
g.data Package Documentation

David Brahm

December 16, 2013

Abstract

Normally in R, objects live � and die � in memory unless you explicitly save them

with save, or save the entire image with save.image. The g.data package allows you

to save a whole group of objects to an associated directory on disk, then access them

later. The objects then appear to exist in a particular location on the search path

(position 2 by default), and are readily accessible without extra e�ort, but R does not

actually load them into memory until needed.

1 Introduction

In this example, I create two large matrices m1 and m2, and store them on disk in a
�delayed data package� (ddp). Normally you'd choose the ddp location, but here it's just
a temporary directory. The g.data.attach command attaches an environment associated
with the ddp directory:

> require(g.data)

> (ddp <- tempfile("newdir")) # Where to put the files

[1] "/tmp/Rtmp9Lheu1/newdir36a2f15014b"

> g.data.attach(ddp) # Warns that this is a new directory

> search()[1:3]

[1] ".GlobalEnv" "newdir36a2f15014b" "package:g.data"

> assign("m1", matrix(1, 5000, 1000), 2)

> assign("m2", matrix(2, 5000, 1000), 2)

> ls(2)

[1] "m1" "m2"

The g.data.save command does the actual storing to disk. Once I detach the environment
they lived in, R forgets the objects:

1



> g.data.save() # Writes the files

> detach(2)

In the same or another R session, I then attach the ddp, and the matrices appear to be
instantly accessible. In fact they are just promises, so the �rst time I access m1 (by asking
its dimensionality) there is a delay as m1 is actually loaded into memory. Further access to
m1 is quick, though, because now it's in memory. Note m2 never needs to be loaded into
memory, saving time and resources:

> g.data.attach(ddp) # No warning, because directory exists

> ls(2)

[1] "m1" "m2"

> system.time(print(dim(m1))) # Takes time to load up

[1] 5000 1000

user system elapsed

0.056 0.004 0.061

> system.time(print(dim(m1))) # Second time is faster!

[1] 5000 1000

user system elapsed

0 0 0

> find("m1") # m1 still lives in pos=2, is now real

[1] "newdir36a2f15014b"

I can also put a new object m3 into the ddp and re-save it:

> assign("m3", m1*10, 2)

> g.data.save() # Or just g.data.save(obj="m3")

> detach(2)

2 Variations

There is a function g.data.get to access a single object without attaching the ddp:

> mym2 <- g.data.get("m2", ddp) # Get one object without attaching

There is also a function g.data.put to write an object without attaching the ddp:

> g.data.put("m4", matrix(1:12, 3,4), ddp)

2



Since we're done with this example, you may want to remove the ddp now:

> unlink(ddp, recursive=TRUE) # Clean up this example

Here is a new example with a slightly di�erent approach. We skip g.data.attach en-
tirely, instead attaching a list y directly to position 2. g.data.save still works, but you
must now tell it the location of the directory:

> ddp <- tempfile("newdir")

> y <- list(m1=1:1000, m2=2:1001)

> attach(y) # Attach an existing list or dataframe

> search()[1:3]

[1] ".GlobalEnv" "y" "package:g.data"

> ls(2)

[1] "m1" "m2"

> g.data.save(ddp)

> detach(2)

> unlink(ddp, recursive=TRUE) # Clean up this example

3 Under the Hood

g.data.save simply stores one object per �le in the ddp directory. An object xyz is
stored in �le xyz.RData. You could access these �les with ordinary load commands, and
you could write (or overwrite) them with save commands.

Unfortunately, in Windows the �les x.RData and X.RData are indistinguishable, so we
modify the naming convention by preceding uppercase letters with the @ symbol. An object
aBcD is stored in �le a@Bc@D.RData.

g.data.attach contains the magic. The environment it attaches contains only promises,
implemented with delayedAssign. When you �rst access an object, R ful�lls the promise
to 1) load the data �le, 2) store the real object in the environment, and 3) return its value to
you. Subsequent access just returns the real object which is now stored in the environment.
g.data.attach also gives the environment a �path� attribute, so g.data.save will know
where to write �les.

g.data.save is smart enough to only write back to disk objects that are not promises.
It also has options to allow you to choose the objects written, remove objects, and set the
directory to write to.

3



A Function Index

� Create and Maintain Delayed-Data Packages

g.data.attach: Attach a delayed-data package (DDP)

g.data.save: Write a DDP to disk

g.data.get: Get one object from a DDP on disk

g.data.put: Write one object to a DDP on disk

4


