Title: | Framework for Unified Estimation in Lognormal Models |
---|---|
Description: | Lognormal models have broad applications in various research areas such as economics, actuarial science, biology, environmental science and psychology. The estimation problem in lognormal models has been extensively studied. This R package 'fuel' implements thirty-nine existing and newly proposed estimators. See Zhang, F., and Gou, J. (2020), A unified framework for estimation in lognormal models, Technical report. |
Authors: | Jiangtao Gou and Fengqing (Zoe) Zhang |
Maintainer: | Jiangtao Gou <[email protected]> |
License: | GPL-3 |
Version: | 1.2.0 |
Built: | 2024-12-14 06:38:50 UTC |
Source: | CRAN |
Lognormal models are also widely applied in various branches of natural, social and applied sciences. Given a pair of known constants in the parametric function for the statistics in the lognormal distribution, sample size, degree of freedom of the variance estimation of the log-transformed data, standardized variance of the sampling distribution of the log-transformed data, mean of the log-transformed data and standard deviation of the log-transformed data, this function returns an estimation for the lognormal distribution, including a total of thirty-nine different estimation methods, under a newly proposed unified framework in Zhang and Gou (2020).
lognormalest(n, m = n - 1, d = 1/n, mean.rn, sd.rn, a, b, estimator)
lognormalest(n, m = n - 1, d = 1/n, mean.rn, sd.rn, a, b, estimator)
n |
sample size. |
m |
degree of freedom of the variance estimation of the log-transformed data. |
d |
standardized variance of the sampling distribution of the log-transformed data. |
mean.rn |
mean of the log-transformed data. |
sd.rn |
standard deviation of the log-transformed data. |
a |
the first known constants in the parametric function for the statistics. |
b |
the second known constants in the parametric function for the statistics. |
estimator |
a total of thirty-eight different estimation methods. See more descriptions in Section Details. |
Consider a parametric function in the original scale we are interested in estimating ,where constants a and b are known.
Specifically,
is the mean of the lognormal distribution,
is the second moment,
is the variance, and
is the coeficient of variation.
unbiased
: Unbiased estimator (Finney, 1941)
qml
: Quasi maximum likelihood estimator
ml
: Maximum likelihood estimator
sa
: Simple adjustment estimator
f
: Finney's unbiased estimator (Finney, 1941)
z
: Zellner's estimator (Zellner, 1971)
es
: Evans and Shaban’s estimator (Evans and Shaban, 1974, 1976)
r-s
: Rukhin’s simple estimator (Rukhin, 1986)
r-f
: Rukhin’s estimator using Finney's function (Rukhin, 1986)
r-lo
: Rukhin’s locally optimal estimator (Rukhin, 1986)
r-b
: Rukhin’s Bayes estimator (Rukhin, 1986)
ev
: El-Shaarawi and Viveros' estimator (El-Shaarawi and Viveros, 1997)
zh
: Zhou's estimator (Zhou, 1998)
sz-mm
: Shen and Zhu's MM estimator (Shen and Zhu, 2008)
sz-mb
: Shen and Zhu's MB estimator (Shen and Zhu, 2008)
l-ub
: Longford's UB estimator (Longford, 2009)
l-ms
: Longford's MS estimator (Longford, 2009)
ft
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-s
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-b
: Fabrizi and Trivisano's Bayes estimator (Fabrizi and Trivisano, 2012)
gt-f
: Gou and Tamhane's estimator using Finney's function (Gou and Tamhane, 2017)
gt-es
: Gou and Tamhane's estimator using Evans and Shaban's function (Gou and Tamhane, 2017)
gt-r
: Gou and Tamhane's estimator using Rukhin's function (Gou and Tamhane, 2017)
zg-1
: Zhang and Gou's first estimator (Zhang and Gou, 2020)
zg-2
: Zhang and Gou's second estimator (Zhang and Gou, 2020)
zg-3
: Zhang and Gou's third estimator (Zhang and Gou, 2020)
zg-4
: Zhang and Gou's fourth estimator (Zhang and Gou, 2020)
zg-5
: Zhang and Gou's fifth estimator (Zhang and Gou, 2020)
zg-6
: Zhang and Gou's sixth estimator (Zhang and Gou, 2020)
zg-7
: Zhang and Gou's seventh estimator (Zhang and Gou, 2020)
zg-8
: Zhang and Gou's eighth estimator (Zhang and Gou, 2020)
zg-9
: Zhang and Gou's ninth estimator (Zhang and Gou, 2020)
zg-10
