C","T-T","") g2 <- genotype(example.data2,sep="-") g2 example.nosep <- c("DD", "DI", "DD", "II", "DD", "DD", "DD", "DD", "II", "") g3 <- genotype(example.nosep,sep="") g3 example.a1 <- c("D", "D", "D", "I", "D", "D", "D", "D", "I", "") example.a2 <- c("D", "I", "D", "I", "D", "D", "D", "D", "I", "") g4 <- genotype(example.a1,example.a2) g4 example.mat <- cbind(a1=example.a1, a1=example.a2) g5 <- genotype(example.mat) g5 example.data5 <- c("D / D","D / I","D / D","I / I", "D / D","D / D","D / D","D / D", "I / I","") g5 <- genotype(example.data5,rem=TRUE) g5 # show how genotype and haplotype differ data1 <- c("C/C", "C/T", "T/C") data2 <- c("C/C", "T/C", "T/C") test1 <- genotype( data1 ) test2 <- genotype( data2 ) test3 <- haplotype( data1 ) test4 <- haplotype( data2 ) test1==test2 test3==test4 test1=="C/T" test1=="T/C" test3=="C/T" test3=="T/C" ## also test1 test1 test3 test1 test1 test3 test3 ## "Messy" example m3 <- c("D D/\t D D","D\tD/ I", "D D/ D D","I/ I", "D D/ D D","D D/ D D","D D/ D D","D D/ D D", "I/ I","/ ","/I") genotype(m3) summary(genotype(m3)) m4 <- c("D D","D I","D D","I I", "D D","D D","D D","D D", "I I"," "," I") genotype(m4,sep=1) genotype(m4,sep=" ",remove.spaces=FALSE) summary(genotype(m4,sep=" ",remove.spaces=FALSE)) m5 <- c("DD","DI","DD","II", "DD","DD","DD","DD", "II"," "," I") genotype(m5,sep=1) haplotype(m5,sep=1,remove.spaces=FALSE) g5 <- genotype(m5,sep="") h5 <- haplotype(m5,sep="") heterozygote(g5) homozygote(g5) carrier(g5,"D") g5[9:10] <- haplotype(m4,sep=" ",remove=FALSE)[1:2] g5 g5[9:10] allele(g5[9:10],1) allele(g5,1)[9:10] # drop unused alleles g5[9:10,drop=TRUE] h5[9:10,drop=TRUE] # Convert allele.counts into genotype x <- c(0,1,2,1,1,2,NA,1,2,1,2,2,2) g <- as.genotype.allele.count(x, alleles=c("C","T") ) g # Use of genotypeOrder example.data <- c("D/D","D/I","I/D","I/I","D/D", "D/D","D/I","I/D","I/I","") summary(genotype(example.data)) genotypeOrder(genotype(example.data)) summary(genotype(example.data, genotypeOrder=c("D/D", "I/I", "D/I"))) summary(genotype(example.data, genotypeOrder=c( "D/I"))) summary(haplotype(example.data, genotypeOrder=c( "I/D", "D/I"))) example.data <- genotype(example.data) genotypeOrder(example.data) <- c("D/D", "I/I", "D/I") genotypeOrder(example.data)
# several examples of genotype data in different formats example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 example.data2 <- c("C-C","C-T","C-C","T-T","C-C", "C-C","C-C","C-C","T-T","") g2 <- genotype(example.data2,sep="-") g2 example.nosep <- c("DD", "DI", "DD", "II", "DD", "DD", "DD", "DD", "II", "") g3 <- genotype(example.nosep,sep="") g3 example.a1 <- c("D", "D", "D", "I", "D", "D", "D", "D", "I", "") example.a2 <- c("D", "I", "D", "I", "D", "D", "D", "D", "I", "") g4 <- genotype(example.a1,example.a2) g4 example.mat <- cbind(a1=example.a1, a1=example.a2) g5 <- genotype(example.mat) g5 example.data5 <- c("D / D","D / I","D / D","I / I", "D / D","D / D","D / D","D / D", "I / I","") g5 <- genotype(example.data5,rem=TRUE) g5 # show how genotype and haplotype differ data1 <- c("C/C", "C/T", "T/C") data2 <- c("C/C", "T/C", "T/C") test1 <- genotype( data1 ) test2 <- genotype( data2 ) test3 <- haplotype( data1 ) test4 <- haplotype( data2 ) test1==test2 test3==test4 test1=="C/T" test1=="T/C" test3=="C/T" test3=="T/C" ## also test1 test1 test3 test1 test1 test3 test3 ## "Messy" example m3 <- c("D D/\t D D","D\tD/ I", "D D/ D D","I/ I", "D D/ D D","D D/ D D","D D/ D D","D D/ D D", "I/ I","/ ","/I") genotype(m3) summary(genotype(m3)) m4 <- c("D D","D I","D D","I I", "D D","D D","D D","D D", "I I"," "," I") genotype(m4,sep=1) genotype(m4,sep=" ",remove.spaces=FALSE) summary(genotype(m4,sep=" ",remove.spaces=FALSE)) m5 <- c("DD","DI","DD","II", "DD","DD","DD","DD", "II"," "," I") genotype(m5,sep=1) haplotype(m5,sep=1,remove.spaces=FALSE) g5 <- genotype(m5,sep="") h5 <- haplotype(m5,sep="") heterozygote(g5) homozygote(g5) carrier(g5,"D") g5[9:10] <- haplotype(m4,sep=" ",remove=FALSE)[1:2] g5 g5[9:10] allele(g5[9:10],1) allele(g5,1)[9:10] # drop unused alleles g5[9:10,drop=TRUE] h5[9:10,drop=TRUE] # Convert allele.counts into genotype x <- c(0,1,2,1,1,2,NA,1,2,1,2,2,2) g <- as.genotype.allele.count(x, alleles=c("C","T") ) g # Use of genotypeOrder example.data <- c("D/D","D/I","I/D","I/I","D/D", "D/D","D/I","I/D","I/I","") summary(genotype(example.data)) genotypeOrder(genotype(example.data)) summary(genotype(example.data, genotypeOrder=c("D/D", "I/I", "D/I"))) summary(genotype(example.data, genotypeOrder=c( "D/I"))) summary(haplotype(example.data, genotypeOrder=c( "I/D", "D/I"))) example.data <- genotype(example.data) genotypeOrder(example.data) <- c("D/D", "I/I", "D/I") genotypeOrder(example.data)
Probability of observing all alleles with a given frequency in a sample of a specified size.
gregorius(freq, N, missprob, tol = 1e-10, maxN = 10000, maxiter=100, showiter = FALSE)
gregorius(freq, N, missprob, tol = 1e-10, maxN = 10000, maxiter=100, showiter = FALSE)
freq |
(Minimum) Allele frequency (required) |
N |
Number of sampled genotypes |
missprob |
Desired maximum probability of failing to observe an allele. |
tol |
Omit computation for terms which contribute less than this value. |
maxN |
Largest value to consider when searching for N. |
maxiter |
Maximum number of iterations to use when searching for N. |
showiter |
Boolean flag indicating whether to show the iterations performed when searching for N. |
If freq
and N
are provided, but missprob
is omitted,
this function computes the probability of failing to observe all alleles
with true underlying frequency freq
when N
diploid
genotypes are sampled. This is accomplished using the sum provided in
Corollary 2 of Gregorius (1980), omitting terms which contribute less
than tol
to the result.
When freq
and missprob
are provide, but N
is
omitted. A binary search on the range of [1,maxN
] is performed
to locate the smallest sample size, N
, for which the
probability of failing to observe all alleles with true
underlying frequency freq
is at most missprob
. In this
case, maxiter
specifies the largest number of iterations to use
in the binary search, and showiter
controls whether the
iterations of the search are displayed.
