
Gaston

Version 1.6

Hervé Perdry, Claire Dandine-Roulland

September 3, 2024

Introduction

Gaston offers functions for efficient manipulation of large genotype (SNP) matrices, and state-of-the-art
implementation of algorithms to fit Linear Mixed Models, that can be used to compute heritability estimates
or to perform association tests. Thanks to the packages Rcpp, RcppParallel, RcppEigen, Gaston functions
are mainly written in C++. Many are multithreaded.

For better performances, we recommend to build Gaston with clang++. To do so, it is sufficient to create
in your home directory a file ~/.R/Makevars containing CXX1X = clang++ or if you use a version of R >=
3.4.0, CXX11 = clang++

In this vignette, we illustrate Gaston using the included data sets AGT, LCT, and TTN (see the corresponding
manual pages for a description). Gaston also includes some example files in the extdata folder. Not all
options of the functions are described here, but rather their basic usage. The reader is advised to look at the
manual pages for details.

Note that the package name is written gaston when dealing with R commands, but Gaston (with a capital)
in human language.

1 Modifying Gaston’s behaviour with global options

1.1 Number of threads

The number of threads used by multithreaded functions can be modified through RcppParallel function
setThreadOptions. It is advised to try several values for the number of threads, as using too many threads
might be counterproductive due to an important overhead. The default value set by RcppParallel is generally
too high.

Some functions have a verbose argument, which controls the function verbosity. To mute all functions at
once you can use options(gaston.verbose = FALSE).

1

1.2 Basic statistics computations

Since version 1.4, the behaviour of all functions that output a matrix of genotypes (a bed.matrix, described
in the next section) can be modified by setting options(gaston.auto.set.stats = FALSE). The effects of
this option is described in section 2.4 below. Note that some examples in the manual pages might not work
if you use this option.

1.3 Autosomes, gonosomes, mitochondria

Since version 1.4.7, some functions take into account wether a SNP is autosomal, X or Y linked, or mitochon-
drial. The ids of the corresponding chromosomes are defined by options gaston.autosomes, gaston.chr.x,
gaston.chr.y, gaston.chr.mt. Default values are c(1:22, 25), 23, 24 and 26, following to Plink conven-
tion (in this convention, 25 corresponds to the pseudo-autosomal XY region: we chose to include it in the
autosomes).

2 Genotype matrices

An S4 class for genotype matrices is defined, named bed.matrix. Each row correspond to an individual, and
each column to a SNP.

2.1 Reading bed.matrices from files

Bed.matrices be read from files using read.bed.matrix. The function read.vcf reads VCF files; it relies on
the package WhopGenome.

Gaston includes example files that can be used for illustration:

> x <- read.bed.matrix(system.file("extdata", "LCT.bed", package="gaston"))

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/LCT.rds

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/LCT.bed

> x

A bed.matrix with 503 individuals and 607 markers.

snps stats are not set (or incomplete)

ped stats are not set (or incomplete)

The folder extdata/ contains files LCT.bed, LCT.rds, LCT.bim and LCT.fam. The .bed, .bim and .fam files
follow the PLINK specifications. The .rds file is a R data file; if it is present, the .bim and .fam files are
ignored. You can ignore the .rds file using option rds = NULL:

> x <- read.bed.matrix(system.file("extdata", "LCT.bed", package="gaston"), rds = NULL)

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/LCT.fam

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/LCT.bim

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/LCT.bed

ped stats and snps stats have been set.

'p' has been set.

'mu' and 'sigma' have been set.

> x

A bed.matrix with 503 individuals and 607 markers.

snps stats are set

ped stats are set

A bed.matrix can be saved using write.bed.matrix. The default behavior is to write .bed, .bim, .fam and
.rds files; see the manual page for more details.

2.2 Conversion from and to R objects

A numerical matrix x containing genotype counts (0, 1, 2 or NA) can be transformed in a bed.matrix with
as(x, "bed.matrix"). The resulting object will lack individual and SNP informations (if the rownames and
colnames of x are set, they will be used as SNP and individual ids respectively).

Conversely, a numerical matrix can be retrieved from a bed.matrix using as.matrix.

The function as.bed.matrix allows to provide data frames corresponding to the .fam and .bim files. They
should have colnames famid, id, father, mother, sex, pheno, and chr, id, dist, pos, A1, A2 respectively.
This function is widely used in the examples included in manual pages.

> data(TTN)

> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)

> x

A bed.matrix with 503 individuals and 733 markers.

snps stats are set

ped stats are set

2.3 The insides of a bed.matrix

In first approach, a bed.matrix behaves as a ”read-only” matrix containing only 0, 1, 2 and NAs, unless the
genotypes are standardized (use standardize<-). They are stored in a compact form, each genotype being
coded on 2 bits (hence 4 genotypes per byte).

Bed.matrices are implemented using S4 classes and methods. Let’s have a look on the slots names of the
bed.matrix x created above using the dataset LCT.

> data(TTN)

> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)

> slotNames(x)

[1] "ped" "snps" "bed"

[4] "p" "mu" "sigma"

[7] "standardize_p" "standardize_mu_sigma"

The slot x@bed is an external pointer, which indicates where the genetic data are stored in memory. It will
be used by the C++ functions called by Gaston.

> x@bed

<pointer: 0x55a794de2ae0>

Let’s look at the contents of the slots x@ped and x@snps. The other slots will be commented later.

The slot x@ped gives informations on the individuals. The first 6 columns correspond to the contents of a
.fam file, or to the first 6 columns of a .ped file (known as linkage format). The other columns are simple
descriptive stats that are computed by Gaston, unless options(gaston.auto.set.stats = FALSE) was set
(see below section 2.4).