: Zhang and Gou's tenth estimator (Zhang and Gou, 2020)
zg-11
: Zhang and Gou's eleventh estimator (Zhang and Gou, 2020)
zg-12
: Zhang and Gou's twelveth estimator (Zhang and Gou, 2020)
zg-13
: Zhang and Gou's thirteenth estimator (Zhang and Gou, 2020)
zg-14
: Zhang and Gou's fourteenth estimator (Zhang and Gou, 2020)
zg-15
: Zhang and Gou's fifteenth estimator (Zhang and Gou, 2020)
zg-16
: Zhang and Gou's sixteenth estimator (Zhang and Gou, 2020)
zg-17
: Zhang and Gou's seventeenth estimator (Zhang and Gou, 2020)
zg-18
: Zhang and Gou's eighteenth estimator (Zhang and Gou, 2020)
zg-19
: Zhang and Gou's nineteenth estimator (Zhang and Gou, 2020)
estimation using a specific estimating method.
Jiangtao Gou
Fengqing (Zoe) Zhang
Finney, D. J. (1941). On the distribution of a variate whose logarithm is normally distributed. Supplement to the Journal of the Royal Statistical Society, 7: 155-161. <https://doi.org/10.2307/2983663>
Zellner, A. (1971). Bayesian and non-Bayesian analysis of the log-normal distribution and log-normal regression. Journal of the American Statistical Association, 66: 327-330. <https://doi.org/10.1080/01621459.1971.10482263>
Evans, I. G. and Shaban, S. A. (1974). A note on estimation in lognormal models. Journal of the American Statistical Association, 69: 779-781. <https://doi.org/10.2307/2286017>
Rukhin, A. L. (1986). Improved estimation in lognormal models. Journal of the American Statistical Association, 81: 1046-1049. <https://doi.org/10.1080/01621459.1986.10478371>
El-Shaarawi, A. H. and Viveros, R. (1997). Inference about the mean in log-regression with environmental applications. Environmetrics, 8: 569-582. <https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<569::AID-ENV274>3.0.CO;2-I>
Shen, H. and Zhu, Z. (2008). Efficient mean estimation in log-normal linear models. Journal of Statistical Planning and Inference, 138: 552-567. <https://doi.org/10.1016/j.jspi.2006.10.016>
Longford, N. T. (2009). Inference with the lognormal distribution. Journal of Statistical Planning and Inference, 139: 2329-2340. <https://doi.org/10.1016/j.jspi.2008.10.015>
Fabrizi, E. and Trivisano, C. (2012). Bayesian estimation of log-normal means with finite quadratic expected loss. Bayesian Analysis, 7: 975-996. <https://doi.org/10.1214/12-BA733>
Gou, J. and Tamhane, A. C. (2017). Estimation of a parametric function associated with the lognormal distribution. Communications in Statistics - Theory and Methods 46: 8134-8154. <https://doi.org/10.1080/03610926.2016.1175628>
Zhang, F. and Gou, J. (2020). A unified framework for estimation in lognormal models. Technical Report.
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='zg-4')
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalest(n=10, m=9, d=1/10, mean.rn=1, sd.rn=1, a=1, b=1, estimator='zg-4')
Lognormal models are also widely applied in various branches of natural, social and applied sciences. Given a pair of known constants in the parametric function for the statistics in the lognormal distribution, sample size, degree of freedom of the variance estimation of the log-transformed data, standardized variance of the sampling distribution of the log-transformed data, mean of the log-transformed data and standard deviation of the log-transformed data, this function returns an estimation for the lognormal distribution, including a total of thirty-nine different estimation methods, under a newly proposed unified framework in Zhang and Gou (2020).
lognormalmean( data, estimator, base = exp(1), n = length(data), m = n - 1, d = 1/n )
lognormalmean( data, estimator, base = exp(1), n = length(data), m = n - 1, d = 1/n )
data |
original data vector |
estimator |
a total of thirty-eight different estimation methods. See more descriptions in Section Details. |
base |
the base with respect to which logarithms are computed. Defaults to e. |
n |
sample size. |
m |
degree of freedom of the variance estimation of the log-transformed data. |
d |
standardized variance of the sampling distribution of the log-transformed data. |
Consider a parametric function in the original scale we are interested in estimating ,where constants a and b are known.
