Package 'fqar'

Title: Floristic Quality Assessment Tools for R
Description: Tools for downloading and analyzing floristic quality assessment data. See Freyman et al. (2015) <doi:10.1111/2041-210X.12491> for more information about floristic quality assessment and the associated database.
Authors: Andrew Gard [aut, cre] , Alexia Myers [aut], Irene Luwabelwa [aut]
Maintainer: Andrew Gard <[email protected]>
License: MIT + file LICENSE
Version: 0.5.4
Built: 2024-12-06 06:55:27 UTC
Source: CRAN

Help Index


Generate a species co-occurrence matrix from assessment inventories

Description

assessment_coccurrences() accepts a list of species inventories downloaded from universalfqa.org and returns a complete listing of all co-occurrences. Repeated co-occurrences across multiple assessments are included, but self co-occurrences are not, allowing for meaningful summary statistics to be computed.

Usage

assessment_cooccurrences(inventory_list)

Arguments

inventory_list

A list of site inventories having the format of assessment_list_inventory()

Value

A data frame with 13 columns:

  • target_species (character)

  • target_species_c (numeric)

  • target_species_nativity (character)

  • target_species_n (numeric)

  • cospecies_scientific_name (character)

  • cospecies_family (character)

  • cospecies_acronym (character)

  • cospecies_nativity (character)

  • cospecies_c (numeric)

  • cospecies_w (numeric)

  • cospecies_physiognomy (character)

  • cospecies_duration (character)

  • cospecies_common_name (character)

Examples

# assessment_cooccurrences is best used in combination with
# download_assessment_list() and assessment_list_inventory().


maine <- download_assessment_list(database = 56)
maine_invs <- assessment_list_inventory(maine)
maine_cooccurrences <- assessment_cooccurrences(maine_invs)

Generate a summary of co-occurrences in various assessment inventories

Description

assessment_coccurrences_summary() accepts a list of species inventories downloaded from universalfqa.org and returns a summary of the co-occurrences of each target species. Repeated co-occurrences across multiple assessments are included in summary calculations, but self co-occurrences are not.

Usage

assessment_cooccurrences_summary(inventory_list)

Arguments

inventory_list

A list of site inventories having the format of assessment_list_inventory().

Value

A data frame with 16 columns:

  • target_species (character)

  • target_species_c (numeric)

  • target_species_nativity (character)

  • target_species_n (numeric)

  • cospecies_n (numeric)

  • cospecies_native_n (numeric)

  • cospecies_mean_c (numeric)

  • cospecies_native_mean_c (numeric)

  • cospecies_std_dev_c (numeric)

  • cospecies_native_std_dev_c (numeric)

  • percent_native (numeric)

  • percent_nonnative (numeric)

  • percent_native_low_c (numeric)

  • percent_native_med_c (numeric)

  • percent_native_high_c (numeric)

  • discrepancy_c (numeric)

Examples

# assessment_cooccurrences_summary is best used in combination with
# download_assessment_list() and assessment_list_inventory().


maine <- download_assessment_list(database = 56)
maine_invs <- assessment_list_inventory(maine)
maine_cooccurrences_summary <- assessment_cooccurrences_summary(maine_invs)

Obtain tidy summary information for a floristic quality assessment

Description

assessment_glance() tidies a floristic quality assessment data set obtained from universalfqa.org.

Usage

assessment_glance(data_set)

Arguments

data_set

A data set downloaded from universalfqa.org either manually or using download_assessment()

Value

A data frame with 52 columns:

  • title (character)

  • date (date)

  • site_name (character)

  • city (character)

  • county (character)

  • state (character)

  • country (character)

  • fqa_db_region (character)

  • fqa_db_publication_year (character)

  • fqa_db_description (character)

  • custom_fqa_db_name (character)

  • custom_fqa_db_description (character)

  • practitioner (character)

  • latitude (character)

  • longitude (character)

  • weather_notes (character)

  • duration_notes (character)

  • community_type_notes (character)

  • other_notes (character)

  • private_public (character)