> dim(x@ped)

[1] 503 30

> head(x@ped)

famid id father mother sex pheno N0 N1 N2 NAs N0.x N1.x N2.x NAs.x N0.y N1.y

1 HG00096 HG00096 0 0 0 NA 128 82 523 0 0 0 0 0 0 0

2 HG00097 HG00097 0 0 0 NA 109 81 543 0 0 0 0 0 0 0

3 HG00099 HG00099 0 0 0 NA 75 154 503 1 0 0 0 0 0 0

4 HG00100 HG00100 0 0 0 NA 148 86 499 0 0 0 0 0 0 0

5 HG00101 HG00101 0 0 0 NA 18 394 320 1 0 0 0 0 0 0

6 HG00102 HG00102 0 0 0 NA 50 180 503 0 0 0 0 0 0 0

N2.y NAs.y N0.mt N1.mt N2.mt NAs.mt callrate hz callrate.x hz.x callrate.y hz.y

1 0 0 0 0 0 0 1.0000000 0.1118690 NaN NaN NaN NaN

2 0 0 0 0 0 0 1.0000000 0.1105048 NaN NaN NaN NaN

3 0 0 0 0 0 0 0.9986357 0.2103825 NaN NaN NaN NaN

4 0 0 0 0 0 0 1.0000000 0.1173261 NaN NaN NaN NaN

5 0 0 0 0 0 0 0.9986357 0.5382514 NaN NaN NaN NaN

6 0 0 0 0 0 0 1.0000000 0.2455662 NaN NaN NaN NaN

callrate.mt hz.mt

1 NaN NaN

2 NaN NaN

3 NaN NaN

4 NaN NaN

5 NaN NaN

6 NaN NaN

The slot x@snps gives informations on the SNPs. Its first 6 columns corresponds to the contents of a .bim

file. The other columns are simple descriptive stats that are computed by Gaston. Again, if the global option
options(gaston.auto.set.stats = FALSE) was set (see below), these columns will be absent (see below
section 2.4).

> dim(x@snps)

[1] 733 17

> head(x@snps)

chr id dist pos A1 A2 N0 N1 N2 NAs N0.f N1.f N2.f NAs.f callrate

1 2 rs7571247 0 179200322 C T 5 88 410 0 NA NA NA NA 1

2 2 rs3813253 0 179200714 G A 24 187 292 0 NA NA NA NA 1

3 2 rs6760059 0 179200947 T C 11 139 353 0 NA NA NA NA 1

4 2 rs16866263 0 179201048 T G 2 53 448 0 NA NA NA NA 1

5 2 rs77946091 0 179201380 A G 2 53 448 0 NA NA NA NA 1

6 2 rs77711640 0 179201557 A G 2 54 447 0 NA NA NA NA 1

maf hz

1 0.09741551 0.1749503

2 0.23359841 0.3717694

3 0.16003976 0.2763419

4 0.05666004 0.1053678

5 0.05666004 0.1053678

6 0.05765408 0.1073559

Note: We refer to the allele A1 as the reference allele and to A2 as the alternative allele. The choice
of the reference allele is arbitrary, it doesn’t to be e.g. the major allele. If the matrix is produced by
read.bed.matrix, Gaston will keep them in the order they appear in the .bim file, their won”t be any
reordering.

2.4 Basic statistics included in a bed.matrix

Some simple descriptive statistics can be added to a bed.matrix with set.stats. Since version 1.4 of
gaston, this function is called by default by all functions that create a bed.matrix, unless the global option
options(gaston.auto.set.stats = FALSE) was set. This option can be used to gain some time in some
particular cases.

We illustrate here the effect of this option:

> options(gaston.auto.set.stats = FALSE)

> data(TTN)

> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)

> head(x@ped)

famid id father mother sex pheno

1 HG00096 HG00096 0 0 0 NA

2 HG00097 HG00097 0 0 0 NA

3 HG00099 HG00099 0 0 0 NA

4 HG00100 HG00100 0 0 0 NA

5 HG00101 HG00101 0 0 0 NA

6 HG00102 HG00102 0 0 0 NA

> head(x@snps)

chr id dist pos A1 A2

1 2 rs7571247 0 179200322 C T

2 2 rs3813253 0 179200714 G A

3 2 rs6760059 0 179200947 T C

4 2 rs16866263 0 179201048 T G

5 2 rs77946091 0 179201380 A G

6 2 rs77711640 0 179201557 A G

The reader is invited to compare with what we obtained in the previous section of this document.

The function set.stats can be called to add the missing descriptive statistics to the ped and snps slots:

> x <- set.stats(x)

ped stats and snps stats have been set.

'p' has been set.

'mu' and 'sigma' have been set.

> head(x@ped)

famid id father mother sex pheno N0 N1 N2 NAs N0.x N1.x N2.x NAs.x N0.y N1.y

1 HG00096 HG00096 0 0 0 NA 128 82 523 0 0 0 0 0 0 0

2 HG00097 HG00097 0 0 0 NA 109 81 543 0 0 0 0 0 0 0

3 HG00099 HG00099 0 0 0 NA 75 154 503 1 0 0 0 0 0 0

4 HG00100 HG00100 0 0 0 NA 148 86 499 0 0 0 0 0 0 0

5 HG00101 HG00101 0 0 0 NA 18 394 320 1 0 0 0 0 0 0

6 HG00102 HG00102 0 0 0 NA 50 180 503 0 0 0 0 0 0 0

N2.y NAs.y N0.mt N1.mt N2.mt NAs.mt callrate hz callrate.x hz.x callrate.y hz.y

1 0 0 0 0 0 0 1.0000000 0.1118690 NaN NaN NaN NaN

2 0 0 0 0 0 0 1.0000000 0.1105048 NaN NaN NaN NaN

3 0 0 0 0 0 0 0.9986357 0.2103825 NaN NaN NaN NaN

4 0 0 0 0 0 0 1.0000000 0.1173261 NaN NaN NaN NaN

5 0 0 0 0 0 0 0.9986357 0.5382514 NaN NaN NaN NaN

6 0 0 0 0 0 0 1.0000000 0.2455662 NaN NaN NaN NaN

callrate.mt hz.mt

1 NaN NaN

2 NaN NaN

3 NaN NaN

4 NaN NaN

5 NaN NaN

6 NaN NaN

The columns N0, N1, N2 and NAs give for each individual the number of autosomal SNPs with a genotype
equal to 0, 1, 2 (corresponding to A1A1, A1A2 and A2A2) and missing, respectively. The homologous columns
with names ending with .x, .y and .mt give the same for SNPs on the X, Y, and mitochondria (this is why
you get only 0s here).