Specifically,
is the mean of the lognormal distribution,
is the second moment,
is the variance, and
is the coeficient of variation.
unbiased
: Unbiased estimator (Finney, 1941)
qml
: Quasi maximum likelihood estimator
ml
: Maximum likelihood estimator
sa
: Simple adjustment estimator
f
: Finney's unbiased estimator (Finney, 1941)
z
: Zellner's estimator (Zellner, 1971)
es
: Evans and Shaban’s estimator (Evans and Shaban, 1974, 1976)
r-s
: Rukhin’s simple estimator (Rukhin, 1986)
r-f
: Rukhin’s estimator using Finney's function (Rukhin, 1986)
r-lo
: Rukhin’s locally optimal estimator (Rukhin, 1986)
r-b
: Rukhin’s Bayes estimator (Rukhin, 1986)
ev
: El-Shaarawi and Viveros' estimator (El-Shaarawi and Viveros, 1997)
zh
: Zhou's estimator (Zhou, 1998)
sz-mm
: Shen and Zhu's MM estimator (Shen and Zhu, 2008)
sz-mb
: Shen and Zhu's MB estimator (Shen and Zhu, 2008)
l-ub
: Longford's UB estimator (Longford, 2009)
l-ms
: Longford's MS estimator (Longford, 2009)
ft
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-s
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-b
: Fabrizi and Trivisano's Bayes estimator (Fabrizi and Trivisano, 2012)
gt-f
: Gou and Tamhane's estimator using Finney's function (Gou and Tamhane, 2017)
gt-es
: Gou and Tamhane's estimator using Evans and Shaban's function (Gou and Tamhane, 2017)
gt-r
: Gou and Tamhane's estimator using Rukhin's function (Gou and Tamhane, 2017)
zg-1
: Zhang and Gou's first estimator (Zhang and Gou, 2020)
zg-2
: Zhang and Gou's second estimator (Zhang and Gou, 2020)
zg-3
: Zhang and Gou's third estimator (Zhang and Gou, 2020)
zg-4
: Zhang and Gou's fourth estimator (Zhang and Gou, 2020)
zg-5
: Zhang and Gou's fifth estimator (Zhang and Gou, 2020)
zg-6
: Zhang and Gou's sixth estimator (Zhang and Gou, 2020)
zg-7
: Zhang and Gou's seventh estimator (Zhang and Gou, 2020)
zg-8
: Zhang and Gou's eighth estimator (Zhang and Gou, 2020)
zg-9
: Zhang and Gou's ninth estimator (Zhang and Gou, 2020)
zg-10
: Zhang and Gou's tenth estimator (Zhang and Gou, 2020)
zg-11
: Zhang and Gou's eleventh estimator (Zhang and Gou, 2020)
zg-12
: Zhang and Gou's twelveth estimator (Zhang and Gou, 2020)
zg-13
: Zhang and Gou's thirteenth estimator (Zhang and Gou, 2020)
zg-14
: Zhang and Gou's fourteenth estimator (Zhang and Gou, 2020)
zg-15
: Zhang and Gou's fifteenth estimator (Zhang and Gou, 2020)
zg-16
: Zhang and Gou's sixteenth estimator (Zhang and Gou, 2020)
zg-17
: Zhang and Gou's seventeenth estimator (Zhang and Gou, 2020)
zg-18
: Zhang and Gou's eighteenth estimator (Zhang and Gou, 2020)
zg-19
: Zhang and Gou's nineteenth estimator (Zhang and Gou, 2020)
estimated mean. .