A list containing the following values:
call |
Function call used to generate this object. |
method |
One of the strings, "Compute missprob given N and freq", or "Determine minimal N given missprob and freq", indicating which type of computation was performed. |
retval$freq |
Specified allele frequency. |
retval$N |
Specified or computed sample size. |
retval$missprob |
Computed probability of failing to observe all
of the alleles with frequency |
This code produces sample sizes that are slightly larger than those
given in table 1 of Gregorius (1980). This appears to be due to
rounding of the computed missprob
s by the authors of that
paper.
Code submitted by David Duffy [email protected], substantially enhanced by Gregory R. Warnes [email protected].
Gregorius, H.R. 1980. The probability of losing an allele when diploid genotypes are sampled. Biometrics 36, 643-652.
# Compute the probability of missing an allele with frequency 0.15 when # 20 genotypes are sampled: gregorius(freq=0.15, N=20) # Determine what sample size is required to observe all alleles with true # frequency 0.15 with probability 0.95 gregorius(freq=0.15, missprob=1-0.95)
# Compute the probability of missing an allele with frequency 0.15 when # 20 genotypes are sampled: gregorius(freq=0.15, N=20) # Determine what sample size is required to observe all alleles with true # frequency 0.15 with probability 0.95 gregorius(freq=0.15, missprob=1-0.95)
groupGenotype
groups genotype or haplotype values
according to given "grouping/mapping" information
groupGenotype(x, map, haplotype=FALSE, factor=TRUE, levels=NULL, verbose=FALSE)
groupGenotype(x, map, haplotype=FALSE, factor=TRUE, levels=NULL, verbose=FALSE)
x |
genotype or haplotype |
map |
list, mapping information, see details and examples |
haplotype |
logical, should values in a |
factor |
logical, should output be a factor or a character |
levels |
character, optional vector of level names if factor is
produced ( |
verbose |
logical, print genotype names that match entries in the map - mainly used for debugging |
Examples show how map
can be constructed. This are the main
points to be aware of:
names of list components are used as new group names
list components hold genotype names per each group
genotype names can be specified directly i.e. "A/B" or abbreviated such as "A/*" or even "*/*", where "*" matches any possible allele, but read also further on
all genotype names that are not specified can be captured with ".else" (note the dot!)
genotype names that were not specified (and ".else" was not
used) are changed to NA
map
is inspected before grouping of genotypes is being
done. The following steps are done during inspection:
".else" must be at the end (if not, it is moved) to match everything that has not yet been defined
any specifications like "A/*", "*/A", or "*/*" are extended to
all possible genotypes based on alleles in argument alleles
-
in case of haplotype=FALSE
, "A/*" and "*/A" match the same
genotypes
since use of "*" and ".else" can cause duplicates along the whole map, duplicates are removed sequentially (first occurrence is kept)
Using ".else" or "*/*" at the end of the map produces the same result, due to removing duplicates sequentially.
A factor or character vector with genotypes grouped
Gregor Gorjanc
genotype
,
haplotype
,
factor
, and
levels
## --- Setup --- x <- c("A/A", "A/B", "B/A", "A/C", "C/A", "A/D", "D/A", "B/B", "B/C", "C/B", "B/D", "D/B", "C/C", "C/D", "D/C", "D/D") g <- genotype(x, reorder="yes") ## "A/A" "A/B" "A/B" "A/C" "A/C" "A/D" "A/D" "B/B" "B/C" "B/C" "B/D" "B/D" ## "C/C" "C/D" "C/D" "D/D" h <- haplotype(x) ## "A/A" "A/B" "B/A" "A/C" "C/A" "A/D" "D/A" "B/B" "B/C" "C/B" "B/D" "D/B" ## "C/C" "C/D" "D/C" "D/D" ## --- Use of "A/A", "A/*" and ".else" --- map <- list("homoG"=c("A/A", "B/B", "C/C", "D/D"), "heteroA*"=c("A/B", "A/C", "A/D"), "heteroB*"=c("B/*"), "heteroRest"=".else") (tmpG <- groupGenotype(x=g, map=map, factor=FALSE)) (tmpH <- groupGenotype(x=h, map=map, factor=FALSE, haplotype=TRUE)) ## Show difference between genotype and haplotype treatment cbind(as.character(h), gen=tmpG, hap=tmpH, diff=!(tmpG == tmpH)) ## gen hap diff ## [1,] "A/A" "homoG" "homoG" "FALSE" ## [2,] "A/B" "heteroA*" "heteroA*" "FALSE" ## [3,] "B/A" "heteroA*" "heteroB*" "TRUE" ## [4,] "A/C" "heteroA*" "heteroA*" "FALSE" ## [5,] "C/A" "heteroA*" "heteroRest" "TRUE" ## [6,] "A/D" "heteroA*" "heteroA*" "FALSE" ## [7,] "D/A" "heteroA*" "heteroRest" "TRUE" ## [8,] "B/B" "homoG" "homoG" "FALSE" ## [9,] "B/C" "heteroB*" "heteroB*" "FALSE" ## [10,] "C/B" "heteroB*" "heteroRest" "TRUE" ## [11,] "B/D" "heteroB*" "heteroB*" "FALSE" ## [12,] "D/B" "heteroB*" "heteroRest" "TRUE" ## [13,] "C/C" "homoG" "homoG" "FALSE" ## [14,] "C/D" "heteroRest" "heteroRest" "FALSE" ## [15,] "D/C" "heteroRest" "heteroRest" "FALSE" ## [16,] "D/D" "homoG" "homoG" "FALSE" map <- list("withA"="A/*", "rest"=".else") groupGenotype(x=g, map=map, factor=FALSE) ## [1] "withA" "withA" "withA" "withA" "withA" "withA" "withA" "rest" "rest" ## [10] "rest" "rest" "rest" "rest" "rest" "rest" "rest" groupGenotype(x=h, map=map, factor=FALSE, haplotype=TRUE) ## [1] "withA" "withA" "rest" "withA" "rest" "withA" "rest" "rest" "rest" ## [10] "rest" "rest" "rest" "rest" "rest" "rest" "rest" ## --- Use of "*/*" --- map <- list("withA"="A/*", withB="*/*") groupGenotype(x=g, map=map, factor=FALSE) ## [1] "withA" "withA" "withA" "withA" "withA" "withA" "withA" "withB" "withB" ## [10] "withB" "withB" "withB" "withB" "withB" "withB" "withB" ## --- Missing genotype specifications produces NA's --- map <- list("withA"="A/*", withB="B/*") groupGenotype(x=g, map=map, factor=FALSE) ## [1] "withA" "withA" "withA" "withA" "withA" "withA" "withA" "withB" "withB" ## [10] "withB" "withB" "withB" NA NA NA NA groupGenotype(x=h, map=map, factor=FALSE, haplotype=TRUE) ## [1] "withA" "withA" "withB" "withA" NA "withA" NA "withB" "withB" ## [10] NA "withB" NA NA NA NA NA
## --- Setup --- x <- c("A/A", "A/B", "B/A", "A/C", "C/A", "A/D", "D/A", "B/B", "B/C", "C/B", "B/D", "D/B", "C/C", "C/D", "D/C", "D/D") g <- genotype(x, reorder="yes") ## "A/A" "A/B" "A/B" "A/C" "A/C" "A/D" "A/D" "B/B" "B/C" "B/C" "B/D" "B/D" ## "C/C" "C/D" "C/D" "D/D" h <- haplotype(x) ## "A/A" "A/B" "B/A" "A/C" "C/A" "A/D" "D/A" "B/B" "B/C" "C/B" "B/D" "D/B" ## "C/C" "C/D" "D/C" "D/D" ## --- Use of "A/A", "A/*" and ".else" --- map <- list("homoG"=c("A/A", "B/B", "C/C", "D/D"), "heteroA*"=c("A/B", "A/C", "A/D"), "heteroB*"=c("B/*"), "heteroRest"=".else") (tmpG <- groupGenotype(x=g, map=map, factor=FALSE)) (tmpH <- groupGenotype(x=h, map=map, factor=FALSE, haplotype=TRUE)) ## Show difference between genotype and haplotype treatment cbind(as.character(h), gen=tmpG, hap=tmpH, diff=!