  • total_mean_c (numeric)

  • native_mean_c (numeric)

  • total_fqi (numeric)

  • native_fqi (numeric)

  • adjusted_fqi (numeric)

  • c_value_zero (numeric) Percent of c-values 0

  • c_value_low (numeric) Percent of c-values 1-3

  • c_value_mid (numeric) Percent of c-values 4-6

  • c_value_high (numeric) Percent of c-values 7-10

  • native_tree_mean_c (numeric)

  • native_shrub_mean_c (numeric)

  • native_herbaceous_mean_c (numeric)

  • total_species (numeric)

  • native_species (numeric)

  • non_native_species (numeric)

  • mean_wetness (numeric)

  • native_mean_wetness (numeric)

  • tree (numeric)

  • shrub (numeric)

  • vine (numeric)

  • forb (numeric)

  • grass (numeric)

  • sedge (numeric)

  • rush (numeric)

  • fern (numeric)

  • bryophyte (numeric)

  • annual (numeric)

  • perennial (numeric)

  • biennial (numeric)

  • native_annual (numeric)

  • native_perennial (numeric)

  • native_biennial (numeric)

Examples

# While assessment_glance can be used with a .csv file downloaded manually
# from the universal FQA website, it is most typically used in combination
# with download_assessment().

edison <- download_assessment(25002)
assessment_glance(edison)

Obtain species details for a floristic quality assessment

Description

assessment_inventory() returns a data frame of all plant species included in a floristic quality assessment obtained from universalfqa.org.

Usage

assessment_inventory(data_set)

Arguments

data_set

A data set downloaded from universalfqa.org either manually or using download_assessment().

Value

A data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Examples

# While assessment_glance can be used with a .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_assessment().

edison <- download_assessment(25002)
assessment_inventory(edison)

Obtain tidy summary information for multiple floristic quality assessments

Description

assessment_list_glance() tidies a list of floristic quality assessment data sets obtained from universalfqa.org, returning summary information as a single data frame.

Usage

assessment_list_glance(assessment_list)

Arguments

assessment_list

A list of data sets downloaded from universalfqa.org, typically using download_assessment_list().

Value

A data frame with 52 columns:

  • title (character)

  • date (date)

  • site_name (character)

  • city (character)

  • county (character)

  • state (character)

  • country (character)

  • fqa_db_region (character)

  • fqa_db_publication_year (character)

  • fqa_db_description (character)

  • custom_fqa_db_name (character)

  • custom_fqa_db_description (character)

  • practitioner (character)

  • latitude (character)

  • longitude (character)

  • weather_notes (character)

  • duration_notes (character)

  • community_type_notes (character)

  • other_notes (character)

  • private_public (character)

  • total_mean_c (numeric)

  • native_mean_c (numeric)

  • total_fqi (numeric)

  • native_fqi (numeric)

  • adjusted_fqi (numeric)

  • c_value_zero (numeric) Percent of c-values 0

  • c_value_low (numeric) Percent of c-values 1-3

  • c_value_mid (numeric) Percent of c-values 4-6

  • c_value_high (numeric) Percent of c-values 7-10

  • native_tree_mean_c (numeric)

  • native_shrub_mean_c (numeric)

  • native_herbaceous_mean_c (numeric)

  • total_species (numeric)

  • native_species (numeric)

  • non_native_species

  • mean_wetness (numeric)

  • native_mean_wetness (numeric)

  • tree (numeric)

  • shrub (numeric)

  • vine (numeric)

  • forb (numeric)

  • grass (numeric)

  • sedge (numeric)

  • rush (numeric)

  • fern (numeric)

  • bryophyte (numeric)

  • annual (numeric)

  • perennial (numeric)

  • biennial (numeric)

  • native_annual (numeric)

  • native_perennial (numeric)

  • native_biennial (numeric)

Examples

# While assessment_list_glance can be used with a list of .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_assessment_list().


maine <- download_assessment_list(database = 56)
assessment_list_glance(maine)

Obtain species details for a list of floristic quality assessments

Description

assessment_list_inventory() returns a list of data frames, each of which consists of all plant species included in a floristic quality assessment obtained from universalfqa.org.

