
Package: gafit (via r-universe)
September 6, 2024

Version 0.5.1

Date 2016-12-05

Title Genetic Algorithm for Curve Fitting

Author Telford Tendys <gafit@lnx-bsp.net>

Maintainer Telford Tendys <gafit@lnx-bsp.net>

Depends R (>= 3.0.0)

Description A group of sample points are evaluated against a
user-defined expression, the sample points are lists of
parameters with values that may be substituted into that
expression. The genetic algorithm attempts to make the result
of the expression as low as possible (usually this would be the
sum of residuals squared).

License GPL-2

URL http://lnx-bsp.net/

Repository CRAN

Date/Publication 2016-12-05 22:52:27

NeedsCompilation yes

Contents
gafit . 1

Index 5

gafit Genetic Algorithm for Curve Fitting

Description

Randomly iterate a group of samples (i.e. the ‘gene pool’) over a target function with the intent of
achieving the lowest target value. The target function is provided by the caller as an expression and
various other tuning parameters may be used to improve the convergence rate.

1

http://lnx-bsp.net/

2 gafit

Usage

gafit(target, start, thermal=0.1, maxiter=50, samples=10, step=1e-3, tolerance=-Inf)

Arguments

target An expression which returns a scalar real value. The algorithm will seek the
lowest achievable value and save this in the "score" attribute (see below). Usu-
ally this would be a sum of residuals squared, so that the algorithm will seek to
bring this as close as possible to zero.

start A list of named values which will be used as the starting point for the curve
fitting. This list lets the algorithm know what it is allowed to adjust so any
parameters which the user wants to hold constant should be removed from this
list and placed in the global environment instead. The mode of the parameters
will not be changed by the curve fitting so if you provide integers or logicals then
the algorithm will attempt to use parameters of that mode. Complex numbers
are allowed as are vectors and matrices.

thermal The probability that the internal bubble-sort will promote noisy samples rather
than samples with a desirable score. Values above 0.1 should be used with
caution. Some thermal noise is required such that the algorithm is discouraged
from zooming straight into a local optima. From a user’s perspective, adding
thermal noise will reduce the precision of the final result but will widen the
‘span’ of the sample points making local optima less attractive. Often it is good
to do a first run at a high thermal noise then reduce this toward zero once good
starting values are are available (same principle as simulated annealing).

maxiter In order to force the search to conclude, the number of iterations is limited. One
iteration involved moving and re-evaluating all sample points. This argument
allows the user to control the length of the search. There is no other termination
condition except maxiter so it is also the minimum number of iterations.

samples This controls the number of sample points in the ‘gene pool’ and thus the effec-
tiveness of the algorithm. Numbers less than 5 are fairly pointless, the larger the
number the better the search but the slower each iteration becomes. As a rough
rule, this should be double the number of parameters in start.

step The step size between samples is largely auto-adjusting but it has to start from
somewhere. The user should put a value here which is a rough estimate of the
distance (in parameter space) from the start values to the correct solution. If
you have absolutely no idea what the distance might be then just put something
small in comparison to the expected parameter values.

tolerance If we find that the least squares value is less than this value then return early
because the answer is considered good enough. NOTE: by default this is -Inf
which will never trigger early exit.

Details

Genetic algorithms are driven by random samples so the same results may not be obtainable twice
in a row. OK, I’ll admit that lots of ad-hoc stuff went into this and it sometimes gets a completely
wrong answer. Also there are some problems which it will never ever seem to get the exactly
right answer but will reliably get something close. On the other hand, it does handle a wide range

gafit 3

of problems is not particularly finicky about the starting point (something in the right order of
magnitude helps but is not essential). This makes it a good first stage in tackling problems which
may be quite difficult to fit by more well established methods.

The results of this genetic algorithm may be used as a starting point for the nls regression algorithm
(which will follow the gradient to the local optimum) so that a “nearly right” fit can be converted
into a “best” fit. Often this chaining of regression algorithms requires that some deliberate er-
ror is introduced into the parameters because nls might complain about a singular gradient matrix
(thinks... does nls attempt to narrow the step size for the numerical derivative when confronted by
a singular gradient matrix? maybe it should).

Value

The returned value will be a list of the best parameter values that could be found. This list will be
the same structure as the start list with new values inserted. The returned value will have an attribute
called "score" which is the evaluation of target with those paramters, and also an attribute called
"count" which counts the number of iterations completed (could be zero).

Known Bugs

There is no way to guarantee to avoid a local optima nor is there a way to be sure that any stationary
point that has been discovered is the global optimum value (other than an infinite length search).
As far as I know this is a theoretical limitation of all nonlinear regression, having a good overall
understanding of the behaviour of the functions with which you are working with is essential.

Sometimes NaN values will be introduced into the parameters and then will go away again. Al-
though many warnings get generated, the NaN values do not seem to turn up in the final result so
this should be considered merely an harmless annoyance.

The thermal value is constant. Ideally it should gradually decrease itself but choosing the ideal
“cooling curve” is too difficult, so it is left to the user to adjust this. The return value of one gafit()
run can be used as the start value for the next round, making it easy to build a cascade and simulate
stages of cooling.

The step size auto-adjustment can break in some situations producing amazingly wrong answers.

It is possible to generate an error which looks something like “.Random.seed[2] is not a valid
integer”. I blame the random generator for stuffing up but it might equally well be bugs in my
code, or more likely a misunderstanding on my part as to exactly how the R API really works. If
this happens, just put new values into the .Random.seed variable and try again.

Author(s)

Telford Tendys <gafit@lnx-bsp.net>

See Also

expression, nls, .Random.seed

Examples

Single parameter, all real numbers (not using least squares)
e <- expression(cos(theta) + sin(theta))

4 gafit

guess.1 <- list(theta=3)
guess.2 <- gafit(e, guess.1, step=1e-3) # First attempt with thermal noise
gafit(e, guess.2, step=1e-5, thermal=0) # usually gets close to 3.926991

Double parameter, complex numbers (least square curve fit)
sumsq <- function(x) { sum((Mod(x)) ^ 2)}
freq <- exp(1:15)
tpj <- 2 * pi * (0+1i)
data <- 1 / (10 + tpj * freq * 1e-3)
e <- expression(sumsq(1 / (R + tpj * freq * C) - data))
guess.1 <- list(R=100, C=1e-6);
guess.2 <- gafit(e, guess.1, step=0.1, maxiter=100, tolerance=1e-2)
gafit(e, thermal=0, guess.2, step=1e-3, maxiter=200, tolerance=1e-5)

Index

∗ nonlinear
gafit, 1

∗ regression
gafit, 1

.Random.seed, 3

expression, 3

gafit, 1

nls, 3

5

	gafit
	Index