The columns callrate, callrate.x, callrate.y, callrate.mt give the individual callrate for autosomal,
X, Y, mitochondrial SNPs, and similarly, hz, hz.x, hz.y, hz.mt give the individual heterozygosity.

> head(x@snps)

chr id dist pos A1 A2 N0 N1 N2 NAs N0.f N1.f N2.f NAs.f callrate

1 2 rs7571247 0 179200322 C T 5 88 410 0 NA NA NA NA 1

2 2 rs3813253 0 179200714 G A 24 187 292 0 NA NA NA NA 1

3 2 rs6760059 0 179200947 T C 11 139 353 0 NA NA NA NA 1

4 2 rs16866263 0 179201048 T G 2 53 448 0 NA NA NA NA 1

5 2 rs77946091 0 179201380 A G 2 53 448 0 NA NA NA NA 1

6 2 rs77711640 0 179201557 A G 2 54 447 0 NA NA NA NA 1

maf hz

1 0.09741551 0.1749503

2 0.23359841 0.3717694

3 0.16003976 0.2763419

4 0.05666004 0.1053678

5 0.05666004 0.1053678

6 0.05765408 0.1073559

The columns N0, N1, N2 and NAs contain the number of genotypes 0, 1, 2 and NA for each SNP. For X-linked
SNPs only, the homologous columns with names ending with .f give the same, taking only women into
account. The callrate is the proportion of non-missing genotypes. In the snps slot, maf is the minor allele
frequency, and hz it the heterozygosity rate. Note that the callrate for Y linked SNPs taking only men into
account, while the heterozygosity rate for X linked SNPs is computed only on women.

The default is too also also update the slots x@p, x@mu and x@sigma:

> str(x@p)

num [1:733] 0.903 0.766 0.84 0.943 0.943 ...

> str(x@mu)

num [1:733] 1.81 1.53 1.68 1.89 1.89 ...

> str(x@sigma)

num [1:733] 0.421 0.587 0.512 0.33 0.33 ...

p contains the alternative allele (A2) frequency; mu is equal to 2*p and is the expected value of the genotype
(coded in 0, 1, 2); and sigma is the genotype standard error. If the Hardy-Weinberg equilibrium holds, sigma
should be close to sqrt(2*p(1-p)). This is illustrated on the figure below.

> plot(x@p, x@sigma, xlim=c(0,1))

> t <- seq(0,1,length=101);

> lines(t, sqrt(2*t*(1-t)), col="red")

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

x@p

x@
si

gm
a

There are also functions set.stats.snps and set.stats.ped to update only x@snps and x@ped.

The option gaston.auto.set.stats can be useful when extracting individuals from bed.matrices (seen next
section): if gaston.auto.set.stats = FALSE, the slots @p, @mu and @sigma are left unaltered; in contrast,
the default behavior is to call set.stats which recomputes the values of these slots. Note that when using
set.stats “manually”, one can use options to alter its behavior, allowing to update only some slots. The
following code illustrates this (remember that here gaston.auto.set.stats = FALSE) :

> head(x@p)

[1] 0.9025845 0.7664016 0.8399602 0.9433400 0.9433400 0.9423459

> y <- x[1:30,]

> head(y@p)

[1] 0.9025845 0.7664016 0.8399602 0.9433400 0.9433400 0.9423459

> y <- set.stats(y, set.p = FALSE)

ped stats and snps stats have been set.

'mu' and 'sigma' have been set.

> head(y@p)

[1] 0.9025845 0.7664016 0.8399602 0.9433400 0.9433400 0.9423459

> y <- set.stats(y)

ped stats and snps stats have been set.

'p' has been set.

'mu' and 'sigma' have been set.

> head(y@p)

[1] 0.8833333 0.8000000 0.8166667 0.9833333 0.9833333 0.9833333

Hardy-Weinberg Equilibrium can be tested for all SNPs simply by x <- set.hwe(x). This command adds
to the data frame x@snps a column hwe, containing the p-value of the test (both χ2 and “exact” tests are
available, see the man page).

Note that when writting a bed.matrix x to disk with write.bed.matrix, the .rds file contains all the slots

of x, and thus contains the additionnal variables added by set.stats or set.hwe, which are not saved in
the .bim and .fam files.

For the remaining of this vignette, we restore the default behaviour:

> options(gaston.auto.set.stats = TRUE)

2.5 Subsetting bed.matrices

It is possible to subset bed.matrices just as normal matrices, writing e.g. x[1:100,] to extract the first 100
individuals, or x[1:100,10:19] to extract the SNPs 10 to 19 for these 100 individuals:

> x[1:100,]

A bed.matrix with 100 individuals and 733 markers.

snps stats are set

ped stats are set

> x[1:100,10:19]

A bed.matrix with 100 individuals and 10 markers.

snps stats are set

ped stats are set

The use of logical vectors for subsetting is allowed too. The following code extracts the SNPs with minor
allele frequency > 0.1:

> x[,x@snps$maf > 0.1]

A bed.matrix with 503 individuals and 501 markers.

snps stats are set

ped stats are set

For this kind of selection, Gaston provides the functions select.inds and select.snps, which have a nicer
syntax. Hereafter we use the same condition on the minor allele frequency, and we introduce also a condition
on the Hardy-Weinberg Equilibrium p-value:

> x <- set.hwe(x)

Computing HW chi-square p-values

> select.snps(x, maf > 0.1 & hwe > 1e-3)

A bed.matrix with 503 individuals and 497 markers.

snps stats are set

ped stats are set

The conditions in select.snps can use any of the variables defined in the data frame x@snps, as well as
variables defined in the user session.