Usage

assessment_list_inventory(assessment_list)

Arguments

assessment_list

A list of data sets downloaded from universalfqa.org, typically using download_assessment_list().

Value

A list of data frames, each with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Examples

# While assessment_list_inventory can be used with a list of .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_assessment_list().


maine <- download_assessment_list(database = 56)
maine_invs <- assessment_list_inventory(maine)

Chicagoland floristic quality assessment data

Description

A data set summarizing 786 floristic quality assessments using the 2017 Chicago Region USACE database.

Usage

chicago

Format

A data frame with 52 columns:

  • Title (character)

  • Date (date)

  • Site Name (character)

  • City (character)

  • County (character)

  • State (character)

  • Country (character)

  • FQA DB Region (character)

  • FQA DB Publication Year (character)

  • FQA DB Description (character)

  • Custom FQA DB Name (character)

  • Custom FQA DB Description (character)

  • Practitioner (character)

  • Latitude (character)

  • Longitude (character)

  • Weather Notes (character)

  • Duration Notes (character)

  • Community Type Notes (character)

  • Other Notes (character)

  • Private/Public (character)

  • Total Mean C (numeric)

  • Native Mean C (numeric)

  • Total FQI: (numeric)

  • Native FQI (numeric)

  • Adjusted FQI (numeric)

  • % C value 0 (numeric)

  • % C value 1-3 (numeric)

  • % C value 4-6 (numeric)

  • % C value 7-10 (numeric)

  • Native Tree Mean C (numeric)

  • Native Shrub Mean C (numeric)

  • Native Herbaceous Mean C (numeric)

  • Total Species (numeric)

  • Native Species (numeric)

  • Non-native Species

  • Mean Wetness (numeric)

  • Native Mean Wetness (numeric)

  • Tree (numeric)

  • Shrub (numeric)

  • Vine (numeric)

  • Forb (numeric)

  • Grass (numeric)

  • Sedge (numeric)

  • Rush (numeric)

  • Fern (numeric)

  • Bryophyte (numeric)

  • Annual (numeric)

  • Perennial (numeric)

  • Biennial (numeric)

  • Native Annual (numeric)

  • Native Perennial (numeric)

  • Native Biennial (numeric)

Source

universalfqa.org


Obtain tidy summary information for a floristic quality database

Description

database_glance() tidies a floristic quality database obtained from universalfqa.org.

Usage

database_glance(database)

Arguments

database

A database downloaded from universalfqa.org either manually or using download_database()

Value

A data frame with 8 columns:

  • region (character)

  • year (numeric)

  • description (character)

  • total_species (numeric)

  • native_species (numeric)

  • non_native_species (numeric)

  • total_mean_c (numeric)

  • native_mean_c (numeric)

Examples

# While database_glance can be used with a .csv file downloaded manually
# from the universal FQA website, it is most typically used in combination
# with download_database().

chicago_db <- download_database(database_id = 1)
chicago_db_summary <- database_glance(chicago_db)

Obtain species details for a floristic quality database

Description

database_inventory() returns a data frame of all plant species included in a floristic quality database obtained from universalfqa.org.

Usage

database_inventory(database)

Arguments

database

A database downloaded from universalfqa.org either manually or using download_database().

Value

A data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Examples

# While database_glance can be used with a .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_database().

chicago_db <- download_database(database_id = 1)
chicago_species <- database_inventory(chicago_db)

Download a single floristic quality assessment

Description

download_assessment() retrieves a specified floristic quality assessment from universalfqa.org. ID numbers for assessments in various databases can be found using the index_fqa_assessments() function.

Usage

download_assessment(assessment_id)

Arguments

assessment_id

A numeric identifier of the desired floristic quality assessment, as specified by universalfqa.org. ID numbers for assessments in specified databases can be viewed with the index_fqa_assessments() function.

Value

An untidy data frame in the original format of the Universal FQA website. Use assessment_glance() for a tidy summary and assessment_inventory() for species-level data.

