
Package: gamm4 (via r-universe)
September 8, 2024

Version 0.2-6

Author Simon Wood, Fabian Scheipl

Maintainer Simon Wood <simon.wood@r-project.org>

Title Generalized Additive Mixed Models using 'mgcv' and 'lme4'

Description Estimate generalized additive mixed models via a version
of function gamm() from 'mgcv', using 'lme4' for estimation.

Depends R (>= 2.9.0), methods, Matrix, lme4 (>= 1.0), mgcv (>= 1.7-23)

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-03 19:30:02 UTC

Contents
gamm4 . 1

Index 10

gamm4 Generalized Additive Mixed Models using lme4 and mgcv

Description

Fits the specified generalized additive mixed model (GAMM) to data, by making use of the modular
fitting functions provided by lme4 (new version). For earlier lme4 versions modelling fitting is via
a call to lmer in the normal errors identity link case, or by a call to glmer otherwise (see lmer).
Smoothness selection is by REML in the Gaussian additive case and (Laplace approximate) ML
otherwise.

gamm4 is based on gamm from package mgcv, but uses lme4 rather than nlme as the underlying fitting
engine via a trick due to Fabian Scheipl. gamm4 is more robust numerically than gamm, and by
avoiding PQL gives better performance for binary and low mean count data. Its main disadvantage

1

2 gamm4

is that it can not handle most multi-penalty smooths (i.e. not te type tensor products or adaptive
smooths) and there is no facilty for nlme style correlation structures. Tensor product smoothing is
available via t2 terms (Wood, Scheipl and Faraway, 2013).

For fitting generalized additive models without random effects, gamm4 is much slower than gam
and has slightly worse MSE performance than gam with REML smoothness selection. For fitting
GAMMs with modest numbers of i.i.d. random coefficients then gamm4 is slower than gam (or bam
for large data sets). gamm4 is most useful when the random effects are not i.i.d., or when there are
large numbers of random coeffecients (more than several hundred), each applying to only a small
proportion of the response data.

To use this function effectively it helps to be quite familiar with the use of gam and lmer.

Usage

gamm4(formula,random=NULL,family=gaussian(),data=list(),weights=NULL,
subset=NULL,na.action,knots=NULL,drop.unused.levels=TRUE,
REML=TRUE,control=NULL,start=NULL,verbose=0L,...)

Arguments

formula A GAM formula (see also formula.gam and gam.models). This is like the for-
mula for a glm except that smooth terms (s and t2 but not te) can be added to the
right hand side of the formula. Note that ids for smooths and fixed smoothing
parameters are not supported.

random An optional formula specifying the random effects structure in lmer style. See
example below.

family A family as used in a call to glm or gam.

data A data frame or list containing the model response variable and covariates re-
quired by the formula. By default the variables are taken from environment(formula),
typically the environment from which gamm4 is called.

weights a vector of prior weights on the observations. NULL is equivalent to a vector of
1s. Used, in particular, to supply the number-of-trials for binomial data, when
the response is proportion of successes.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain ‘NA’s.
The default is set by the ‘na.action’ setting of ‘options’, and is ‘na.fail’ if that is
unset. The “factory-fresh” default is ‘na.omit’.

knots this is an optional list containing user specified knot values to be used for basis
construction. Different terms can use different numbers of knots, unless they
share a covariate.

drop.unused.levels

by default unused levels are dropped from factors before fitting. For some
smooths involving factor variables you might want to turn this off. Only do
so if you know what you are doing.

REML passed on to lmer fitting routines (but not glmer fitting routines) to control
whether REML or ML is used.

gamm4 3

control lmerControl or glmerControl list as appropriate (NULL means defaults are
used).

start starting value list as used by lmer or glmer.

verbose passed on to fitting lme4 fitting routines.

... further arguments for passing on to model setup routines.