The function select.inds is similar, using variables of the data frame x@ped. One can for example select
individuals with callrate greater than 95% with select.inds(x, callrate > 0.5).

These functions should make basic Quality Control easy.

Note: If options(gaston.auto.set.stats = FALSE) was set, subsetting will erase some or all statistics
added by set.stats, except the p, mu and sigma slots.

2.6 Genomic sex

When dealing with genome wide data, the function set.genomic.sex can be use to add a x@ped$genomic.sex
column, determined by clustering on individuals X heterozygosity rate and Y callrate.

x <- select.inds(x, sex == genomic.sex) will then allow to keep only individuals whose sex and ge-
nomic sex are concordant.

An other possibility is to use x@ped$sex <- x@ped$genomic.sex; x <- set.stats(x) to erase the original
sex indication and use genomic sex in subsequent analyses.

2.7 Merging bed.matrices

Gaston defines methods rbind and cbind which can be used to merge several bed.matrices. cbind checks
that individuals famids and ids are identical ; all remaining columns are taken from the first argument,
without further control.

> data(AGT)

> x1 <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)

> x1

A bed.matrix with 503 individuals and 361 markers.

snps stats are set

ped stats are set

> data(LCT)

> x2 <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

> x2

A bed.matrix with 503 individuals and 607 markers.

snps stats are set

ped stats are set

> x <- cbind(x1,x2)

> x

A bed.matrix with 503 individuals and 968 markers.

snps stats are set

ped stats are set

rbind similarly checks whether the SNP ids are identical, and also if the reference alleles are identical.
If needed, it will perform reference allele inversions (changing a SNP A/G to G/A) or allele strand flips
(changing A/G to T/C) or both.

> x3 <- x[1:10,]

> x4 <- x[-(1:10),]

> rbind(x3,x4)

A bed.matrix with 503 individuals and 968 markers.

snps stats are set

ped stats are set

3 Standardized matrices

Gaston allows to “standardize” a genotype matrix, replacing each genotype Xij (i is the individual index, j
is the SNP index) by

Xij − µj

σj
(1)

where µj = 2pj is the mean of the 0,1,2-coded genotype (pj being the alternative allele frequency), and
σj is either its standard error, or the expected standard error under Hardy-Weinberg Equilibrium, that is√

2pj(1− pj).

Consider the TTN data set. The unscaled matrix contains 0,1,2 values:

> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)

> X <- as.matrix(x)

> X[1:5,1:4]

rs7571247 rs3813253 rs6760059 rs16866263

HG00096 2 2 2 2

HG00097 2 2 2 2

HG00099 1 2 2 2

HG00100 2 0 0 2

HG00101 2 2 2 2

To scale it using the standard error, use standardize(x) <- "mu_sigma" (or standardize(x) <- "mu", as
the function uses match.arg):

> standardize(x) <- "mu"

> as.matrix(x)[1:5, 1:4]

rs7571247 rs3813253 rs6760059 rs16866263

HG00096 0.4629595 0.7953656 0.6254622 0.3437939

HG00097 0.4629595 0.7953656 0.6254622 0.3437939

HG00099 -1.9132512 0.7953656 0.6254622 0.3437939

HG00100 0.4629595 -2.6094762 -3.2827052 0.3437939

HG00101 0.4629595 0.7953656 0.6254622 0.3437939

The result is similar to what would be obtained from the base function scale:

> scale(X)[1:5,1:4]

rs7571247 rs3813253 rs6760059 rs16866263

HG00096 0.4629595 0.7953656 0.6254622 0.3437939

HG00097 0.4629595 0.7953656 0.6254622 0.3437939

HG00099 -1.9132512 0.7953656 0.6254622 0.3437939

HG00100 0.4629595 -2.6094762 -3.2827052 0.3437939

HG00101 0.4629595 0.7953656 0.6254622 0.3437939

To use
√
2pj(1− pj) instead of the standard error, use standardize(x) <- "p"; a similar result can again

be obtained from scale, with the right options:

> standardize(x) <- "p"

> as.matrix(x)[1:5, 1:4]

rs7571247 rs3813253 rs6760059 rs16866263

HG00096 0.4646063 0.7807675 0.6173047 0.3465926

HG00097 0.4646063 0.7807675 0.6173047 0.3465926

HG00099 -1.9200567 0.7807675 0.6173047 0.3465926

HG00100 0.4646063 -2.5615820 -3.2398911 0.3465926

HG00101 0.4646063 0.7807675 0.6173047 0.3465926

> scale(X, scale = sqrt(2*x@p*(1-x@p)))[1:5,1:4]

rs7571247 rs3813253 rs6760059 rs16866263

HG00096 0.4646063 0.7807675 0.6173047 0.3465926

HG00097 0.4646063 0.7807675 0.6173047 0.3465926

HG00099 -1.9200567 0.7807675 0.6173047 0.3465926

HG00100 0.4646063 -2.5615820 -3.2398911 0.3465926

HG00101 0.4646063 0.7807675 0.6173047 0.3465926

To go back to the 0,1,2-coded genotypes, use standardize(x) <- "none".

Note: In standardized matrices, the NA values are replaced by zeroes, which amount to impute the missing
genotypes by the mean genotype.

3.1 Matrix multiplication

Standardized matrices can be multiplied with numeric vectors or matrices with the operator %*%.

This feature can be used e.g. to simulate quantitative phenotypes with a genetic component. The following
code simulates a phenotype with an effect of the SNP #350:

> y <- x %*% c(rep(0,350),0.25,rep(0,ncol(x)-351)) + rnorm(nrow(x), sd = 1)

3.2 Genetic Relationship Matrix and Principal Component Analysis

If Xs is a standardized n× q genotype matrix, a Genetic Relationship Matrix (GRM) of the individuals can
be computed as

GRM =
1

q − 1
XsX

′
s

where q is the number of SNPs. This computation is done by the function GRM.