Jiangtao Gou
Finney, D. J. (1941). On the distribution of a variate whose logarithm is normally distributed. Supplement to the Journal of the Royal Statistical Society, 7: 155-161. <https://doi.org/10.2307/2983663>
Zellner, A. (1971). Bayesian and non-Bayesian analysis of the log-normal distribution and log-normal regression. Journal of the American Statistical Association, 66: 327-330. <https://doi.org/10.1080/01621459.1971.10482263>
Evans, I. G. and Shaban, S. A. (1974). A note on estimation in lognormal models. Journal of the American Statistical Association, 69: 779-781. <https://doi.org/10.2307/2286017>
Rukhin, A. L. (1986). Improved estimation in lognormal models. Journal of the American Statistical Association, 81: 1046-1049. <https://doi.org/10.1080/01621459.1986.10478371>
El-Shaarawi, A. H. and Viveros, R. (1997). Inference about the mean in log-regression with environmental applications. Environmetrics, 8: 569-582. <https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<569::AID-ENV274>3.0.CO;2-I>
Shen, H. and Zhu, Z. (2008). Efficient mean estimation in log-normal linear models. Journal of Statistical Planning and Inference, 138: 552-567. <https://doi.org/10.1016/j.jspi.2006.10.016>
Longford, N. T. (2009). Inference with the lognormal distribution. Journal of Statistical Planning and Inference, 139: 2329-2340. <https://doi.org/10.1016/j.jspi.2008.10.015>
Fabrizi, E. and Trivisano, C. (2012). Bayesian estimation of log-normal means with finite quadratic expected loss. Bayesian Analysis, 7: 975-996. <https://doi.org/10.1214/12-BA733>
Gou, J. and Tamhane, A. C. (2017). Estimation of a parametric function associated with the lognormal distribution. Communications in Statistics - Theory and Methods 46: 8134-8154. <https://doi.org/10.1080/03610926.2016.1175628>
Zhang, F. and Gou, J. (2020). A unified framework for estimation in lognormal models. Technical Report.
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalmean(data=c(1,4,6,7), estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalmean(data=c(1,4,6,7), estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalmean(data=c(1,4,6,7), estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalmean(data=c(1,4,6,7), estimator='zg-4')
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalmean(data=c(1,4,6,7), estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalmean(data=c(1,4,6,7), estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalmean(data=c(1,4,6,7), estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalmean(data=c(1,4,6,7), estimator='zg-4')
Lognormal models are also widely applied in various branches of natural, social and applied sciences. Given a pair of known constants in the parametric function for the statistics in the lognormal distribution, sample size, degree of freedom of the variance estimation of the log-transformed data, standardized variance of the sampling distribution of the log-transformed data, mean of the log-transformed data and standard deviation of the log-transformed data, this function returns an estimation for the lognormal distribution, including a total of thirty-nine different estimation methods, under a newly proposed unified framework in Zhang and Gou (2020).
lognormalmedian( data, estimator, base = exp(1), n = length(data), m = n - 1, d = 1/n )
lognormalmedian( data, estimator, base = exp(1), n = length(data), m = n - 1, d = 1/n )
data |
original data vector |
estimator |
a total of thirty-eight different estimation methods. See more descriptions in Section Details. |
base |
the base with respect to which logarithms are computed. Defaults to e. |
n |
sample size. |
m |
degree of freedom of the variance estimation of the log-transformed data. |
d |
standardized variance of the sampling distribution of the log-transformed data. |
Consider a parametric function in the original scale we are interested in estimating ,where constants a and b are known.
Specifically,
is the mean of the lognormal distribution,
is the second moment,
is the variance, and
is the coeficient of variation.