Details

A generalized additive mixed model is a generalized linear mixed model in which the linear predic-
tor depends linearly on unknown smooth functions of some of the covariates (‘smooths’ for short).
gamm4 follows the approach taken by package mgcv and represents the smooths using penalized
regression spline type smoothers, of moderate rank. For estimation purposes the penalized compo-
nent of each smooth is treated as a random effect term, while the unpenalized component is treated
as fixed. The wiggliness penalty matrix for the smooth is in effect the precision matrix when the
smooth is treated as a random effect. Estimating the degree of smoothness of the term amounts to
estimating the variance parameter for the term.

gamm4 uses the same reparameterization trick employed by gamm to allow any single quadratic
penalty smoother to be used (see Wood, 2004, or 2006 for details). Given the reparameteriza-
tion then the modular fitting approach employed in lmer can be used to fit a GAMM. Estimation is
by Maximum Likelihood in the generalized case, and REML in the gaussian additive model case.
gamm4 allows the random effects specifiable with lmer to be combined with any number of any of
the (single penalty) smooth terms available in gam from package mgcv as well as t2 tensor product
smooths. Note that the model comparison on the basis of the (Laplace approximate) log likelihood
is possible with GAMMs fitted by gamm4.

As in gamm the smooth estimates are assumed to be of interest, and a covariance matrix is returned
which enables Bayesian credible intervals for the smooths to be constructed, which treat all the
terms in random as random.

For details on how to condition smooths on factors, set up varying coefficient models, do signal
regression or set up terms involving linear functionals of smooths, see gam.models, but note that
te type tensor product and adaptive smooths are not available with gamm4.

Value

Returns a list with two items:

gam an object of class gam. At present this contains enough information to use
predict, plot, summary and print methods and vis.gam, from package mgcv
but not to use e.g. the anova method function to compare models.

mer the fitted model object returned by lmer or glmer. Extra random and fixed
effect terms will appear relating to the estimation of the smooth terms. Note that
unlike lme objects returned by gamm, everything in this object always relates to
the fitted model itself, and never to a PQL working approximation: hence the
usual methods of model comparison are entirely legitimate.

WARNINGS

If you don’t need random effects in addition to the smooths, then gam is substantially faster, gives
fewer convergence warnings, and slightly better MSE performance (based on simulations).

4 gamm4

Models must contain at least one random effect: either a smooth with non-zero smoothing parame-
ter, or a random effect specified in argument random.

Note that the gam object part of the returned object is not complete in the sense of having all the
elements defined in gamObject and does not inherit from glm: hence e.g. multi-model anova calls
will not work.

Linked smoothing parameters, adaptive smoothing and te terms are not supported.

This routine is obviously less well tested than gamm.

Author(s)

Simon N. Wood <simon.wood@r-project.org>

References

Bates D., M. Maechler, B. Bolker & S. Walker (2013). lme4: Linear mixed-effects models using
Eigen and S4. https://cran.r-project.org/package=lme4

Wood S.N., Scheipl, F. and Faraway, J.J. (2013/2011 online) Straightforward intermediate rank
tensor product smoothing in mixed models. Statistics and Computing 23(3): 341-360

Wood, S.N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized
additive models. Journal of the American Statistical Association. 99:673-686

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

For more GAMM references see gamm

http://www.maths.bris.ac.uk/~sw15190/

See Also

gam, gamm, gam.models, lmer, predict.gam, plot.gam, summary.gam, s, vis.gam

Examples

NOTE: most examples are flagged as 'do not run' simply to
save time in package checking on CRAN.

###################################
A simple additive mixed model...
###################################
library(gamm4)

set.seed(0)
dat <- gamSim(1,n=400,scale=2) ## simulate 4 term additive truth
Now add 20 level random effect `fac'...
dat$fac <- fac <- as.factor(sample(1:20,400,replace=TRUE))
dat$y <- dat$y + model.matrix(~fac-1)%*%rnorm(20)*.5

br <- gamm4(y~s(x0)+x1+s(x2),data=dat,random=~(1|fac))
plot(br$gam,pages=1)

https://cran.r-project.org/package=lme4
http://www.maths.bris.ac.uk/~sw15190/

gamm4 5

summary(br$gam) ## summary of gam
summary(br$mer) ## underlying mixed model
anova(br$gam)

compare gam fit of the same
bg <- gam(y~s(x0)+x1+s(x2)+s(fac,bs="re"),

data=dat,method="REML")
plot(bg,pages=1)
gam.vcomp(bg)