NOTE: Since version 1.4.7, GRM has an argument which.snps which allows to give a logical vector specifying
which SNPs to use in the computation. The default is to use only autosomal SNPs (the above formula makes
little to no sense for X linked SNPs, unless there are only women in the sample).

The Principal Component Analysis (PCA) of large genomic data sets is used to retrieve population strat-
ification. It can be obtained from the eigen decomposition of the GRM. To illustrate this, we included in
the extdata folder a dataset extracted from the 1000 genomes project. This data set comprehend the 503
individuals of european ascent, with 10025 SNPs on the chromosome 2. These SNPs have been selected with
the function LD.thin so that they have very low LD with each other (r2 < 0.05). We added in the data
frame x@ped a variable population which is a factor with levels CEU, FIN, GBR, IBS and TSI.

We can load this data set as follows:

> x <- read.bed.matrix(system.file("extdata", "chr2.bed", package="gaston"))

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/chr2.rds

Reading /tmp/RtmpSqhp93/Rinst3e42ffb4522/gaston/extdata/chr2.bed

> x

A bed.matrix with 503 individuals and 10025 markers.

snps stats are not set (or incomplete)

ped stats are not set (or incomplete)

> head(x@ped)

famid id father mother sex pheno population

1 HG00096 HG00096 0 0 0 -9 GBR

2 HG00097 HG00097 0 0 0 -9 GBR

3 HG00099 HG00099 0 0 0 -9 GBR

4 HG00100 HG00100 0 0 0 -9 GBR

5 HG00101 HG00101 0 0 0 -9 GBR

6 HG00102 HG00102 0 0 0 -9 GBR

> table(x@ped$population)

CEU FIN GBR IBS TSI

99 99 91 107 107

We compute the Genetic Relationship Matrix, and its eigen decomposition (we don’t need to standardize x

explicitely: is x isn’t standardized, GRM will use standardize(x) = "p"):

> K <- GRM(x)

>

> eiK <- eigen(K)

> # deal with a small negative eigen value

> eiK$values[eiK$values < 0] <- 0

The eigenvectors are normalized. The Principal Components (PC) can be computed by multiplying them by
the square root of the associated eigenvalues. Here we plot the projection of the 503 individuals on the first
two PCs, with colors corresponding to their population.

> PC <- sweep(eiK$vectors, 2, sqrt(eiK$values), "*")

> plot(PC[,1], PC[,2], col=x@ped$population)

> legend("bottomleft", pch = 1, legend = levels(x@ped$population), col = 1:5)

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

PC[, 1]

P
C

[,
2]

CEU
FIN
GBR
IBS
TSI

As K can be written

K =

(
1√
q − 1

Xs

)(
1√
q − 1

Xs

)′

,

the PCs are the left singular vectors of 1√
q−1

Xs. The vectors of loadings are the right singlar vectors of

this matrix. The vector of loadings corresponding to a PC u is the vector v with unit norm, such that
u = 1√

q−1
Xsv.

They can be retrieved with the function bed.loadings:

> # one can use PC[,1:2] instead of eiK£vectors[,1:2] as well

> L <- bed.loadings(x, eiK$vectors[,1:2])

> dim(L)

[1] 10025 2

> head(L)

[,1] [,2]

rs113106463 0.0059549172 0.0064476426

rs13390778 0.0099678277 -0.0125720996

rs75011129 0.0001122824 -0.0001181896

rs4637157 0.0151318070 -0.0148076700

rs62116661 0.0002977577 0.0048268309

rs10170011 -0.0185198412 -0.0019553475

We verify that the loadings have unit norm:

> colSums(L**2)

[1] 1 1

And that the PCs are retrieved by right multiplyingXs by the loadings (here we need to explicitely standardize
x):

> standardize(x) <- 'p'

> head((x %*% L) / sqrt(ncol(x)-1))

[,1] [,2]

HG00096 -0.021410854 -0.12418404

HG00097 0.014005046 -0.07378040

HG00099 -0.001384417 -0.09708212

HG00100 -0.020319149 -0.08920827

HG00101 -0.002596070 -0.08925960

HG00102 -0.010155023 -0.08968427

> head(PC[,1:2])

[,1] [,2]

[1,] -0.021410872 -0.12418416

[2,] 0.014005060 -0.07378046

[3,] -0.001384411 -0.09708220

[4,] -0.020319159 -0.08920836

[5,] -0.002596072 -0.08925970

[6,] -0.010155019 -0.08968437

3.3 Linkage Disequilibrium

Doing the crossproduct in the reverse order produces a moment estimate of the Linkage Disequilibrium (LD):

LD =
1

n− 1
X ′

sXs

where n is the number of individuals. This computation is done by the function LD (usually, only parts of
the whole LD matrix is computed). The fonction LD can compute a square symmetric matrix giving the LD
for a given region, measured by r2 (the default), r or D. It can also compute the LD between two different
regions.

> data(AGT)

> x <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)

>

> ld.x <- LD(x, c(1,ncol(x)))

>

> LD.plot(ld.x, snp.positions = x@snps$pos, write.ld = NULL,

+ max.dist = 20e3, write.snp.id = FALSE, draw.chr = FALSE,

+ pdf = "LD_AGT.pdf")

pdf

2

This method is also used by LD.thin to extract a set of SNPs in low linkage disequilibrium (it is often
recommended to perform this operation before computing the GRM). We illustrate this function on the AGT
data set:

> y <- LD.thin(x, threshold = 0.4, max.dist = 500e3)

> y

A bed.matrix with 503 individuals and 48 markers.

snps stats are set

ped stats are set

The argument max.dist = 500e3 is to specify that the LD won’t be computed for SNPs more than 500 kb
appart. We verify that there is no SNP pair with LD r2 > 0.4 (note that the LD matrix has ones on the
diagonal):

> ld.y <- LD(y, lim = c(1, ncol(y)))

> sum(ld.y > 0.4)

[1] 48

4 Linear Mixed Models

Linear Mixed Models are usually written under the form

Y = Xβ + Z1u1 + · · ·+ Zkuk + ε

where Y ∈ Rn is the response vector, and X ∈ Rn×p, Z1 ∈ Rn×q1 , . . . , Zk ∈ Rn×qk are design matrices.
The vector β ∈ Rp is the vector of fixed effects; the random effects are drawn in normal distributions,
u1 ∼ N (0, τ1Iq1), . . . , uk ∼ N (0, τkIqk), as the residual error ε ∼ N (0, σ2In).