(tmpG == tmpH)) ## gen hap diff ## [1,] "A/A" "homoG" "homoG" "FALSE" ## [2,] "A/B" "heteroA*" "heteroA*" "FALSE" ## [3,] "B/A" "heteroA*" "heteroB*" "TRUE" ## [4,] "A/C" "heteroA*" "heteroA*" "FALSE" ## [5,] "C/A" "heteroA*" "heteroRest" "TRUE" ## [6,] "A/D" "heteroA*" "heteroA*" "FALSE" ## [7,] "D/A" "heteroA*" "heteroRest" "TRUE" ## [8,] "B/B" "homoG" "homoG" "FALSE" ## [9,] "B/C" "heteroB*" "heteroB*" "FALSE" ## [10,] "C/B" "heteroB*" "heteroRest" "TRUE" ## [11,] "B/D" "heteroB*" "heteroB*" "FALSE" ## [12,] "D/B" "heteroB*" "heteroRest" "TRUE" ## [13,] "C/C" "homoG" "homoG" "FALSE" ## [14,] "C/D" "heteroRest" "heteroRest" "FALSE" ## [15,] "D/C" "heteroRest" "heteroRest" "FALSE" ## [16,] "D/D" "homoG" "homoG" "FALSE" map <- list("withA"="A/*", "rest"=".else") groupGenotype(x=g, map=map, factor=FALSE) ## [1] "withA" "withA" "withA" "withA" "withA" "withA" "withA" "rest" "rest" ## [10] "rest" "rest" "rest" "rest" "rest" "rest" "rest" groupGenotype(x=h, map=map, factor=FALSE, haplotype=TRUE) ## [1] "withA" "withA" "rest" "withA" "rest" "withA" "rest" "rest" "rest" ## [10] "rest" "rest" "rest" "rest" "rest" "rest" "rest" ## --- Use of "*/*" --- map <- list("withA"="A/*", withB="*/*") groupGenotype(x=g, map=map, factor=FALSE) ## [1] "withA" "withA" "withA" "withA" "withA" "withA" "withA" "withB" "withB" ## [10] "withB" "withB" "withB" "withB" "withB" "withB" "withB" ## --- Missing genotype specifications produces NA's --- map <- list("withA"="A/*", withB="B/*") groupGenotype(x=g, map=map, factor=FALSE) ## [1] "withA" "withA" "withA" "withA" "withA" "withA" "withA" "withB" "withB" ## [10] "withB" "withB" "withB" NA NA NA NA groupGenotype(x=h, map=map, factor=FALSE, haplotype=TRUE) ## [1] "withA" "withA" "withB" "withA" NA "withA" NA "withB" "withB" ## [10] NA "withB" NA NA NA NA NA
homozygote
creates an vector of logicals that are true when the
alleles of the corresponding observation are the identical.
heterozygote
creates an vector of logicals that are true when the
alleles of the corresponding observation differ.
carrier
create a logical vector or matrix of logicals
indicating whether the specified alleles are present.
allele.count
returns the number of copies of the specified
alleles carried by each observation.
allele
extract the specified allele(s) as a character vector
or a 2 column matrix.
allele.names
extract the set of allele names.
homozygote(x, allele.name, ...) heterozygote(x, allele.name, ...) carrier(x, allele.name, ...) ## S3 method for class 'genotype' carrier(x, allele.name=allele.names(x), any=!missing(allele.name), na.rm=FALSE, ...) allele.count(x, allele.name=allele.names(x),any=!missing(allele.name), na.rm=FALSE) allele(x, which=c(1,2) ) allele.names(x)
homozygote(x, allele.name, ...) heterozygote(x, allele.name, ...) carrier(x, allele.name, ...) ## S3 method for class 'genotype' carrier(x, allele.name=allele.names(x), any=!missing(allele.name), na.rm=FALSE, ...) allele.count(x, allele.name=allele.names(x),any=!missing(allele.name), na.rm=FALSE) allele(x, which=c(1,2) ) allele.names(x)
x |
|
... |
optional parameters (ignored) |
allele.name |
character value or vector of allele names |
any |
logical value. When |
na.rm |
logical value indicating whether to remove missing
values. When true, any |
which |
selects which allele to return. For first allele use
|
When the allele.name
argument is given, heterozygote and
homozygote return TRUE
if exactly one or both alleles,
respectively, match the specified allele.name.
homozygote
and heterozygote
return a vector of
logicals.
carrier
returns a logical vector if only one allele is
specified, or if any
is TRUE
. Otherwise, it returns
matrix of logicals with one row for each element of allele
.
allele.count
returns a vector of counts if only one allele is
specified, or if any
is TRUE
. Otherwise, it returns
matrix of counts with one row for each element of allele
.
allele
returns a character vector when one allele is
specified. When 2 alleles are specified, it returns a 2 column
character matrix.
allele.names
returns a character vector containing the set of
allele names.
Gregory R. Warnes [email protected]
genotype
,
HWE.test
,
summary.genotype
,
locus
gene
marker
example.data <- c("D/D","D/I","D/D","I/I","D/D","D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 heterozygote(g1) homozygote(g1) carrier(g1,"D") carrier(g1,"D",na.rm=TRUE) # get count of one allele allele.count(g1,"D") # get count of each allele allele.count(g1) # equivalent to allele.count(g1, c("D","I"), any=FALSE) # get combined count for both alleles allele.count(g1,c("I","D")) # get second allele allele(g1,2) # get both alleles allele(g1)
example.data <- c("D/D","D/I","D/D","I/I","D/D","D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 heterozygote(g1) homozygote(g1) carrier(g1,"D") carrier(g1,"D",na.rm=TRUE) # get count of one allele allele.count(g1,"D") # get count of each allele allele.count(g1) # equivalent to allele.count(g1, c("D","I"), any=FALSE) # get combined count for both alleles allele.count(g1,c("I","D")) # get second allele allele(g1,2) # get both alleles allele(g1)
Test the null hypothesis that Hardy-Weinberg equilibrium holds using the Chi-Square method.
HWE.chisq(x, ...) ## S3 method for class 'genotype' HWE.chisq(x, simulate.p.value=TRUE, B=10000, ...)
HWE.chisq(x, ...) ## S3 method for class 'genotype' HWE.chisq(x, simulate.p.value=TRUE, B=10000, ...)
x |
genotype or haplotype object. |
simulate.p.value |
a logical value indicating whether the p-value
should be computed using simulation instead of using the
|
B |
Number of simulation iterations to use when
|
... |
optional parameters passed to |
This function generates a 2-way table of allele counts, then calls
chisq.test
to compute a p-value for Hardy-Weinberg
Equilibrium. By default, it uses an unadjusted Chi-Square test
statistic and computes the p-value using a simulation/permutation
method. When simulate.p.value=FALSE
, it computes the test
statistic using the Yates continuity correction and tests it against
the asymptotic Chi-Square distribution with the approproate degrees of
freedom.
Note: The Yates continuty correction is applied *only* when
simulate.p.value=FALSE
, so that the reported test statistics
when simulate.p.value=FALSE
and simulate.p.value=TRUE
will differ.
An object of class htest
.
HWE.exact
,
HWE.test
,
diseq
,
diseq.ci
,
allele
,
chisq.test
,
boot
,
boot.ci
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 HWE.chisq(g1) # compare with HWE.exact(g1) # and HWE.test(g1) three.data <- c(rep("A/A",8), rep("C/A",20), rep("C/T",20), rep("C/C",10), rep("T/T",3)) g3 <- genotype(three.data) g3 HWE.chisq(g3, B=10000)
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 HWE.chisq(g1) # compare with HWE.exact(g1) # and HWE.test(g1) three.data <- c(rep("A/A",8), rep("C/A",20), rep("C/T",20), rep("C/C",10), rep("T/T",3)) g3 <- genotype(three.data) g3 HWE.chisq(g3, B=10000)
Exact test of Hardy-Weinberg Equilibrium for 2 Allele Markers.