##########################
Poisson example GAMM...
##########################
simulate data...
x <- runif(100)
fac <- sample(1:20,100,replace=TRUE)
eta <- x^2*3 + fac/20; fac <- as.factor(fac)
y <- rpois(100,exp(eta))

fit model and examine it...
bp <- gamm4(y~s(x),family=poisson,random=~(1|fac))
plot(bp$gam)
bp$mer

Not run:
###
Add a factor to the linear predictor, to be modelled as random
and make response Poisson. Again compare `gamm' and `gamm4'
###
set.seed(6)
dat <- gamSim(1,n=400,scale=2) ## simulate 4 term additive truth
add random effect...
g <- as.factor(sample(1:20,400,replace=TRUE))
dat$f <- dat$f + model.matrix(~ g-1)%*%rnorm(20)*2
dat$y <- rpois(400,exp(dat$f/7+1))

b2<-gamm(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,
data=dat,random=list(g=~1))

plot(b2$gam,pages=1)

b2r<-gamm4(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,
data=dat,random = ~ (1|g))

plot(b2r$gam,pages=1)

rm(dat)
vis.gam(b2r$gam,theta=35)

##################################
Multivariate varying coefficient
With crossed and nested random
effects.

6 gamm4

##################################

Start by simulating data...

f0 <- function(x, z, sx = 0.3, sz = 0.4) {
(pi^sx * sz) * (1.2 * exp(-(x - 0.2)^2/sx^2 - (z -

0.3)^2/sz^2) + 0.8 * exp(-(x - 0.7)^2/sx^2 -
(z - 0.8)^2/sz^2))

}
f1 <- function(x2) 2 * sin(pi * x2)
f2 <- function(x2) exp(2 * x2) - 3.75887
f3 <- function (x2) 0.2 * x2^11 * (10 * (1 - x2))^6 + 10 * (10 * x2)^3 *

(1 - x2)^10

n <- 1000

first set up a continuous-within-group effect...

g <- factor(sample(1:50,n,replace=TRUE)) ## grouping factor
x <- runif(n) ## continuous covariate
X <- model.matrix(~g-1)
mu <- X%*%rnorm(50)*.5 + (x*X)%*%rnorm(50)

now add nested factors...
a <- factor(rep(1:20,rep(50,20)))
b <- factor(rep(rep(1:25,rep(2,25)),rep(20,50)))
Xa <- model.matrix(~a-1)
Xb <- model.matrix(~a/b-a-1)
mu <- mu + Xa%*%rnorm(20) + Xb%*%rnorm(500)*.5

finally simulate the smooth terms
v <- runif(n);w <- runif(n);z <- runif(n)
r <- runif(n)
mu <- mu + f0(v,w)*z*10 + f3(r)

y <- mu + rnorm(n)*2 ## response data

First compare gamm and gamm4 on a reduced model

br <- gamm4(y ~ s(v,w,by=z) + s(r,k=20,bs="cr"),random = ~ (1|a/b))

ba <- gamm(y ~ s(v,w,by=z) + s(r,k=20,bs="cr"),random = list(a=~1,b=~1),method="REML")

par(mfrow=c(2,2))
plot(br$gam)

plot(ba$gam)

now fit the full model

br <- gamm4(y ~ s(v,w,by=z) + s(r,k=20,bs="cr"),random = ~ (x+0|g) + (1|g) + (1|a/b))

gamm4 7

br$mer
br$gam
plot(br$gam)

try a Poisson example, based on the same linear predictor...

