Title: | Generated Probability Distribution Models |
---|---|
Description: | Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models. |
Authors: | Shaiful Anuar Abu Bakar |
Maintainer: | Shaiful Anuar Abu Bakar <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.0 |
Built: | 2024-12-16 06:37:45 UTC |
Source: | CRAN |
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.
Package: | gendist |
Type: | Package |
Version: | 2.0 |
Date: | 2019-01-30 |
License: | GPL (>=2) |
All the models use parent distribution(s) and thus flexible to incorporate many exisiting probability distributions.
Shaiful Anuar Abu Bakar
Maintainer: Shaiful Anuar Abu Bakar <[email protected]>
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
Computes pdf of the arc tan model.
darctan(x, alpha, spec, arg, log = FALSE)
darctan(x, alpha, spec, arg, log = FALSE)
x |
scalar or vector of values to compute the pdf. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
log |
logical; if |
The pdf of arc tan model with parameter has a general form of:
for where
and
follow the support of
.
denote the inverse function of tangent.
and
are the pdf and cdf of parent distribution, respectively. Note also that
.
An object of the same length as x
, giving the pdf values computed at x
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
x=runif(10, min=0, max=1) y=darctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
x=runif(10, min=0, max=1) y=darctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
Computes pdf of the composite model.
dcomposite(x, spec1, arg1, spec2, arg2, initial = 1, log = FALSE)
dcomposite(x, spec1, arg1, spec2, arg2, initial = 1, log = FALSE)
x |
scalar or vector of values to compute the pdf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
log |
logical; if |
The pdf of composite model has a general form of:
whereby is the weight component,
is the threshold and
for
are the truncated pdfs correspond to head and tail parent distributions defined by
and
respectively.
An object of the same length as x
, giving the pdf values computed at x
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
x=runif(10, min=0, max=1) y=dcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
x=runif(10, min=0, max=1) y=dcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
Computes pdf of the folded model.
dfolded(x, spec, arg, log = FALSE)
dfolded(x, spec, arg, log = FALSE)
x |
scale or vector of values to compute the pdf. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent disstribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
log |
logical; if |
The pdf of folded model has a general form of:
where is the cdf of parent distribution.
An object of the same length as x
, giving the pdf values computed at x
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
x=runif(10, min=0, max=1) y=dfolded(x, spec="norm", arg=list(mean=1,sd=2) )
x=runif(10, min=0, max=1) y=dfolded(x, spec="norm", arg=list(mean=1,sd=2) )
Computes pdf of the mixture model.
dmixt(x, phi, spec1, arg1, spec2, arg2, log = FALSE)
dmixt(x, phi, spec1, arg1, spec2, arg2, log = FALSE)
x |
scalar or vector of values to compute the pdf. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
log |
logical; if |
The pdf of mixture model with parameter has a general form of:
where follows the support of parent distributions,
is the weight component and
for
are the pdfs of first and second parent distributions, respectively.
An object of the same length as x
, giving the pdf values computed at x
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
x=runif(10, min=0, max=1) y=dmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp", arg2=list(rate=2) )
x=runif(10, min=0, max=1) y=dmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp", arg2=list(rate=2) )
Computes pdf of the skewed symmetric model.
dskew(x, spec1, arg1, spec2, arg2, log = FALSE)
dskew(x, spec1, arg1, spec2, arg2, log = FALSE)
x |
scalar or vector of values to compute the pdf. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
log |
logical; if |
The pdf of skewed symmetric model has a general form of:
where and
are the pdf and cdf of parent distributions, respectively.
An object of the same length as x
, giving the pdf values computed at x
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
x=runif(10, min=0, max=1) y=dskew(x, spec1="norm", arg1=list(mean=0,sd=1), spec2="logis", arg2=list(location=0,scale=2) )
x=runif(10, min=0, max=1) y=dskew(x, spec1="norm", arg1=list(mean=0,sd=1), spec2="logis", arg2=list(location=0,scale=2) )
Computes cdf of the arc tan model.
parctan(q, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)
parctan(q, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)
q |
scalar or vector of values to compute the cdf. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
The cdf of arc tan model with parameter has a general form of:
for where
and
follow the support of
.
denote the inverse function of tangent.
and
are the pdf and cdf of parent distribution, respectively. Note also that
.