Examples

databases <- index_fqa_databases() # Database 1 is the original 1994 Chicago edition.

chicago_assessments <- index_fqa_assessments(1) # Edison dune and swale has id number 25002.
edison <- download_assessment(25002)

edison_tidy <- assessment_glance(edison)
edison_species <- assessment_inventory(edison)

Download multiple floristic quality assessments

Description

download_assessment_list() searches a specified floristic quality assessment database and retrieves all matches from universalfqa.org. Download speeds from that website may be slow, causing delays in the evaluation of this function.

Usage

download_assessment_list(database_id, ...)

Arguments

database_id

Numeric identifier of the desired floristic quality assessment database, as specified by universalfqa.org. Database id numbers can be viewed with the index_fqa_databases() function.

...

dplyr-style filtering criteria for the desired assessments. The following variables may be used:

  • id (numeric)

  • assessment (character)

  • date (date)

  • location (character)

  • practitioner (character)

Value

A list of data frames matching the search criteria. Each is an untidy data frame in the original format of the Universal FQA website. Use assessment_list_glance() for a tidy summary.

Examples

databases <- index_fqa_databases() # Database 1 is the original 1994 Chicago edition.
somme_assessments <- download_assessment_list(1, site == "Somme Woods")
somme_summary <- assessment_list_glance(somme_assessments)

Download a single floristic quality database

Description

download_database() retrieves a specified floristic quality database from universalfqa.org. A list of available databases can be found using the index_fqa_databases() function.

Usage

download_database(database_id)

Arguments

database_id

A numeric identifier of the desired floristic quality database, as specified by universalfqa.org. ID numbers for databases recognized this site can be viewed with the index_fqa_databases() function.

Value

An untidy data frame in the original format of the Universal FQA website. Use database_glance() for a tidy summary and database_inventory() for species-level data.

Examples

databases <- index_fqa_databases() # Database 1 is the original 1994 Chicago edition.

chicago_database <- download_database(1)

Download a single floristic quality transect assessment

Description

download_transect() retrieves a specified floristic quality transect assessment from universalfqa.org. ID numbers for transect assessments in various databases can be found using the index_fqa_transects() function.

Usage

download_transect(transect_id)

Arguments

transect_id

A numeric identifier of the desired floristic quality transect assessment, as specified by universalfqa.org. ID numbers for transect assessments in specified databases can be viewed with the index_fqa_transects() function.

Value

An untidy data frame in the original format of the Universal FQA website. Use transect_glance() for a tidy summary, transect_phys() for a physiognometric overview, and transect_inventory() for species-level data.

Examples

databases <- index_fqa_databases() # Database 1 is the original 1994 Chicago edition.
chicago_transects <- index_fqa_transects(1) # CBG Sand prairie swale fen A has id number 5932.
cbg <- download_transect(5932)

Download multiple floristic quality transect assessments

Description

download_transect_list() searches a specified floristic quality assessment database and retrieves all matches from universalfqa.org. Download speeds from that website may be slow, causing delays in the evaluation of this function.

Usage

download_transect_list(database_id, ...)

Arguments

database_id

Numeric identifier of the desired floristic quality assessment database, as specified by universalfqa.org. Database id numbers can be viewed with the index_fqa_databases() function.

...

dplyr-style filtering criteria for the desired transect assessments. The following variables may be used:

  • id (numeric)

  • assessment (character)

  • date (date)

  • site (character)

  • practitioner (character)

Value

A list of data frames matching the search criteria. Each is an untidy data frame in the original format of the Universal FQA website. Use transect_list_glance() for a tidy summary.

Examples

databases <- index_fqa_databases() # Database 1 is the original 1994 Chicago edition.
dupont <- download_transect_list(1, site == "DuPont Natural Area")

List all available public floristic quality assessments

Description

For any given database, index_fqa_assessments() produces a data frame of all floristic quality assessments publicly available at universalfqa.org.