HWE.exact(x)
HWE.exact(x)
x |
Genotype object |
Object of class 'htest'.
This function only works for genotypes with exactly 2 alleles.
David Duffy [email protected] with modifications by Gregory R. Warnes [email protected]
Emigh TH. (1980) "Comparison of tests for Hardy-Weinberg Equilibrium", Biometrics, 36, 627-642.
HWE.chisq
,
HWE.test
,
diseq
,
diseq.ci
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 HWE.exact(g1) # compare with HWE.chisq(g1) g2 <- genotype(sample( c("A","C"), 100, p=c(100,10), rep=TRUE), sample( c("A","C"), 100, p=c(100,10), rep=TRUE) ) HWE.exact(g2)
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 HWE.exact(g1) # compare with HWE.chisq(g1) g2 <- genotype(sample( c("A","C"), 100, p=c(100,10), rep=TRUE), sample( c("A","C"), 100, p=c(100,10), rep=TRUE) ) HWE.exact(g2)
Estimate disequilibrium parameter and test the null hypothesis that Hardy-Weinberg equilibrium holds.
HWE.test(x, ...) ## S3 method for class 'genotype' HWE.test(x, exact = nallele(x)==2, simulate.p.value=!exact, B=10000, conf=0.95, ci.B=1000, ... ) ## S3 method for class 'data.frame' HWE.test(x, ..., do.Allele.Freq=TRUE, do.HWE.test=TRUE) ## S3 method for class 'HWE.test' print(x, show=c("D","D'","r","table"), ...)
HWE.test(x, ...) ## S3 method for class 'genotype' HWE.test(x, exact = nallele(x)==2, simulate.p.value=!exact, B=10000, conf=0.95, ci.B=1000, ... ) ## S3 method for class 'data.frame' HWE.test(x, ..., do.Allele.Freq=TRUE, do.HWE.test=TRUE) ## S3 method for class 'HWE.test' print(x, show=c("D","D'","r","table"), ...)
x |
genotype or haplotype object. |
exact |
a logical value indicated whether the p-value should be computed using the exact method, which is only available for 2 allele genotypes. |
simulate.p.value |
a logical value indicating whether the p-value
should be computed using simulation instead of using the
|
B |
Number of simulation iterations to use when
|
conf |
Confidence level to use when computing the confidence level for D-hat. Defaults to 0.95, should be in (0,1). |
ci.B |
Number of bootstrap iterations to use when computing the confidence interval. Defaults to 1000. |
show |
a character vector containing the names of HWE test statistics to display from the set of "D", "D'", "r", and "table". |
... |
optional parameters passed to |
do.Allele.Freq |
logicial indication whether to summarize allele frequencies. |
do.HWE.test |
logicial indication whether to perform HWE tests |
HWE.test calls diseq
to computes the Hardy-Weinberg
(dis)equilibrium statistics D, D', and r (correlation coefficient).
Next it calls diseq.ci
to compute a bootstrap confidence
interval for these estimates. Finally, it calls
chisq.test
to compute a p-value for Hardy-Weinberg
Equilibrium using a simulation/permutation method.
Using bootstrapping for the confidence interval and simulation for the p-value avoids reliance on the assumptions the underlying Chi-square approximation. This is particularly important when some allele pairs have small counts.
For details on the definition of D, D', and r, see the help page for
diseq
.
An object of class HWE.test
with components
diseq |
A |
ci |
A |
test |
A |
call |
function call used to creat this object. |
conf , B , ci.B , simulate.p.value
|
values used for these arguments. |
Gregory R. Warnes [email protected]
genotype
,
diseq
,
diseq.ci
,
HWE.chisq
,
HWE.exact
,
chisq.test
## Marker with two alleles: example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 HWE.test(g1) ## Compare with individual calculations: diseq(g1) diseq.ci(g1) HWE.chisq(g1) HWE.exact(g1) ## Marker with three alleles: A, C, and T three.data <- c(rep("A/A",16), rep("C/A",40), rep("C/T",40), rep("C/C",20), rep("T/T",6)) g3 <- genotype(three.data) g3 HWE.test(g3, ci.B=10000)
## Marker with two alleles: example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 HWE.test(g1) ## Compare with individual calculations: diseq(g1) diseq.ci(g1) HWE.chisq(g1) HWE.exact(g1) ## Marker with three alleles: A, C, and T three.data <- c(rep("A/A",16), rep("C/A",40), rep("C/T",40), rep("C/C",20), rep("T/T",6)) g3 <- genotype(three.data) g3 HWE.test(g3, ci.B=10000)
Compute pairwise linkage disequilibrium between genetic markers
LD(g1, ...) ## S3 method for class 'genotype' LD(g1,g2,...) ## S3 method for class 'data.frame' LD(g1,...)
LD(g1, ...) ## S3 method for class 'genotype' LD(g1,g2,...) ## S3 method for class 'data.frame' LD(g1,...)
g1 |
genotype object or dataframe containing genotype objects |
g2 |
genotype object (ignored if g1 is a dataframe) |
... |
optional arguments (ignored) |
Linkage disequilibrium (LD) is the non-random association of marker alleles and can arise from marker proximity or from selection bias.
LD.genotype
estimates the extent of LD for a single pair of
genotypes. LD.data.frame
computes LD for all pairs of
genotypes contained in a data frame. Before starting,
LD.data.frame
checks the class and number of alleles of each
variable in the dataframe. If the data frame contains non-genotype
objects or genotypes with more or less than 2 alleles, these will be
omitted from the computation and a warning will be generated.
Three estimators of LD are computed:
D raw difference in frequency between the observed number of AB pairs and the expected number:
D' scaled D spanning the range [-1,1]
where, if D > 0:
or if D < 0:
r correlation coefficient between the markers
where
- is defined as the observed probability of
allele 'A' for marker 1,
- is defined as the observed probability of
allele 'a' for marker 1,
- is defined as the observed probability of
allele 'B' for marker 2, and
- is defined as the observed probability of
allele 'b' for marker 2, and
- is defined as the probability of
the marker allele pair 'AB'.
For genotype data, AB/ab cannot be distinguished from
aB/Ab. Consequently, we estimate using maximum
likelihood and use this value in the computations.
LD.genotype
returns a 5 element list:
call |
the matched call |
D |
Linkage disequilibrium estimate |
Dprime |
Scaled linkage disequilibrium estimate |
corr |
Correlation coefficient |
nobs |
Number of observations |
chisq |
Chi-square statistic for linkage equilibrium (i.e., D=D'=corr=0) |
p.value |
Chi-square p-value for marker independence |
LD.data.frame
returns a list with the same elements, but each
element is a matrix where the upper off-diagonal elements contain the
estimate for the corresponding pair of markers. The other matrix
elements are NA
.