lp <- mu/5
y <- rpois(exp(lp),exp(lp)) ## simulated response

again compare gamm and gamm4 on reduced model

br <- gamm4(y ~ s(v,w,by=z) + s(r,k=20,bs="cr"),family=poisson,random = ~ (1|a/b))

ba <- gamm(y ~ s(v,w,by=z) + s(r,k=20,bs="cr"),family=poisson,random = list(a=~1,b=~1))

par(mfrow=c(2,2))
plot(br$gam)
plot(ba$gam)

and now fit full version (very slow)...

br <- gamm4(y ~ s(v,w,by=z) + s(r,k=20,bs="cr"),family=poisson,random = ~ (x|g) + (1|a/b))
br$mer
br$gam
plot(br$gam)

####################################
Different smooths of x2 depending
on factor `fac'...
####################################
dat <- gamSim(4)

br <- gamm4(y ~ fac+s(x2,by=fac)+s(x0),data=dat)
plot(br$gam,pages=1)
summary(br$gam)

####################################
Timing comparison with `gam'...
####################################

dat <- gamSim(1,n=600,dist="binary",scale=.33)

system.time(lr.fit0 <- gam(y~s(x0)+s(x1)+s(x2),
family=binomial,data=dat,method="ML"))

system.time(lr.fit <- gamm4(y~s(x0)+s(x1)+s(x2),
family=binomial,data=dat))

lr.fit0;lr.fit$gam
cor(fitted(lr.fit0),fitted(lr.fit$gam))

8 gamm4

plot model components with truth overlaid in red
op <- par(mfrow=c(2,2))
fn <- c("f0","f1","f2","f3");xn <- c("x0","x1","x2","x3")
for (k in 1:3) {

plot(lr.fit$gam,select=k)
ff <- dat[[fn[k]]];xx <- dat[[xn[k]]]
ind <- sort.int(xx,index.return=TRUE)$ix
lines(xx[ind],(ff-mean(ff))[ind]*.33,col=2)

}
par(op)

End(Not run)

######################################
A "signal" regression example, in
which a univariate response depends
on functional predictors.
######################################

simulate data first....

rf <- function(x=seq(0,1,length=100)) {
generates random functions...

m <- ceiling(runif(1)*5) ## number of components
f <- x*0;
mu <- runif(m,min(x),max(x));sig <- (runif(m)+.5)*(max(x)-min(x))/10
for (i in 1:m) f <- f+ dnorm(x,mu[i],sig[i])
f

}

x <- seq(0,1,length=100) ## evaluation points

example functional predictors...
par(mfrow=c(3,3));for (i in 1:9) plot(x,rf(x),type="l",xlab="x")

simulate 200 functions and store in rows of L...
L <- matrix(NA,200,100)
for (i in 1:200) L[i,] <- rf() ## simulate the functional predictors

f2 <- function(x) { ## the coefficient function
(0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10)/10

}

f <- f2(x) ## the true coefficient function

y <- L%*%f + rnorm(200)*20 ## simulated response data

Now fit the model E(y) = L%*%f(x) where f is a smooth function.
The summation convention is used to evaluate smooth at each value
in matrix X to get matrix F, say. Then rowSum(L*F) gives E(y).

create matrix of eval points for each function. Note that
`smoothCon' is smart and will recognize the duplication...

gamm4 9

X <- matrix(x,200,100,byrow=TRUE)

compare `gam' and `gamm4' this time

b <- gam(y~s(X,by=L,k=20),method="REML")
br <- gamm4(y~s(X,by=L,k=20))
par(mfrow=c(2,1))
plot(b,shade=TRUE);lines(x,f,col=2)
plot(br$gam,shade=TRUE);lines(x,f,col=2)

Index

∗ models
gamm4, 1

∗ regression
gamm4, 1

∗ smooth
gamm4, 1

bam, 2

formula.gam, 2

gam, 2–4
gam.models, 2–4
gamm, 1, 3, 4
gamm4, 1
gamObject, 4
glm, 2
glmer, 2, 3
glmerControl, 3

lmer, 1–4
lmerControl, 3

plot.gam, 4
predict.gam, 4

s, 2, 4
summary.gam, 4

t2, 2, 3
te, 2

vis.gam, 4

10

	gamm4
	Index