Usage

index_fqa_assessments(database_id)

Arguments

database_id

A numeric identifier of the desired database, as specified by universalfqa.org. The id numbers can be viewed with the index_fqa_databases() function.

Value

A data frame with 5 columns:

  • id (numeric)

  • assessment (character)

  • date (date)

  • site (character)

  • practitioner (character)

Examples

databases <- index_fqa_databases() # The 2017 Chicago database has id_number 149
chicago_2017_assessments <- index_fqa_assessments(149)

List all available floristic quality assessment databases

Description

index_fqa_databases() produces a data frame showing all floristic quality assessment databases publicly available at universalfqa.org.

Usage

index_fqa_databases()

Value

A data frame with 4 columns:

  • database_id (numeric)

  • region (character)

  • year (numeric)

  • description (character)

Examples

databases <- index_fqa_databases()

List all available public floristic quality transect assessments

Description

For any given database, index_fqa_transects() produces a data frame of all floristic quality transect assessments publicly available at universalfqa.org.

Usage

index_fqa_transects(database_id)

Arguments

database_id

A numeric identifier of the desired database, as specified by universalfqa.org. The id numbers can be viewed with the index_fqa_databases() function.

Value

A data frame with 5 columns:

  • id (numeric)

  • assessment (character)

  • date (date)

  • site (character)

  • practitioner (character)

Examples

databases <- index_fqa_databases() # The 2017 Chicago database has id_number 149
chicago_2017_transects <- index_fqa_transects(149)

Missouri floristic quality assessment data

Description

A data set summarizing 216 floristic quality assessments using the 2015 Missouri database.

Usage

missouri

Format

A data frame with 52 columns:

  • Title (character)

  • Date (date)

  • Site Name (character)

  • City (character)

  • County (character)

  • State (character)

  • Country (character)

  • FQA DB Region (character)

  • FQA DB Publication Year (character)

  • FQA DB Description (character)

  • Custom FQA DB Name (character)

  • Custom FQA DB Description (character)

  • Practitioner (character)

  • Latitude (character)

  • Longitude (character)

  • Weather Notes (character)

  • Duration Notes (character)

  • Community Type Notes (character)

  • Other Notes (character)

  • Private/Public (character)

  • Total Mean C (numeric)

  • Native Mean C (numeric)

  • Total FQI: (numeric)

  • Native FQI (numeric)

  • Adjusted FQI (numeric)

  • % C value 0 (numeric)

  • % C value 1-3 (numeric)

  • % C value 4-6 (numeric)

  • % C value 7-10 (numeric)

  • Native Tree Mean C (numeric)

  • Native Shrub Mean C (numeric)

  • Native Herbaceous Mean C (numeric)

  • Total Species (numeric)

  • Native Species (numeric)

  • Non-native Species

  • Mean Wetness (numeric)

  • Native Mean Wetness (numeric)

  • Tree (numeric)

  • Shrub (numeric)

  • Vine (numeric)

  • Forb (numeric)

  • Grass (numeric)

  • Sedge (numeric)

  • Rush (numeric)

  • Fern (numeric)

  • Bryophyte (numeric)

  • Annual (numeric)

  • Perennial (numeric)

  • Biennial (numeric)

  • Native Annual (numeric)

  • Native Perennial (numeric)

  • Native Biennial (numeric)

Source

universalfqa.org


Acronym of a species in a specified database

Description

species_acronym() accepts a species and a database inventory and returns the acronym of the species within that database. Either a numeric database ID from universalfqa.org or a homemade inventory with the same format may be specified.

Usage

species_acronym(species, database_id = NULL, database_inventory = NULL)

Arguments

species

The scientific name of the plant species of interest

database_id

ID number of an existing database on universalfqa.org. Use index_fqa_databases() to see a list of all such databases.

database_inventory

An inventory of species having the same form as one created using database_inventory(), that is, a data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Value

The acronym of the given species within the given database.

Examples

species_acronym("Anemone canadensis", database_id = 149)

C-value of a species in a specified database

Description

species_c() accepts a species and a database inventory and returns the c-value of that species. Either a numeric database ID from universalfqa.org or a homemade inventory with the same format may be specified.