Here we will use the equivalent form

Y = Xβ + ω1 + . . .+ ωk + ε

where Ki = ZiZ
′
i (i = 1, . . . , k), the random terms are ωi ∼ N(0, τiKi) for i ∈ 1, . . . , k and ε ∼ N(0, σ2In).

Note that using the R function model.matrix can help you to rewrite a model under this form.

Gaston provides two functions for estimating the model parameters when the model is written in the second
form. We are going to illustrate these functions on simulated data.

4.1 Data simulation

We will use the above notations. First generate some (random) design matrices:

> set.seed(1)

> n <- 100

> q1 <- 20

> Z1 <- matrix(rnorm(n*q1), nrow = n)

> X <- cbind(1, 5*runif(n))

Then the vector of random effects u1 and a vector y under the model Y = X(1, 2)′ + Zu1 + ε with u1 ∼
N (0, 2Iq1) and ε ∼ N (0, 3In):

> u1 <- rnorm(q1, sd = sqrt(2))

> y <- X %*% c(1,2) + Z1 %*% u1 + rnorm(n, sd = sqrt(3))

To illustrate the case where there are several random effects vectors, we generate an other matrix Z2, the
corresponding vector of random effects u2, and a vector y2 under the model Y = X(1, 2)′ + Zu1 + Z2u2 + ε.

> q2 <- 10

> Z2 <- matrix(rnorm(n*q2), nrow = n)

> u2 <- rnorm(q2, sd = 1)

> y2 <- X %*% c(1,2) + Z1 %*% u1 + Z2 %*% u2 + rnorm(n, sd = sqrt(3))

4.2 Model fitting with the AIREML algorithm

lmm.aireml is a function for linear mixed models parameter estimation and BLUP computations.

4.2.1 One random effects vector

Let’s start with the simple case (only one random effects vector). As lmm.aireml uses the second form of
the linear mixed model, and we give it the matrix K1 = Z1Z

′
1.

> K1 <- tcrossprod(Z1)

> fit <- lmm.aireml(y, X, K = K1, verbose = FALSE)

> str(fit)

List of 11

$ sigma2 : num 3.23

$ tau : num 1.65

$ logL : num -150

$ logL0 : num -231

$ niter : int 12

$ norm_grad : num 1e-08

$ Py : num [1:100] 0.531 -0.243 0.116 0.34 -0.304 ...

$ BLUP_omega: num [1:100] -0.443 -12.628 -1.73 5.059 5.836 ...

$ BLUP_beta : num [1:2] 1.4 1.79

$ varbeta : num [1:2, 1:2] 0.134 -0.0387 -0.0387 0.016

$ varXbeta : num 7.6

The result is a list giving all kind of information. Here we see that τ is estimated to 1.65 and σ2 to 3.23.
The Best Linear Unbiased Predictor (BLUP) for β is in the component BLUP_beta and here it is (1.4, 1.79).

The component BLUP_omega holds the BLUP for ω1 = Zu1. The BLUP for u1 can be retrieved by the
formula û1 = τ1Z

′
1Py, the value of Py being in the component Py. The plots below compare the true values

of ω1 and u1 with their BLUPs.

> par(mfrow = c(1, 2))

> plot(Z1 %*% u1, fit$BLUP_omega); abline(0, 1, lty = 2, col = 3)

> BLUP_u1 <- fit$tau * t(Z1) %*% fit$Py

> plot(u1, BLUP_u1); abline(0, 1, lty = 2, col = 3)

−10 −5 0 5 10 15 20

−
10

−
5

0
5

10
15

20

Z1 %*% u1

fit
$B

LU
P

_o
m

eg
a

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

u1

B
LU

P
_u

1

4.2.2 Several random effects vectors

It is sufficient to give to lmm.aireml a list with the two matrices K1 and K2:

> K2 <- tcrossprod(Z2)

> fit2 <- lmm.aireml(y2, X, K = list(K1, K2), verbose = FALSE)

> str(fit2)

List of 10

$ sigma2 : num 3.04

$ tau : num [1:2] 1.81 0.821

$ logL : num -164

$ logL0 : num -244

$ niter : int 13

$ norm_grad : num 3.47e-07

$ Py : num [1:100] -0.353 -0.199 0.879 0.472 0.968 ...

$ BLUP_omega: num [1:100] 0.342 -15.406 6.239 4.559 4.361 ...

$ BLUP_beta : num [1:2] 1.1 1.98

$ varXbeta : num 9.33

The component tau now holds the two values τ1 and τ2. Note that there is only one BLUP_omega vector. It
corresponds to the BLUP for ω1 + ω2. The BLUPs for each ωi can be retrieved using ω̂i = τiKiPy:

> par(mfrow = c(1, 2))

> omega1 <- fit2$tau[1] * K1 %*% fit2$Py

> omega2 <- fit2$tau[2] * K2 %*% fit2$Py

> plot(Z1 %*% u1, omega1); abline(0, 1, lty = 2, col = 3)

> plot(Z2 %*% u2, omega2); abline(0, 1, lty = 2, col = 3)

−10 −5 0 5 10 15 20

−
10

−
5

0
5

10
15

20

Z1 %*% u1

om
eg

a1

−5 0 5

−
10

−
5

0
5

Z2 %*% u2

om
eg

a2

The BLUPs for u1 and u2 can as above be retrieved using ûi = τiZ
′
iPy.