An object of the same length as q
, giving the cdf values computed at q
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
x=runif(10, min=0, max=1) y=parctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
x=runif(10, min=0, max=1) y=parctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
Computes cdf of the composite model.
pcomposite(q, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
pcomposite(q, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
q |
scalar or vector of values to compute the cdf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
lower.tail |
logical; if |
log.p |
logical; if |
The cdf of composite model has a general form of:
whereby is the weight component,
is the threshold and
for
are the cdfs correspond to head and tail parent distributions, respectively.
An object of the same length as q
, giving the cdf values computed at q
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
x=runif(10, min=0, max=1) y=pcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
x=runif(10, min=0, max=1) y=pcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
Computes cdf of the folded model.
pfolded(q, spec, arg, lower.tail = TRUE, log.p = FALSE)
pfolded(q, spec, arg, lower.tail = TRUE, log.p = FALSE)
q |
scale or vector of values to compute the cdf. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent distribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
The cdf of folded model has a general form of:
where is the cdf of parent distribution.
An object of the same length as q
, giving the cdf values computed at q
.
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
x=runif(10, min=0, max=1) y=pfolded(x, spec="norm", arg=list(mean=1,sd=2) )
x=runif(10, min=0, max=1) y=pfolded(x, spec="norm", arg=list(mean=1,sd=2) )
Computes cdf of the mixture model.
pmixt(q, phi, spec1, arg1, spec2, arg2, lower.tail = TRUE, log.p = FALSE)
pmixt(q, phi, spec1, arg1, spec2, arg2, lower.tail = TRUE, log.p = FALSE)
q |
scalar or vector of values to compute the cdf. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
The cdf of mixture model has a general form of:
where follows the support of parent distributions,
is the weight component and
for
are the cdfs of first and second parent distributions, respectively.
An object of the same length as q
, giving the cdf values computed at q
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
x=runif(10, min=0, max=1) y=pmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp", arg2=list(rate=2) )
x=runif(10, min=0, max=1) y=pmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp", arg2=list(rate=2) )
Computes cdf of the skewed symmetric model.
pskew(q, spec1, arg1, spec2, arg2, lower.tail = TRUE, log.p = FALSE)
pskew(q, spec1, arg1, spec2, arg2, lower.tail = TRUE, log.p = FALSE)
q |
scale or vector of values to compute the cdf. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
lower.tail |
logical; if |
log.p |
logical; if |
The cdf of skewed symmetric model has a general form of:
where and
are the pdf and cdf of parent distributions, respectively.
An object of the same length as q
, giving the cdf values computed at q
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
x=runif(10, min=0, max=1) y=pskew(x, spec1="norm", arg1=list(mean=0,sd=1), spec2="logis", arg2=list(location=0,scale=2) )
x=runif(10, min=0, max=1) y=pskew(x, spec1="norm", arg1=list(mean=0,sd=1), spec2="logis", arg2=list(location=0,scale=2) )
Computes qf of the arc tan model.
qarctan(p, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)
qarctan(p, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)
p |
scalar or vector of probabilities to compute the qf. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
The qf of arc tan model with parameter has a general form of:
for where
and
follow the support of
.
denote the inverse function of tangent and
is the inverse cdf of parent distribution, respectively. Note also that
.
An object of the same length as p
, giving the qf values computed at p
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
x=runif(10, min=0, max=1) y=qarctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
x=runif(10, min=0, max=1) y=qarctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
Computes qf of the composite model.
qcomposite(p, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
qcomposite(p, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
p |
scalar or vector of probabilities to compute the qf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
lower.tail |
logical; if |
log.p |
logical; if |
The qf of composite model has a general form of:
whereby is the weight component,
is the threshold and
for
are the qfs correspond to head and tail parent distributions, respectively.
An object of the same length as p
, giving the qf values computed at p
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
x=runif(10, min=0, max=1) y=qcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
x=runif(10, min=0, max=1) y=qcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
Computes cdf of the folded model.
qfolded(p, spec, arg, interval = c(0, 100), lower.tail = TRUE, log.p = FALSE)
qfolded(p, spec, arg, interval = c(0, 100), lower.tail = TRUE, log.p = FALSE)
p |
scalar or vector of probabilities to compute the qf. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent distribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
interval |
a vector of interval end-points for |
lower.tail |
logical; if |
log.p |
logical; if |
An object of the same length as p
, giving the qf values computed at p
.