Usage

species_c(species, database_id = NULL, database_inventory = NULL)

Arguments

species

The scientific name of the plant species of interest

database_id

ID number of an existing database on universalfqa.org. Use index_fqa_databases() to see a list of all such databases.

database_inventory

An inventory of species having the same form as one created using database_inventory(), that is, a data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Value

The C-value of the given species within the given database.

Examples

species_c("Anemone canadensis", database_id = 149)

Common name of a species in a specified database

Description

species_common name() accepts the scientific name of a species and a database inventory and returns the common name of that species. Either a numeric database ID from universalfqa.org or a homemade inventory with the same format may be specified.

Usage

species_common_name(species, database_id = NULL, database_inventory = NULL)

Arguments

species

The scientific name of the plant species of interest

database_id

ID number of an existing database on universalfqa.org. Use index_fqa_databases() to see a list of all such databases.

database_inventory

An inventory of species having the same form as one created using database_inventory(), that is, a data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Value

The common name of the given species within the given database.

Examples

species_common_name("Anemone canadensis", database_id = 149)

Nativity of a species in a specified database

Description

species_nativity() accepts a species and a database inventory and returns the nativity of that species. Either a numeric database ID from universalfqa.org or a homemade inventory with the same format may be specified.

Usage

species_nativity(species, database_id = NULL, database_inventory = NULL)

Arguments

species

The scientific name of the plant species of interest

database_id

ID number of an existing database on universalfqa.org. Use index_fqa_databases() to see a list of all such databases.

database_inventory

An inventory of species having the same form as one created using database_inventory(), that is, a data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Value

The nativity of the given species within the given database, either native or non-native.

Examples

species_nativity("Anemone canadensis", database_id = 149)

Physiognomy of a species in a specified database

Description

species_phys() accepts a species and a database inventory and returns the physiognomy of that species. Either a numeric database ID from universalfqa.org or a homemade inventory with the same format may be specified.

Usage

species_phys(species, database_id = NULL, database_inventory = NULL)

Arguments

species

The scientific name of the plant species of interest

database_id

ID number of an existing database on universalfqa.org. Use index_fqa_databases() to see a list of all such databases.

database_inventory

An inventory of species having the same form as one created using database_inventory(), that is, a data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Value

The physiognomy of the given species within the given database

Examples

species_phys("Anemone canadensis", database_id = 149)

Generate the co-occurrence profile for a species

Description

species_profile() accepts a species and list of inventories like those generated by assessment_list_inventory() and returns the co-occurrence profile of that species. Repeated co-occurrences across multiple assessments are included in summary calculations but self co-occurrences are not.

Usage

species_profile(species, inventory_list, native = FALSE)

Arguments

species

The scientific name of the target plant species

inventory_list

A list of site inventories having the format of assessment_list_inventory()

native

Logical indicating whether only native co-occurrences should be considered.

Value

A data frame with 14 columns:

  • target_species (character)

  • target_species_c (numeric)

  • cospecies_n (numeric)

  • cospecies_native_n (numeric)

  • cospecies_mean_c (numeric)

  • cospecies_native_mean_c (numeric)

  • cospecies_std_dev_c (numeric)

  • cospecies_native_std_dev_c (numeric)

  • percent_native (numeric)

  • percent_nonnative (numeric)

  • percent_native_low_c (numeric)

  • percent_native_med_c (numeric)

  • percent_native_high_c (numeric)

  • discrepancy_c (numeric)

Examples

# species_profile() is best used in combination with
# download_assessment_list() and assessment_list_inventory().


ontario <- download_assessment_list(database = 2)
ontario_invs <- assessment_list_inventory(ontario)
species_profile("Aster lateriflorus", ontario_invs)

Plot the co-occurrence profile of a species

Description

species_profile_plot() accepts a species and list of inventories like those generated by assessment_list_inventory() and generates a histogram of the co-occurrence profile of that species. Repeated co-occurrences across multiple assessments are included in summary calculations but self co-occurrences are not.