4.3 Model fitting with the diagonalization trick

In the case where there is only one vector of random effects (k = 1), the diagonalization trick uses the eigen
decomposition of K1 to speed up the computation of the restricted likelihood, which allows to use a generic
algorithm to maximize it. Of course, the eigen decomposition of K1 needs to be computed beforehand, which
induces an overhead.

The trick relies on a transformation of the data which leads to a diagonal variance matrix for Y . The
computation of a the restricted likelihood involves the computation of the inverse of this matrix, which is
then easy to compute. Write the eigen decomposition of K1 as K1 = UΣ2U ′ with Σ2 a diagonal matrix of
positive eigenvalues, and U an orthogonal matrix. If we let Ỹ = U ′Y , X̃ = U ′X, ω̃1 = U ′ω1, and ε̃ = U ′ε,
we have

Ỹ = X̃β + ω̃1 + ε̃

with ω̃1 ∼ N
(
0, τΣ2

)
and ε̃ ∼ N(0, σ2In). As stated above, var

(
Ỹ
)
= τΣ2 + σ2In is diagonal.

We fit the first model again:

> eiK1 <- eigen(K1)

> fit.d <- lmm.diago(y, X, eiK1)

Optimization in interval [0, 1]

Optimizing with p = 0

[Iteration 1] Current point = 0 df = 4301.78

[Iteration 2] Current point = 0.00597137 df = 2202.74

[Iteration 3] Current point = 0.0183343 df = 1073.77

[Iteration 4] Current point = 0.041009 df = 501.592

[Iteration 5] Current point = 0.0785099 df = 224.008

[Iteration 6] Current point = 0.134165 df = 94.4939

[Iteration 7] Current point = 0.206173 df = 36.1315

[Iteration 8] Current point = 0.279987 df = 10.9812

[Iteration 9] Current point = 0.326676 df = 1.82058

[Iteration 10] Current point = 0.337786 df = 0.0676512

[Iteration 11] Too many iterations, using Brent algorithm

[Iteration 11] Brent gives 0.338232

> str(fit.d)

List of 9

$ sigma2 : num 3.23

$ tau : num 1.65

$ Py : num [1:100] 0.531 -0.243 0.116 0.34 -0.304 ...

$ BLUP_omega: num [1:100] -0.443 -12.629 -1.73 5.059 5.836 ...

$ BLUP_beta : num [1:2] 1.4 1.79

$ varbeta : num [1:2, 1:2] 0.134 -0.0387 -0.0387 0.016

$ Xbeta : num [1:100] 3.09 5.93 1.65 5.85 9.89 ...

$ varXbeta : num 7.51

$ p : int 0

You can check that the result is similar to the result obtained earlier with lmm.aireml.

The likelihood computation with the diagonalization trick is fast enough to plot the likelihood:

> TAU <- seq(0.5,2.5,length=50)

> S2 <- seq(2.5,4,length=50)

> lik <- lmm.diago.likelihood(tau = TAU, s2 = S2, Y = y, X = X, eigenK = eiK1)

> lik.contour(TAU, S2, lik, heat = TRUE, xlab = "tau", ylab = "sigma^2")

0.5 1.0 1.5 2.0 2.5

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

tau

si
gm

a^
2

 −
160.627

 −
157.851

 −152.972 −151.658

 −151.658

 −151.229

 −151.229

 −150.974

 −150.718

 −150.457

4.4 Genomic heritability estimation with Gaston

Heritability estimates based on Genetic Relationship Matrices (GRM) are computed under the following
model:

Y = β + ω + ε

where ω ∼ N (0, τK) and ε ∼ N (0, σ2In), K being a GRM computed on whole genome data (e.g. by the
function GRM). The heritability is h2 = τ

τ+σ2 .

Note that as K = 1
q−1XsX

′
s with Xs a standardized genotype matrix, letting Z = (q − 1)−

1
2Xs, this model

is equivalent to
Y = β + Zu+ ε

with u ∼ N (0, τIq).

The function random.pm generates random positive matrices with eigenvalues roughly similar to those typi-
cally observed when using whole genome data. It outputs a list with a member K: a positive matrix, and a
member eigen: its eigen decomposition (as the base function eigen would output it).

The function lmm.simu can be used simulate data under the linear mixed model. It uses the eigen decompo-
sition of K. Hereafter we use τ = 1, σ2 = 2, hence a 33.3% heritability.

> set.seed(1)

> n <- 2000

> R <- random.pm(n)

> y <- 2 + lmm.simu(tau = 1, sigma2 = 2, eigenK = R$eigen)$y

We can use lmm.diago to estimates the parameters of the model.

> fit <- lmm.diago(y, eigenK = R$eigen)

Optimization in interval [0, 1]

Optimizing with p = 0

[Iteration 1] Current point = 0 df = 3.32616

[Iteration 2] Current point = 0.099573 df = 0.0543536

[Iteration 3] Current point = 0.101252 df = 1.2657e-05

We have τ̂ = 0.298 and σ̂2 = 2.65, hence h2 is estimated to 10.1%.

The function lmm.diago.likelihood allows to compute a profile likelihood with parameter h2 = τ
τ+σ2 . It

can be useful to get confidence intervals. Here, we simply plot it:

> H2 <- seq(0,1,length=51)

> lik <- lmm.diago.likelihood(h2 = H2, Y = y, eigenK = R$eigen)

> plot(H2, exp(lik$likelihood-max(lik$likelihood)), type="l", yaxt="n", ylab="likelihood")

0.0 0.2 0.4 0.6 0.8 1.0

H2

lik
el

ih
oo

d

It is often advised to include the first few (10 or 20) Principal Components (PC) in the model as fixed
effects, to account for a possible population stratification. The function lmm.diago has an argument p for
the number of PCs to incoporate in the model with fixed effects. We simulate a trait with a large effect of
the two first PCs:

> PC <- sweep(R$eigen$vectors, 2, sqrt(R$eigen$values), "*")

> y1 <- 2 + PC[,1:2] %*% c(5,5) + lmm.simu(tau = 1, sigma2 = 2, eigenK = R$eigen)$y

Here are the heritability estimates with p = 0 (the default) and p = 10.