unbiased
: Unbiased estimator (Finney, 1941)
qml
: Quasi maximum likelihood estimator
ml
: Maximum likelihood estimator
sa
: Simple adjustment estimator
f
: Finney's unbiased estimator (Finney, 1941)
z
: Zellner's estimator (Zellner, 1971)
es
: Evans and Shaban’s estimator (Evans and Shaban, 1974, 1976)
r-s
: Rukhin’s simple estimator (Rukhin, 1986)
r-f
: Rukhin’s estimator using Finney's function (Rukhin, 1986)
r-lo
: Rukhin’s locally optimal estimator (Rukhin, 1986)
r-b
: Rukhin’s Bayes estimator (Rukhin, 1986)
ev
: El-Shaarawi and Viveros' estimator (El-Shaarawi and Viveros, 1997)
zh
: Zhou's estimator (Zhou, 1998)
sz-mm
: Shen and Zhu's MM estimator (Shen and Zhu, 2008)
sz-mb
: Shen and Zhu's MB estimator (Shen and Zhu, 2008)
l-ub
: Longford's UB estimator (Longford, 2009)
l-ms
: Longford's MS estimator (Longford, 2009)
ft
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-s
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-b
: Fabrizi and Trivisano's Bayes estimator (Fabrizi and Trivisano, 2012)
gt-f
: Gou and Tamhane's estimator using Finney's function (Gou and Tamhane, 2017)
gt-es
: Gou and Tamhane's estimator using Evans and Shaban's function (Gou and Tamhane, 2017)
gt-r
: Gou and Tamhane's estimator using Rukhin's function (Gou and Tamhane, 2017)
zg-1
: Zhang and Gou's first estimator (Zhang and Gou, 2020)
zg-2
: Zhang and Gou's second estimator (Zhang and Gou, 2020)
zg-3
: Zhang and Gou's third estimator (Zhang and Gou, 2020)
zg-4
: Zhang and Gou's fourth estimator (Zhang and Gou, 2020)
zg-5
: Zhang and Gou's fifth estimator (Zhang and Gou, 2020)
zg-6
: Zhang and Gou's sixth estimator (Zhang and Gou, 2020)
zg-7
: Zhang and Gou's seventh estimator (Zhang and Gou, 2020)
zg-8
: Zhang and Gou's eighth estimator (Zhang and Gou, 2020)
zg-9
: Zhang and Gou's ninth estimator (Zhang and Gou, 2020)
zg-10
: Zhang and Gou's tenth estimator (Zhang and Gou, 2020)
zg-11
: Zhang and Gou's eleventh estimator (Zhang and Gou, 2020)
zg-12
: Zhang and Gou's twelveth estimator (Zhang and Gou, 2020)
zg-13
: Zhang and Gou's thirteenth estimator (Zhang and Gou, 2020)
zg-14
: Zhang and Gou's fourteenth estimator (Zhang and Gou, 2020)
zg-15
: Zhang and Gou's fifteenth estimator (Zhang and Gou, 2020)
zg-16
: Zhang and Gou's sixteenth estimator (Zhang and Gou, 2020)
zg-17
: Zhang and Gou's seventeenth estimator (Zhang and Gou, 2020)
zg-18
: Zhang and Gou's eighteenth estimator (Zhang and Gou, 2020)
zg-19
: Zhang and Gou's nineteenth estimator (Zhang and Gou, 2020)
estimated median. .
Jiangtao Gou
Finney, D. J. (1941). On the distribution of a variate whose logarithm is normally distributed. Supplement to the Journal of the Royal Statistical Society, 7: 155-161. <https://doi.org/10.2307/2983663>
Zellner, A. (1971). Bayesian and non-Bayesian analysis of the log-normal distribution and log-normal regression. Journal of the American Statistical Association, 66: 327-330. <https://doi.org/10.1080/01621459.1971.10482263>
Evans, I. G. and Shaban, S. A. (1974). A note on estimation in lognormal models. Journal of the American Statistical Association, 69: 779-781. <https://doi.org/10.2307/2286017>
Rukhin, A. L. (1986). Improved estimation in lognormal models. Journal of the American Statistical Association, 81: 1046-1049. <https://doi.org/10.1080/01621459.1986.10478371>
El-Shaarawi, A. H. and Viveros, R. (1997). Inference about the mean in log-regression with environmental applications. Environmetrics, 8: 569-582. <https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<569::AID-ENV274>3.0.CO;2-I>
Shen, H. and Zhu, Z. (2008). Efficient mean estimation in log-normal linear models. Journal of Statistical Planning and Inference, 138: 552-567. <https://doi.org/10.1016/j.jspi.2006.10.016>
Longford, N. T. (2009). Inference with the lognormal distribution. Journal of Statistical Planning and Inference, 139: 2329-2340. <https://doi.org/10.1016/j.jspi.2008.10.015>
Fabrizi, E. and Trivisano, C. (2012). Bayesian estimation of log-normal means with finite quadratic expected loss. Bayesian Analysis, 7: 975-996. <https://doi.org/10.1214/12-BA733>
Gou, J. and Tamhane, A. C. (2017). Estimation of a parametric function associated with the lognormal distribution. Communications in Statistics - Theory and Methods 46: 8134-8154. <https://doi.org/10.1080/03610926.2016.1175628>
Zhang, F. and Gou, J. (2020). A unified framework for estimation in lognormal models. Technical Report.