Usage

species_profile_plot(species, inventory_list, native = FALSE)

Arguments

species

The scientific name of the target plant species

inventory_list

A list of site inventories having the format of assessment_list_inventory()

native

Logical indicating whether only native co-occurrences should be considered.

Examples

# species_profile_plot() is best used in combination with
# download_assessment_list() and assessment_list_inventory().


ontario <- download_assessment_list(database = 2)
ontario_invs <- assessment_list_inventory(ontario)
species_profile_plot("Aster lateriflorus", ontario_invs, native = TRUE)

Wetness value of a species in a specified database

Description

species_w() accepts a species and a database inventory and returns the wetness value of that species. Either a numeric database ID from universalfqa.org or a homemade inventory with the same format may be specified.

Usage

species_w(species, database_id = NULL, database_inventory = NULL)

Arguments

species

The scientific name of the plant species of interest

database_id

ID number of an existing database on universalfqa.org. Use index_fqa_databases() to see a list of all such databases.

database_inventory

An inventory of species having the same form as one created using database_inventory(), that is, a data frame with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Value

The wetness value of the given species within the given database.

Examples

species_w("Anemone canadensis", database_id = 149)

Obtain tidy summary information for a floristic quality transect assessment

Description

transect_glance() tidies a floristic quality transect assessment data set obtained from universalfqa.org.

Usage

transect_glance(data_set)

Arguments

data_set

A data set downloaded from universalfqa.org either manually or using download_transect().

Value

A data frame with 1 row and 54 columns:

  • title (character)

  • date (date)

  • site_name (character)

  • city (character)

  • county (character)

  • state (character)

  • country (character)

  • omernik_level_three_ecoregion (character)

  • fqa_db_region (character)

  • fqa_db_publication_year (character)

  • fqa_db_description (character)

  • fqa_db_selection_name (character)

  • custom_fqa_db_name (character)

  • custom_fqa_db_description (character)

  • practitioner (character)

  • latitude (character)

  • longitude (character)

  • community_code (character)

  • community_name (character)

  • community_type_notes (character)

  • weather_notes (character)

  • duration_notes (character)

  • environment_description (character)

  • other_notes (character)

  • transect_plot_type (character)

  • plot_size (numeric) Plot size in square meters

  • quadrat_subplot_size (numeric) Quadrat or subplot size in square meters

  • transect_length (numeric) Transect length in meters

  • sampling_design_description (character)

  • cover_method (character)

  • private_public (character)

  • total_mean_c (numeric)

  • cover_weighted_mean_c (numeric)

  • native_mean_c (numeric)

  • total_fqi (numeric)

  • native_fqi (numeric)

  • cover_weighted_fqi (numeric)

  • cover_weighted_native_fqi (numeric)

  • adjusted_fqi (numeric)

  • c_value_zero (numeric) Percent of c-values 0

  • c_value_low (numeric) Percent of c-values 1-3

  • c_value_mid (numeric) Percent of c-values 4-6

  • c_value_high (numeric) Percent of c-values 7-10

  • total_species (numeric)

  • native_species (numeric)

  • non_native_species (numeric)

  • mean_wetness (numeric)

  • native_mean_wetness (numeric)

  • annual (numeric)

  • perennial (numeric)

  • biennial (numeric)

  • native_annual (numeric)

  • native_perennial (numeric)

  • native_biennial (numeric)

Examples

# While transect_glance can be used with a .csv file downloaded manually
# from the universal FQA website, it is most typically used in combination
# with download_transect().


tyler <- download_transect(6352)
transect_glance(tyler)

Obtain species details for a floristic quality transect assessment

Description

transect_inventory() returns a data frame of all plant species included in a floristic quality transect assessment obtained from universalfqa.org.

Usage

transect_inventory(data_set)

Arguments

data_set

A data set downloaded from universalfqa.org either manually or using download_transect().