Gregory R. Warnes [email protected]
g1 <- genotype( c('T/A', NA, 'T/T', NA, 'T/A', NA, 'T/T', 'T/A', 'T/T', 'T/T', 'T/A', 'A/A', 'T/T', 'T/A', 'T/A', 'T/T', NA, 'T/A', 'T/A', NA) ) g2 <- genotype( c('C/A', 'C/A', 'C/C', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'C/A', 'C/C', 'C/A', 'A/A', 'C/A', 'A/A', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'A/A') ) g3 <- genotype( c('T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T') ) # Compute LD on a single pair LD(g1,g2) # Compute LD table for all 3 genotypes data <- makeGenotypes(data.frame(g1,g2,g3)) LD(data)
g1 <- genotype( c('T/A', NA, 'T/T', NA, 'T/A', NA, 'T/T', 'T/A', 'T/T', 'T/T', 'T/A', 'A/A', 'T/T', 'T/A', 'T/A', 'T/T', NA, 'T/A', 'T/A', NA) ) g2 <- genotype( c('C/A', 'C/A', 'C/C', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'C/A', 'C/C', 'C/A', 'A/A', 'C/A', 'A/A', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'A/A') ) g3 <- genotype( c('T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T') ) # Compute LD on a single pair LD(g1,g2) # Compute LD table for all 3 genotypes data <- makeGenotypes(data.frame(g1,g2,g3)) LD(data)
locus
, gene
, and marker
create objects to store
information, respectively, about genetic loci, genes, and markers.
is.locus
, is.gene
, and ismarker
test whether an
object is a member of the respective class.
as.character.locus
, as.character.gene
,
as.character.marker
return a character string containing a
compact encoding the object.
getlocus
, getgene
, getmarker
extract locus data
(if present) from another object.
locus<-
, marker<-
, and gene<-
adds locus data to
an object.
locus(name, chromosome, arm=c("p", "q", "long", "short", NA), index.start, index.end=NULL) gene(name, chromosome, arm=c("p", "q", "long", "short"), index.start, index.end=NULL) marker(name, type, locus.name, bp.start, bp.end = NULL, relative.to = NULL, ...) is.locus(x) is.gene(x) is.marker(x) ## S3 method for class 'locus' as.character(x, ...) ## S3 method for class 'gene' as.character(x, ...) ## S3 method for class 'marker' as.character(x, ...) getlocus(x, ...) locus(x) <- value marker(x) <- value gene(x) <- value
locus(name, chromosome, arm=c("p", "q", "long", "short", NA), index.start, index.end=NULL) gene(name, chromosome, arm=c("p", "q", "long", "short"), index.start, index.end=NULL) marker(name, type, locus.name, bp.start, bp.end = NULL, relative.to = NULL, ...) is.locus(x) is.gene(x) is.marker(x) ## S3 method for class 'locus' as.character(x, ...) ## S3 method for class 'gene' as.character(x, ...) ## S3 method for class 'marker' as.character(x, ...) getlocus(x, ...) locus(x) <- value marker(x) <- value gene(x) <- value
name |
character string giving locus, gene, or marker name |
chromosome |
integer specifying chromosome number (1:23 for humans). |
arm |
character indicating long or short arm of the chromosome. Long is be specified by "long" or "p". Short is specified by "short" or "q". |
index.start |
integer specifying location of start of locus or gene on the chromosome. |
index.end |
optional integer specifying location of end of locus or gene on the chromosome. |
type |
character string indicating marker type, e.g. "SNP" |
locus.name |
either a character string giving the name of the
locus or gene (other details may be specified using |
bp.start |
start location of marker, in base pairs |
bp.end |
end location of marker, in base pairs (optional) |
relative.to |
location (optional) from which |
... |
parameters for |
x |
an object of class |
value |
|
Object of class locus
and gene
are lists with the
elements:
name |
character string giving locus, gene, or marker name |
chromosome |
integer specifying chromosome number (1:23 for humans). |
arm |
character indicating long or short arm of the chromosome. Long is be specified by "long" or "p". Short is specified by "short" or "q". |
index.start |
integer specifying location of start of locus or gene on the chromosome. |
index.end |
optional integer specifying location of end of locus or gene on the chromosome. |
Objects of class marker
add the additional fields:
marker.name |
character string giving the name of the marker |
bp.start |
start location of marker, in base pairs |
bp.end |
end location of marker, in base pairs (optional) |
relative.to |
location (optional) from which |
Gregory R. Warnes [email protected]
ar2 <- gene("AR2",chromosome=7,arm="q",index.start=35) ar2 par <- locus(name="AR2 Psedogene", chromosome=1, arm="q", index.start=32, index.end=42) par c109t <- marker(name="C-109T", type="SNP", locus.name="AR2", chromosome=7, arm="q", index.start=35, bp.start=-109, relative.to="start of coding region") c109t c109t <- marker(name="C-109T", type="SNP", locus=ar2, bp.start=-109, relative.to="start of coding region") c109t example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data, locus=ar2) g1 getlocus(g1) summary(g1) HWE.test(g1) g2 <- genotype(example.data, locus=c109t) summary(g2) getlocus(g2) heterozygote(g2) homozygote(g1) allele(g1,1) carrier(g1,"I") heterozygote(g2)
ar2 <- gene("AR2",chromosome=7,arm="q",index.start=35) ar2 par <- locus(name="AR2 Psedogene", chromosome=1, arm="q", index.start=32, index.end=42) par c109t <- marker(name="C-109T", type="SNP", locus.name="AR2", chromosome=7, arm="q", index.start=35, bp.start=-109, relative.to="start of coding region") c109t c109t <- marker(name="C-109T", type="SNP", locus=ar2, bp.start=-109, relative.to="start of coding region") c109t example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data, locus=ar2) g1 getlocus(g1) summary(g1) HWE.test(g1) g2 <- genotype(example.data, locus=c109t) summary(g2) getlocus(g2) heterozygote(g2) homozygote(g1) allele(g1,1) carrier(g1,"I") heterozygote(g2)
Convert columns in a dataframe to genotypes or haplotypes.
makeGenotypes(data, convert, sep = "/", tol = 0.5, ..., method=as.genotype) makeHaplotypes(data, convert, sep = "/", tol = 0.9, ...)
makeGenotypes(data, convert, sep = "/", tol = 0.5, ..., method=as.genotype) makeHaplotypes(data, convert, sep = "/", tol = 0.9, ...)
data |
Dataframe containing columns to be converted |
convert |
Vector or list of pairs specifying which columns contain genotype/haplotype data. See below for details. |
sep |
Genotype separator |
tol |
See below. |
... |
Optional arguments to as.genotype function |
method |
Function used to perform the conversion. |
The functions makeGenotypes and makeHaplotypes allow the conversion of all of the genetic variables in a dataset to genotypes or haplotypes in a single step.
The parameter convert
may be missing, a vector of
column names, indexes or true/false indictators, or a list of column
name or index pairs.
When the argument convert
is not provided, the function will
look for columns where at least tol
*100% of the records
contain the separator character sep
('/' by default). These
columns will then be assumed to contain both of the genotype/haplotype
alleles and will be converted in-place to genotype variables.
When the argument convert
is a vector of column names, indexes
or true/false indictators, the corresponding columns will be assumed
to contain both of the genotype/haplotype alleles and will be
converted in-place to genotype variables.
When the argument convert
is a list containing column name or
index pairs, the two elements of each pair will be assumed to contain the
individual alleles of a genotype/haplotype. The first column
specified in each pair will be replaced with the new
genotype/haplotype variable named name1 + sep + name2
. The
second column will be removed.
Note that the method
argument may be used to supply a
non-standard conversion function, such as
as.genotype.allele.count
, which converts from [0,1,2] to
['A/A','A/B','A/C'] (or the specified allele names). See the example
below.
Dataframe containing converted genotype/haplotype variables. All other variables will be unchanged.