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalmedian(data=c(1,4,6,7), estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalmedian(data=c(1,4,6,7), estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalmedian(data=c(1,4,6,7), estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalmedian(data=c(1,4,6,7), estimator='zg-4')
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalmedian(data=c(1,4,6,7), estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalmedian(data=c(1,4,6,7), estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalmedian(data=c(1,4,6,7), estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalmedian(data=c(1,4,6,7), estimator='zg-4')
Lognormal models are also widely applied in various branches of natural, social and applied sciences. Given a pair of known constants in the parametric function for the statistics in the lognormal distribution, sample size, degree of freedom of the variance estimation of the log-transformed data, standardized variance of the sampling distribution of the log-transformed data, mean of the log-transformed data and standard deviation of the log-transformed data, this function returns an estimation for the lognormal distribution, including a total of thirty-nine different estimation methods, under a newly proposed unified framework in Zhang and Gou (2020).
lognormalsd( data, estimator, base = exp(1), n = length(data), m = n - 1, d = 1/n )
lognormalsd( data, estimator, base = exp(1), n = length(data), m = n - 1, d = 1/n )
data |
original data vector |
estimator |
a total of thirty-eight different estimation methods. See more descriptions in Section Details. |
base |
the base with respect to which logarithms are computed. Defaults to e. |
n |
sample size. |
m |
degree of freedom of the variance estimation of the log-transformed data. |
d |
standardized variance of the sampling distribution of the log-transformed data. |
Consider a parametric function in the original scale we are interested in estimating ,where constants a and b are known.
Specifically,
is the mean of the lognormal distribution,
is the second moment,
is the variance, and
is the coeficient of variation.
unbiased
: Unbiased estimator (Finney, 1941)
qml
: Quasi maximum likelihood estimator
ml
: Maximum likelihood estimator
sa
: Simple adjustment estimator
f
: Finney's unbiased estimator (Finney, 1941)
z
: Zellner's estimator (Zellner, 1971)
es
: Evans and Shaban’s estimator (Evans and Shaban, 1974, 1976)
r-s
: Rukhin’s simple estimator (Rukhin, 1986)
r-f
: Rukhin’s estimator using Finney's function (Rukhin, 1986)
r-lo
: Rukhin’s locally optimal estimator (Rukhin, 1986)
r-b
: Rukhin’s Bayes estimator (Rukhin, 1986)
ev
: El-Shaarawi and Viveros' estimator (El-Shaarawi and Viveros, 1997)
zh
: Zhou's estimator (Zhou, 1998)
sz-mm
: Shen and Zhu's MM estimator (Shen and Zhu, 2008)
sz-mb
: Shen and Zhu's MB estimator (Shen and Zhu, 2008)
l-ub
: Longford's UB estimator (Longford, 2009)
l-ms
: Longford's MS estimator (Longford, 2009)
ft
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-s
: Fabrizi and Trivisano's Simplified Bayes estimator (Fabrizi and Trivisano, 2012)
ft-b
: Fabrizi and Trivisano's Bayes estimator (Fabrizi and Trivisano, 2012)
gt-f
: Gou and Tamhane's estimator using Finney's function (Gou and Tamhane, 2017)
gt-es
: Gou and Tamhane's estimator using Evans and Shaban's function (Gou and Tamhane, 2017)
gt-r
: Gou and Tamhane's estimator using Rukhin's function (Gou and Tamhane, 2017)
zg-1
: Zhang and Gou's first estimator (Zhang and Gou, 2020)
zg-2
: Zhang and Gou's second estimator (Zhang and Gou, 2020)
zg-3
: Zhang and Gou's third estimator (Zhang and Gou, 2020)
zg-4
: Zhang and Gou's fourth estimator (Zhang and Gou, 2020)