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
x=runif(10, min=0, max=1) y=qfolded(x, spec="norm", arg=list(mean=1,sd=2), interval=c(0,100) )
x=runif(10, min=0, max=1) y=qfolded(x, spec="norm", arg=list(mean=1,sd=2), interval=c(0,100) )
Computes qf of the mixture model.
qmixt(p, phi, spec1, arg1, spec2, arg2, interval = c(0, 100), lower.tail = TRUE, log.p = FALSE)
qmixt(p, phi, spec1, arg1, spec2, arg2, interval = c(0, 100), lower.tail = TRUE, log.p = FALSE)
p |
scalar or vector of probabilities to compute the qf. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
interval |
a vector of interval end-points for |
lower.tail |
logical; if |
log.p |
logical; if |
An object of the same length as p
, giving the qf values computed at p
.
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
x=runif(10, min=0, max=1) y=qmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5))
x=runif(10, min=0, max=1) y=qmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5))
Computes qf of the skewed symmetric model.
qskew(p, spec1, arg1, spec2, arg2, interval = c(1, 10), lower.tail = TRUE, log.p = FALSE)
qskew(p, spec1, arg1, spec2, arg2, interval = c(1, 10), lower.tail = TRUE, log.p = FALSE)
p |
scalar or vector of probabilities to compute the qf. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
interval |
a vector of interval end-points for |
lower.tail |
logical; if |
log.p |
logical; if |
An object of the same length as p
, giving the qf values computed at p
.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
x=runif(10, min=0, max=1) y=qskew(x, spec1="norm", arg1=list(mean=0,sd=0.1), spec2="logis", arg2=list(location=0,scale=0.2))
x=runif(10, min=0, max=1) y=qskew(x, spec1="norm", arg1=list(mean=0,sd=0.1), spec2="logis", arg2=list(location=0,scale=0.2))
Computes rg of the arc tan model.
rarctan(n, alpha, spec, arg)
rarctan(n, alpha, spec, arg)
n |
number of random generated values. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
y=rarctan(10, alpha=0.5, spec="lnorm", arg=c(meanlog=1,sdlog=2) )
y=rarctan(10, alpha=0.5, spec="lnorm", arg=c(meanlog=1,sdlog=2) )
Computes rg of the composite model.
rcomposite(n, spec1, arg1, spec2, arg2, initial = 1)
rcomposite(n, spec1, arg1, spec2, arg2, initial = 1)
n |
number of random generated values. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
An object of the length n
, giving the random generated values for the composite model.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
y=rcomposite(10, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5))
y=rcomposite(10, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5))
Computes rg of the folded model.
rfolded(n, spec, arg, interval = c(0, 100))
rfolded(n, spec, arg, interval = c(0, 100))
n |
number of random generated values. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent distribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
interval |
a vector of interval end-points to search function root. |
An object of the length n
, giving the random generated values for the folded model.
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
y=rfolded(10, spec="norm", arg=list(mean=1,sd=2), interval=c(0,100) )
y=rfolded(10, spec="norm", arg=list(mean=1,sd=2), interval=c(0,100) )
Computes rg of the mixture model.
rmixt(n, phi, spec1, arg1, spec2, arg2, interval = c(0, 100))
rmixt(n, phi, spec1, arg1, spec2, arg2, interval = c(0, 100))
n |
number of random generated values. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
interval |
a vector of interval end-points to search function root. |
An object of the length n
, giving the random generated values for the mixture model.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
y=rmixt(10, phi=0.5, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
y=rmixt(10, phi=0.5, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp", arg2=list(rate=0.5) )
Computes rg of the skewed symmetric model.
rskew(n, spec1, arg1, spec2, arg2, interval = c(1, 10))
rskew(n, spec1, arg1, spec2, arg2, interval = c(1, 10))
n |
number of random generated values. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
interval |
a vector of interval end-points to search function root. |
An object of the length n
, giving the random generated values for the skewed symmetric model.
Shaiful Anuar Abu Bakar
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
y=rskew(10, spec1="norm", arg1=list(mean=0,sd=0.1), spec2="logis", arg2=list(location=0,scale=0.2))
y=rskew(10, spec1="norm", arg1=list(mean=0,sd=0.1), spec2="logis", arg2=list(location=0,scale=0.2))