Gregory R. Warnes [email protected]
## Not run: # common case data <- read.csv(file="genotype_data.csv") data <- makeGenotypes(data) ## End(Not run) # Create a test data set where there are several genotypes in columns # of the form "A/T". test1 <- data.frame(Tmt=sample(c("Control","Trt1","Trt2"),20, replace=TRUE), G1=sample(c("A/T","T/T","T/A",NA),20, replace=TRUE), N1=rnorm(20), I1=sample(1:100,20,replace=TRUE), G2=paste(sample(c("134","138","140","142","146"),20, replace=TRUE), sample(c("134","138","140","142","146"),20, replace=TRUE), sep=" / "), G3=sample(c("A /T","T /T","T /A"),20, replace=TRUE), comment=sample(c("Possible Bad Data/Lab Error",""),20, rep=TRUE) ) test1 # now automatically convert genotype columns geno1 <- makeGenotypes(test1) geno1 # Create a test data set where there are several haplotypes with alleles # in adjacent columns. test2 <- data.frame(Tmt=sample(c("Control","Trt1","Trt2"),20, replace=TRUE), G1.1=sample(c("A","T",NA),20, replace=TRUE), G1.2=sample(c("A","T",NA),20, replace=TRUE), N1=rnorm(20), I1=sample(1:100,20,replace=TRUE), G2.1=sample(c("134","138","140","142","146"),20, replace=TRUE), G2.2=sample(c("134","138","140","142","146"),20, replace=TRUE), G3.1=sample(c("A ","T ","T "),20, replace=TRUE), G3.2=sample(c("A ","T ","T "),20, replace=TRUE), comment=sample(c("Possible Bad Data/Lab Error",""),20, rep=TRUE) ) test2 # specifly the locations of the columns to be paired for haplotypes makeHaplotypes(test2, convert=list(c("G1.1","G1.2"),6:7,8:9)) # Create a test data set where the data is coded as numeric allele # counts (0-2). test3 <- data.frame(Tmt=sample(c("Control","Trt1","Trt2"),20, replace=TRUE), G1=sample(c(0:2,NA),20, replace=TRUE), N1=rnorm(20), I1=sample(1:100,20,replace=TRUE), G2=sample(0:2,20, replace=TRUE), comment=sample(c("Possible Bad Data/Lab Error",""),20, rep=TRUE) ) test3 # specifly the locations of the columns, and a non-standard conversion makeGenotypes(test3, convert=c('G1','G2'), method=as.genotype.allele.count)
## Not run: # common case data <- read.csv(file="genotype_data.csv") data <- makeGenotypes(data) ## End(Not run) # Create a test data set where there are several genotypes in columns # of the form "A/T". test1 <- data.frame(Tmt=sample(c("Control","Trt1","Trt2"),20, replace=TRUE), G1=sample(c("A/T","T/T","T/A",NA),20, replace=TRUE), N1=rnorm(20), I1=sample(1:100,20,replace=TRUE), G2=paste(sample(c("134","138","140","142","146"),20, replace=TRUE), sample(c("134","138","140","142","146"),20, replace=TRUE), sep=" / "), G3=sample(c("A /T","T /T","T /A"),20, replace=TRUE), comment=sample(c("Possible Bad Data/Lab Error",""),20, rep=TRUE) ) test1 # now automatically convert genotype columns geno1 <- makeGenotypes(test1) geno1 # Create a test data set where there are several haplotypes with alleles # in adjacent columns. test2 <- data.frame(Tmt=sample(c("Control","Trt1","Trt2"),20, replace=TRUE), G1.1=sample(c("A","T",NA),20, replace=TRUE), G1.2=sample(c("A","T",NA),20, replace=TRUE), N1=rnorm(20), I1=sample(1:100,20,replace=TRUE), G2.1=sample(c("134","138","140","142","146"),20, replace=TRUE), G2.2=sample(c("134","138","140","142","146"),20, replace=TRUE), G3.1=sample(c("A ","T ","T "),20, replace=TRUE), G3.2=sample(c("A ","T ","T "),20, replace=TRUE), comment=sample(c("Possible Bad Data/Lab Error",""),20, rep=TRUE) ) test2 # specifly the locations of the columns to be paired for haplotypes makeHaplotypes(test2, convert=list(c("G1.1","G1.2"),6:7,8:9)) # Create a test data set where the data is coded as numeric allele # counts (0-2). test3 <- data.frame(Tmt=sample(c("Control","Trt1","Trt2"),20, replace=TRUE), G1=sample(c(0:2,NA),20, replace=TRUE), N1=rnorm(20), I1=sample(1:100,20,replace=TRUE), G2=sample(0:2,20, replace=TRUE), comment=sample(c("Possible Bad Data/Lab Error",""),20, rep=TRUE) ) test3 # specifly the locations of the columns, and a non-standard conversion makeGenotypes(test3, convert=c('G1','G2'), method=as.genotype.allele.count)
Order/sort genotype or haplotype object according to order of allele names or genotypes
## S3 method for class 'genotype' order(..., na.last=TRUE, decreasing=FALSE, alleleOrder=allele.names(x), genotypeOrder=NULL) ## S3 method for class 'genotype' sort(x, decreasing=FALSE, na.last=NA, ..., alleleOrder=allele.names(x), genotypeOrder=NULL) genotypeOrder(x) genotypeOrder(x) <- value
## S3 method for class 'genotype' order(..., na.last=TRUE, decreasing=FALSE, alleleOrder=allele.names(x), genotypeOrder=NULL) ## S3 method for class 'genotype' sort(x, decreasing=FALSE, na.last=NA, ..., alleleOrder=allele.names(x), genotypeOrder=NULL) genotypeOrder(x) genotypeOrder(x) <- value
... |
genotype or haplotype in |
x |
genotype or haplotype in |
na.last |
|
decreasing |
|
alleleOrder |
character, vector of allele names in wanted order |
genotypeOrder |
character, vector of genotype/haplotype names in wanted order |
value |
the same as in argument |
Argument genotypeOrder
can be usefull, when you want that some
genotypes appear "together", whereas they are not "together" by allele
order.
Both methods (order
and sort
) work with genotype and
haplotype classes.
If alleleOrder
is given, genotypeOrder
has no effect.
Genotypes/haplotypes, with missing alleles in alleleOrder
are
treated as NA
and ordered according to order
arguments related to NA
values. In such cases a warning is issued
("Found data values not matching specified alleles. Converting to NA.")
and can be safely ignored. Genotypes present in x
, but not
specified in genotypeOrder
, are also treated as NA
.
Value of genotypeOrder
such as "B/A" matches also "A/B" in case
of genotypes.
Only unique values in argument alleleOrder
or
genotypeOrder
are used i.e. first occurrence prevails.