> fit0 <- lmm.diago(y1, eigenK = R$eigen)

Optimization in interval [0, 1]

Optimizing with p = 0

[Iteration 1] Current point = 0 df = 8.47139

[Iteration 2] Current point = 0.239713 df = 0.364915

[Iteration 3] Current point = 0.2509 df = 0.000461187

[Iteration 4] Current point = 0.250914 df = 7.18126e-10

> fit0$tau/(fit0$tau+fit0$sigma2)

[1] 0.2509142

> fit10 <- lmm.diago(y1, eigenK = R$eigen, p = 10)

Optimization in interval [0, 1]

Optimizing with p = 10

[Iteration 1] Current point = 0 df = 4.45003

[Iteration 2] Current point = 0.143356 df = 0.0854252

[Iteration 3] Current point = 0.146209 df = 2.38332e-05

> fit10$tau/(fit10$tau+fit10$sigma2)

[1] 0.1462102

As expected, the estimate is inflated when no PCs are incorporated in the model.

5 Association tests

The function association.test performs genome-wide association tests with either (generalized) linear
models, or with generalized) linear (mixed) models, for quantitative or binary (0/1) traits.

5.1 Quantitative trait

When the function association.test is called with parameter method = "lm" it performs a test of associ-
ation between SNPs and a quantitative trait Y under the model

Y = (X|PC)α+Gβ + ε

where X is the matrix of covariables with fixed effects (including a column of ones for the intercept), G is
the vector of genotypes at the SNP under consideratione. A few PCs can be included in the model with fixed
effects to correct for population stratification (the parameter p gives the number of PCs to include). The
Wald test is performed to test for β = 0.

When the function is called with parameter method = "lmm" the following mixed model is used instead:

Y = (X|PC)α+Gβ + ω + ε

where X and G are as above, and ω ∼ N (0, τK) where K is a Genetic Relationship Matrix (computed on
the whole genome).

Three tests are proposed for β = 0: a score test, a Wald test on β̂, or a Likelihood Ratio Test.

We illustrate this function on a simple example, built on the AGT data set:

> data(AGT)

> x <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)

> standardize(x) <- 'p'

As the whole genome is not available, we generate a random positive matrix to play the role of the GRM:

> set.seed(27)

> R <- random.pm(nrow(x))

And we simulate a phenotype with an effect of the SNP #351, and a polygenic component:

> y <- 2 + x %*% c(rep(0,350),0.35,rep(0,ncol(x)-351)) +

+ lmm.simu(tau = 0.3, sigma2 = 1, eigenK=R$eigen)$y

The following code performs the association test with a score test and a wald test, and compares the resulting
p-values:

> t_wald <- association.test(x, y, K = R$K, method = "lm", test = "wald")

> t_wald_mixed <- association.test(x, y, eigenK = R$eigen, method = "lmm", test = "wald")

> plot(t_waldp, t_wald_mixedp, log = "xy", xlab = "lm (wald)", ylab = "lmm (wald)")

> abline(0,1,lty=3)

1e−10 1e−08 1e−06 1e−04 1e−02 1e+00

1e
−

10
1e

−
08

1e
−

06
1e

−
04

1e
−

02
1e

+
00

lm (wald)

lm
m

 (
w

al
d)

We can display the results under the form of a (mini) Manhattan plot:

> manhattan(t_wald_mixed, col = ifelse(1:ncol(x) == 351, "red", "black"))

0
2

4
6

8
10

Position

−
lo

g 1
0(p

)

230800000 230820000 230840000 230860000 230880000 230900000

We colored the point corresponding to the SNP #351 in red. Note that when used on genome-wide data,
the function manhattan will draw a classical Manhattan plot, alternating colors between chromosomes.

There are other SNPs with low association p-values: these are the SNPs in LD with SNP #351. We can
confirm this by plotting the p-values (again on log scale) as a function of the LD (measured by r2):

> lds <- LD(x, 351, c(1,ncol(x)))

> plot(lds, -log10(t_wald_mixed$p), xlab="r^2", ylab="-log(p)")

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

r^2

−
lo

g(
p)

5.2 Binary phenotype

We use the quantitative phenotype previously generated to construct a binary phenotype, and we perform
the association test with a logistic model (Wald test) or logistic mixed model (score test).

> y1 <- as.numeric(y > mean(y))

> t_binary <- association.test(x, y1, K = R$K, method = "lm", response = "binary", test="wald")

> t_binary_mixed <- association.test(x, y1, K = R$K, method = "lmm", response = "binary")

[Initialization] beta = -0.802666

[Initialization] tau = 0.1

[Iteration 1] tau = 0.0999517

[Iteration 1] beta = -0.797314

(d1 = inf)

(d = 0.243753)

[Iteration 2] gr = -1.17655

[Iteration 2] tau = 0.0203148

[Iteration 2] beta = -0.802054

(d1 = 1.042e+304)

(d = 0.248665)

[Iteration 3] gr = -0.00651935

[Iteration 3] tau = 0.0198994

[Iteration 3] beta = -0.801601

(d1 = 9.89056e+303)

(d = 0.248691)

[Iteration 4] gr = -1.49208e-06

[Iteration 4] tau = 0.0198993

[Iteration 4] beta = -0.8016

> plot(t_binaryp, t_binary_mixedp, log = "xy", xlab = "lm (wald)", ylab = "lmm (score)")

> abline(0,1,lty=3)

1e−11 1e−09 1e−07 1e−05 1e−03 1e−01

1e
−

11
1e

−
09

1e
−

07
1e

−
05

1e
−

03
1e

−
01

lm (wald)

lm
m

 (
sc

or
e)

6 What you can hope for in later releases

A few things that may be added to the package in the near future:

� Reading .ped files

� Maximum Likelihood Linkage Disequilibrium estimation

� LMM models fitting written in equation form

� More functions and models for association testing

� Anything you asked the maintainer for