zg-5
: Zhang and Gou's fifth estimator (Zhang and Gou, 2020)
zg-6
: Zhang and Gou's sixth estimator (Zhang and Gou, 2020)
zg-7
: Zhang and Gou's seventh estimator (Zhang and Gou, 2020)
zg-8
: Zhang and Gou's eighth estimator (Zhang and Gou, 2020)
zg-9
: Zhang and Gou's ninth estimator (Zhang and Gou, 2020)
zg-10
: Zhang and Gou's tenth estimator (Zhang and Gou, 2020)
zg-11
: Zhang and Gou's eleventh estimator (Zhang and Gou, 2020)
zg-12
: Zhang and Gou's twelveth estimator (Zhang and Gou, 2020)
zg-13
: Zhang and Gou's thirteenth estimator (Zhang and Gou, 2020)
zg-14
: Zhang and Gou's fourteenth estimator (Zhang and Gou, 2020)
zg-15
: Zhang and Gou's fifteenth estimator (Zhang and Gou, 2020)
zg-16
: Zhang and Gou's sixteenth estimator (Zhang and Gou, 2020)
zg-17
: Zhang and Gou's seventeenth estimator (Zhang and Gou, 2020)
zg-18
: Zhang and Gou's eighteenth estimator (Zhang and Gou, 2020)
zg-19
: Zhang and Gou's nineteenth estimator (Zhang and Gou, 2020)
estimated standard deviation. .
Jiangtao Gou
Finney, D. J. (1941). On the distribution of a variate whose logarithm is normally distributed. Supplement to the Journal of the Royal Statistical Society, 7: 155-161. <https://doi.org/10.2307/2983663>
Zellner, A. (1971). Bayesian and non-Bayesian analysis of the log-normal distribution and log-normal regression. Journal of the American Statistical Association, 66: 327-330. <https://doi.org/10.1080/01621459.1971.10482263>
Evans, I. G. and Shaban, S. A. (1974). A note on estimation in lognormal models. Journal of the American Statistical Association, 69: 779-781. <https://doi.org/10.2307/2286017>
Rukhin, A. L. (1986). Improved estimation in lognormal models. Journal of the American Statistical Association, 81: 1046-1049. <https://doi.org/10.1080/01621459.1986.10478371>
El-Shaarawi, A. H. and Viveros, R. (1997). Inference about the mean in log-regression with environmental applications. Environmetrics, 8: 569-582. <https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<569::AID-ENV274>3.0.CO;2-I>
Shen, H. and Zhu, Z. (2008). Efficient mean estimation in log-normal linear models. Journal of Statistical Planning and Inference, 138: 552-567. <https://doi.org/10.1016/j.jspi.2006.10.016>
Longford, N. T. (2009). Inference with the lognormal distribution. Journal of Statistical Planning and Inference, 139: 2329-2340. <https://doi.org/10.1016/j.jspi.2008.10.015>
Fabrizi, E. and Trivisano, C. (2012). Bayesian estimation of log-normal means with finite quadratic expected loss. Bayesian Analysis, 7: 975-996. <https://doi.org/10.1214/12-BA733>
Gou, J. and Tamhane, A. C. (2017). Estimation of a parametric function associated with the lognormal distribution. Communications in Statistics - Theory and Methods 46: 8134-8154. <https://doi.org/10.1080/03610926.2016.1175628>
Zhang, F. and Gou, J. (2020). A unified framework for estimation in lognormal models. Technical Report.
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalsd(data=c(1,4,6,7), estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalsd(data=c(1,4,6,7), estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalsd(data=c(1,4,6,7), estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalsd(data=c(1,4,6,7), estimator='zg-4')
library(fuel) # Unbiased Estimation (Finney, 1941) fuel::lognormalsd(data=c(1,4,6,7), estimator='unbiased') # Longford's estimator, minimize the mean squared error (Longford, 2009) fuel::lognormalsd(data=c(1,4,6,7), estimator='l-ms') # Gou and Tamhane's estimator, Rukhin type (Gou and Tamhane, 2017) fuel::lognormalsd(data=c(1,4,6,7), estimator='gt-r') # Zhang and Gou's No.4 estimator (Zhang and Gou, 2020) fuel::lognormalsd(data=c(1,4,6,7), estimator='zg-4')