The same as in order
or sort
Gregor Gorjanc
genotype
,
allele.names
,
order
, and
sort
x <- c("C/C", "A/C", "A/A", NA, "C/B", "B/A", "B/B", "B/C", "A/C") alleles <- c("A", "B", "C") g <- genotype(x, alleles=alleles, reorder="yes") ## "C/C" "A/C" "A/A" NA "B/C" "A/B" "B/B" "B/C" "A/C" h <- haplotype(x, alleles=alleles) ## "C/C" "A/C" "A/A" NA "C/B" "B/A" "B/B" "B/C" "A/C" ## --- Standard usage --- sort(g) ## "A/A" "A/B" "A/C" "A/C" "B/B" "B/C" "B/C" "C/C" NA sort(h) ## "A/A" "A/C" "A/C" "B/A" "B/B" "B/C" "C/B" "C/C" NA ## --- Reversed order of alleles --- sort(g, alleleOrder=c("B", "C", "A")) ## "B/B" "B/C" "B/C" "A/B" "C/C" "A/C" "A/C" "A/A" NA ## note that A/B comes after B/C since it is treated as B/A; ## order of alleles (not in alleleOrder!) does not matter for a genotype sort(h, alleleOrder=c("B", "C", "A")) ## "B/B" "B/C" "B/A" "C/B" "C/C" "A/C" "A/C" "A/A" NA ## --- Missing allele(s) in alleleOrder --- sort(g, alleleOrder=c("B", "C")) ## "B/B" "B/C" "B/C" "C/C" "A/C" "A/A" NA "A/B" "A/C" sort(g, alleleOrder=c("B")) ## "B/B" "C/C" "A/C" "A/A" NA "B/C" "A/B" "B/C" "A/C" ## genotypes with missing allele are treated as NA sort(h, alleleOrder=c("B", "C")) ## "B/B" "B/C" "C/B" "C/C" "A/C" "A/A" NA "B/A" "A/C" sort(h, alleleOrder=c("B")) ## "B/B" "C/C" "A/C" "A/A" NA "C/B" "B/A" "B/C" "A/C" ## --- Use of genotypeOrder --- sort(g, genotypeOrder=c("A/A", "C/C", "B/B", "A/B", "A/C", "B/C")) ## "A/A" "C/C" "B/B" "A/B" "A/C" "A/C" "B/C" "B/C" NA sort(h, genotypeOrder=c("A/A", "C/C", "B/B", "A/C", "C/B", "B/A", "B/C")) ## "A/A" "C/C" "B/B" "A/C" "A/C" "C/B" "B/A" "B/C" NA ## --- Missing genotype(s) in genotypeOrder --- sort(g, genotypeOrder=c( "C/C", "A/B", "A/C", "B/C")) ## "C/C" "A/B" "A/C" "A/C" "B/C" "B/C" "A/A" NA "B/B" sort(h, genotypeOrder=c( "C/C", "A/B", "A/C", "B/C")) ## "C/C" "A/C" "A/C" "B/C" "A/A" NA "C/B" "B/A" "B/B"
x <- c("C/C", "A/C", "A/A", NA, "C/B", "B/A", "B/B", "B/C", "A/C") alleles <- c("A", "B", "C") g <- genotype(x, alleles=alleles, reorder="yes") ## "C/C" "A/C" "A/A" NA "B/C" "A/B" "B/B" "B/C" "A/C" h <- haplotype(x, alleles=alleles) ## "C/C" "A/C" "A/A" NA "C/B" "B/A" "B/B" "B/C" "A/C" ## --- Standard usage --- sort(g) ## "A/A" "A/B" "A/C" "A/C" "B/B" "B/C" "B/C" "C/C" NA sort(h) ## "A/A" "A/C" "A/C" "B/A" "B/B" "B/C" "C/B" "C/C" NA ## --- Reversed order of alleles --- sort(g, alleleOrder=c("B", "C", "A")) ## "B/B" "B/C" "B/C" "A/B" "C/C" "A/C" "A/C" "A/A" NA ## note that A/B comes after B/C since it is treated as B/A; ## order of alleles (not in alleleOrder!) does not matter for a genotype sort(h, alleleOrder=c("B", "C", "A")) ## "B/B" "B/C" "B/A" "C/B" "C/C" "A/C" "A/C" "A/A" NA ## --- Missing allele(s) in alleleOrder --- sort(g, alleleOrder=c("B", "C")) ## "B/B" "B/C" "B/C" "C/C" "A/C" "A/A" NA "A/B" "A/C" sort(g, alleleOrder=c("B")) ## "B/B" "C/C" "A/C" "A/A" NA "B/C" "A/B" "B/C" "A/C" ## genotypes with missing allele are treated as NA sort(h, alleleOrder=c("B", "C")) ## "B/B" "B/C" "C/B" "C/C" "A/C" "A/A" NA "B/A" "A/C" sort(h, alleleOrder=c("B")) ## "B/B" "C/C" "A/C" "A/A" NA "C/B" "B/A" "B/C" "A/C" ## --- Use of genotypeOrder --- sort(g, genotypeOrder=c("A/A", "C/C", "B/B", "A/B", "A/C", "B/C")) ## "A/A" "C/C" "B/B" "A/B" "A/C" "A/C" "B/C" "B/C" NA sort(h, genotypeOrder=c("A/A", "C/C", "B/B", "A/C", "C/B", "B/A", "B/C")) ## "A/A" "C/C" "B/B" "A/C" "A/C" "C/B" "B/A" "B/C" NA ## --- Missing genotype(s) in genotypeOrder --- sort(g, genotypeOrder=c( "C/C", "A/B", "A/C", "B/C")) ## "C/C" "A/B" "A/C" "A/C" "B/C" "B/C" "A/A" NA "B/B" sort(h, genotypeOrder=c( "C/C", "A/B", "A/C", "B/C")) ## "C/C" "A/C" "A/C" "B/C" "A/A" NA "C/B" "B/A" "B/B"
plot.genotype
can plot genotype or allele frequency of a genotype
object.
## S3 method for class 'genotype' plot(x, type=c("genotype", "allele"), what=c("percentage", "number"), ...)
## S3 method for class 'genotype' plot(x, type=c("genotype", "allele"), what=c("percentage", "number"), ...)
x |
genotype object, as genotype. |
type |
plot "genotype" or "allele" frequency, as character. |
what |
show "percentage" or "number", as character |
... |
Optional arguments for |
The same as in barplot
.
Gregor Gorjanc
set <- c("A/A", "A/B", "A/B", "B/B", "B/B", "B/B", "B/B", "B/C", "C/C", "C/C") set <- genotype(set, alleles=c("A", "B", "C"), reorder="yes") plot(set) plot(set, type="allele", what="number")
set <- c("A/A", "A/B", "A/B", "B/B", "B/B", "B/B", "B/B", "B/C", "C/C", "C/C") set <- genotype(set, alleles=c("A", "B", "C"), reorder="yes") plot(set) plot(set, type="allele", what="number")
Textual and graphical display of linkage disequilibrium (LD) objects
## S3 method for class 'LD' print(x, digits = getOption("digits"), ...) ## S3 method for class 'LD.data.frame' print(x, ...) ## S3 method for class 'data.frame' summary.LD(object, digits = getOption("digits"), which = c("D", "D'", "r", "X^2", "P-value", "n", " "), rowsep, show.all = FALSE, ...) ## S3 method for class 'summary.LD.data.frame' print(x, digits = getOption("digits"), ...) ## S3 method for class 'LD.data.frame' plot(x,digits=3, colorcut=c(0,0.01, 0.025, 0.5, 0.1, 1), colors=heat.colors(length(colorcut)), textcol="black", marker, which="D'", distance, ...) LDtable(x, colorcut=c(0,0.01, 0.025, 0.5, 0.1, 1), colors=heat.colors(length(colorcut)), textcol="black", digits=3, show.all=FALSE, which=c("D", "D'", "r", "X^2", "P-value", "n"), colorize="P-value", cex, ...) LDplot(x, digits=3, marker, distance, which=c("D", "D'", "r", "X^2", "P-value", "n", " "), ... )
## S3 method for class 'LD' print(x, digits = getOption("digits"), ...) ## S3 method for class 'LD.data.frame' print(x, ...) ## S3 method for class 'data.frame' summary.LD(object, digits = getOption("digits"), which = c("D", "D'", "r", "X^2", "P-value", "n", " "), rowsep, show.all = FALSE, ...) ## S3 method for class 'summary.LD.data.frame' print(x, digits = getOption("digits"), ...) ## S3 method for class 'LD.data.frame' plot(x,digits=3, colorcut=c(0,0.01, 0.025, 0.5, 0.1, 1), colors=heat.colors(length(colorcut)), textcol="black", marker, which="D'", distance, ...) LDtable(x, colorcut=c(0,0.01, 0.025, 0.5, 0.1, 1), colors=heat.colors(length(colorcut)), textcol="black", digits=3, show.all=FALSE, which=c("D", "D'", "r", "X^2", "P-value", "n"), colorize="P-value", cex, ...) LDplot(x, digits=3, marker, distance, which=c("D", "D'", "r", "X^2", "P-value", "n", " "), ... )
x , object
|
LD or LD.data.frame object |
digits |
Number of significant digits to display |
which |
Name(s) of LD information items to be displayed |
rowsep |
Separator between rows of data, use |
colorcut |
P-value cutoffs points for colorizing LDtable |
colors |
Colors for each P-value cutoff given in |
textcol |
Color for text labels for LDtable |
marker |
Marker used as 'comparator' on LDplot. If omitted separate lines for each marker will be displayed |
distance |
Marker location, used for locating of markers on LDplot. |
show.all |
If TRUE, show all rows/columns of matrix. Otherwise omit completely blank rows/columns. |
colorize |
LD parameter used for determining table cell colors |
cex |
Scaling factor for table text. If absent, text will be scaled to fit within the table cells. |
... |
Optional arguments ( |
None.
Gregory R. Warnes [email protected]
LD
, genotype
, HWE.test
g1 <- genotype( c('T/A', NA, 'T/T', NA, 'T/A', NA, 'T/T', 'T/A', 'T/T', 'T/T', 'T/A', 'A/A', 'T/T', 'T/A', 'T/A', 'T/T', NA, 'T/A', 'T/A', NA) ) g2 <- genotype( c('C/A', 'C/A', 'C/C', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'C/A', 'C/C', 'C/A', 'A/A', 'C/A', 'A/A', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'A/A') ) g3 <- genotype( c('T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T') ) data <- makeGenotypes(data.frame(g1,g2,g3)) # Compute & display LD for one marker pair ld <- LD(g1,g2) print(ld) # Compute LD table for all 3 genotypes ldt <- LD(data) # display the results print(ldt) # textual display LDtable(ldt) # graphical color-coded table LDplot(ldt, distance=c(124, 834, 927)) # LD plot vs distance # more markers makes prettier plots! data <- list() nobs <- 1000 ngene <- 20 s <- seq(0,1,length=ngene) a1 <- a2 <- matrix("", nrow=nobs, ncol=ngene) for(i in 1:length(s) ) { rallele <- function(p) sample( c("A","T"), 1, p=c(p, 1-p)) if(i==1) { a1[,i] <- sample( c("A","T"), 1000, p=c(0.5,0.5), replace=TRUE) a2[,i] <- sample( c("A","T"), 1000, p=c(0.5,0.5), replace=TRUE) } else { p1 <- pmax( pmin( 0.25 + s[i] * as.numeric(a1[,i-1]=="A"),1 ), 0 ) p2 <- pmax( pmin( 0.25 + s[i] * as.numeric(a2[,i-1]=="A"),1 ), 0 ) a1[,i] <- sapply(p1, rallele ) a2[,i] <- sapply(p2, rallele ) } data[[paste("G",i,sep="")]] <- genotype(a1[,i],a2[,i]) } data <- data.frame(data) data <- makeGenotypes(data) ldt <- LD(data) plot(ldt, digits=2, marker=19) # do LDtable & LDplot on in a single # graphics window
g1 <- genotype( c('T/A', NA, 'T/T', NA, 'T/A', NA, 'T/T', 'T/A', 'T/T', 'T/T', 'T/A', 'A/A', 'T/T', 'T/A', 'T/A', 'T/T', NA, 'T/A', 'T/A', NA) ) g2 <- genotype( c('C/A', 'C/A', 'C/C', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'C/A', 'C/C', 'C/A', 'A/A', 'C/A', 'A/A', 'C/A', 'C/C', 'C/A', 'C/A', 'C/A', 'A/A') ) g3 <- genotype( c('T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T', 'T/A', 'T/A', 'T/A', 'T/T') ) data <- makeGenotypes(data.frame(g1,g2,g3)) # Compute & display LD for one marker pair ld <- LD(g1,g2) print(ld) # Compute LD table for all 3 genotypes ldt <- LD(data) # display the results print(ldt) # textual display LDtable(ldt) # graphical color-coded table LDplot(ldt, distance=c(124, 834, 927)) # LD plot vs distance # more markers makes prettier plots! data <- list() nobs <- 1000 ngene <- 20 s <- seq(0,1,length=ngene) a1 <- a2 <- matrix("", nrow=nobs, ncol=ngene) for(i in 1:length(s) ) { rallele <- function(p) sample( c("A","T"), 1, p=c(p, 1-p)) if(i==1) { a1[,i] <- sample( c("A","T"), 1000, p=c(0.5,0.5), replace=TRUE) a2[,i] <- sample( c("A","T"), 1000, p=c(0.5,0.5), replace=TRUE) } else { p1 <- pmax( pmin( 0.25 + s[i] * as.numeric(a1[,i-1]=="A"),1 ), 0 ) p2 <- pmax( pmin( 0.25 + s[i] * as.numeric(a2[,i-1]=="A"),1 ), 0 ) a1[,i] <- sapply(p1, rallele ) a2[,i] <- sapply(p2, rallele ) } data[[paste("G",i,sep="")]] <- genotype(a1[,i],a2[,i]) } data <- data.frame(data) data <- makeGenotypes(data) ldt <- LD(data) plot(ldt, digits=2, marker=19) # do LDtable & LDplot on in a single # graphics window
summary.genotype
creates an object containing allele and
genotype frequency from a genotype
or haplotype
object. print.summary.genotype
displays a
summary.genotype
object.
## S3 method for class 'genotype' summary(object, ..., maxsum) ## S3 method for class 'summary.genotype' print(x,...,round=2)
## S3 method for class 'genotype' summary(object, ..., maxsum) ## S3 method for class 'summary.genotype' print(x,...,round=2)
object , x
|
an object of class |
... |
optional parameters. Ignored by |
maxsum |
specifying any value for the parameter
maxsum will cause |
round |
number of digits to use when displaying proportions. |
Specifying any value for the parameter maxsum
will cause fallback
to summary.factor
. This is so that the function
summary.dataframe
will give reasonable output when it contains a
genotype column. (Hopefully we can figure out something better to do
in this case.)
The returned value of summary.genotype
is an object of class
summary.genotype
which
is a list with the following components:
locus |
locus information field (if present) from |
.
allele.names |
vector of allele names |
allele.freq |
A two column matrix with one row for each allele, plus one row for
|
genotype.freq |
A two column matrix with one row for each genotype, plus one row for
|
print.summary.genotype
silently returns the object x
.
Gregory R. Warnes [email protected]
genotype
,
HWE.test
,
allele
,
homozygote
,
heterozygote
,
carrier
,
allele.count
locus
gene
marker
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 summary(g1)
example.data <- c("D/D","D/I","D/D","I/I","D/D", "D/D","D/D","D/D","I/I","") g1 <- genotype(example.data) g1 summary(g1)
These functions are undocumented. Some are internal and not intended for direct use. Some are not yet ready for end users. Others simply haven't been documented yet.
Gregory R. Warnes
write.pop.file
creates a 'pop' data file, as used by the
GenePop (https://genepop.curtin.edu.au/) and LinkDos
(https://genepop.curtin.edu.au/linkC.html) software
packages.
write.pedigree.file
creates a 'pedigree' data file, as used
by the QTDT software package
(http://csg.sph.umich.edu//abecasis/QTDT/).
write.marker.file
creates a 'marker' data file, as used by
the QTDT software package
(http://csg.sph.umich.edu//abecasis/QTDT/).
write.pop.file(data, file = "", digits = 2, description = "Data from R") write.pedigree.file(data, family, pid, father, mother, sex, file="pedigree.txt") write.marker.file(data, location, file="marker.txt")
write.pop.file(data, file = "", digits = 2, description = "Data from R") write.pedigree.file(data, family, pid, father, mother, sex, file="pedigree.txt") write.marker.file(data, location, file="marker.txt")
data |
Data frame containing genotype objects to be exported |
file |
Output filename |
digits |
Number of digits to use in numbering genotypes, either 2 or 3. |
description |
Description to use as the first line of the 'pop' file. |
family , pid , father , mother
|
Vector of family, individual, father, and mother id's, respectively. |
sex |
Vector giving the sex of the individual (1=Make, 2=Female) |
location |
Location of the marker relative to the gene of interest, in base pairs. |
The format of 'Pop' files is documented at https://genepop.curtin.edu.au/help_input.html, the format of 'pedigree' files is documented at http://csg.sph.umich.edu/abecasis/GOLD/docs/pedigree.html and the format of 'marker' files is documented at http://csg.sph.umich.edu/abecasis/GOLD/docs/map.html.
No return value.
Gregory R. Warnes [email protected]
# TBA
# TBA