Value

A data frame with 13 columns:

  • species (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • frequency (numeric)

  • coverage (numeric)

  • relative_frequency_percent (numeric)

  • relative_coverage_percent (numeric)

  • relative_importance_value (numeric)

Examples

# while transect_glance can be used with a .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_transect().


tyler <- download_transect(6352)
transect_inventory(tyler)

Obtain tidy summary information for multiple floristic quality transect assessments

Description

transect_list_glance() tidies a list of floristic quality transect assessment data sets obtained from universalfqa.org, returning summary information as a single data frame.

Usage

transect_list_glance(transect_list)

Arguments

transect_list

A list of data sets downloaded from universalfqa.org, typically using download_transect_list().

Value

A data frame with 1 row and 54 columns:

  • title (character)

  • date (date)

  • site_name (character)

  • city (character)

  • county (character)

  • state (character)

  • country (character)

  • omernik_level_three_ecoregion (character)

  • fqa_db_region (character)

  • fqa_db_publication_year (character)

  • fqa_db_description (character)

  • fqa_db_selection_name (character)

  • custom_fqa_db_name (character)

  • custom_fqa_db_description (character)

  • practitioner (character)

  • latitude (character)

  • longitude (character)

  • community_code (character)

  • community_name (character)

  • community_type_notes (character)

  • weather_notes (character)

  • duration_notes (character)

  • environment_description (character)

  • other_notes (character)

  • transect_plot_type (character)

  • plot_size (numeric) Plot size in square meters

  • quadrat_subplot_size (numeric) Quadrat or subplot size in square meters

  • transect_length (numeric) Transect length in meters

  • sampling_design_description (character)

  • cover_method (character)

  • private_public (character)

  • total_mean_c (numeric)

  • cover_weighted_mean_c (numeric)

  • native_mean_c (numeric)

  • total_fqi (numeric)

  • native_fqi (numeric)

  • cover_weighted_fqi (numeric)

  • cover_weighted_native_fqi (numeric)

  • adjusted_fqi (numeric)

  • c_value_zero (numeric) Percent of c-values 0

  • c_value_low (numeric) Percent of c-values 1-3

  • c_value_mid (numeric) Percent of c-values 4-6

  • c_value_high (numeric) Percent of c-values 7-10

  • total_species (numeric)

  • native_species (numeric)

  • non_native_species (numeric)

  • mean_wetness (numeric)

  • native_mean_wetness (numeric)

  • annual (numeric)

  • perennial (numeric)

  • biennial (numeric)

  • native_annual (numeric)

  • native_perennial (numeric)

  • native_biennial (numeric)

Examples

# While transect_list_glance can be used with a list of .csv file downloaded
# manually from the universal FQA website, it is most typically used in
# combination with download_transect_list().


transect_list <- download_transect_list(149, id %in% c(3400, 3427))
transect_list_glance(transect_list)

Obtain species details for a list of transect assessments

Description

transect_list_inventory() returns a list of data frames, each of which consists of all plant species included in a floristic quality assessment of a transect obtained from universalfqa.org.

Usage

transect_list_inventory(transect_list)

Arguments

transect_list

A list of data sets downloaded from universalfqa.org, typically using download_transect_list().

Value

A list of data frames, each with 13 columns:

  • species (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • frequency (numeric)

  • coverage (numeric)

  • relative_frequency_percent (numeric)

  • relative_coverage_percent (numeric)

  • relative_importance_value (numeric)

Examples

# While transect_list_inventory can be used with a list of .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_transect_list()

chicago <- download_transect_list(database = 149)
chicago_invs <- transect_list_inventory(chicago)

Obtain physiognometric information for a floristic quality transect assessment

Description

transect_phys() returns a data frame with physiognometric information for a floristic quality transect assessment obtained from universalfqa.org.

Usage

transect_phys(data_set)

Arguments

data_set

A data set downloaded from universalfqa.org either manually or using download_transect().

Value

A data frame with 6 columns:

  • physiognomy (character)

  • frequency (numeric)

  • coverage (numeric)

  • relative_frequency_percent (numeric)

  • relative_coverage_percent (numeric)

  • relative_importance_value_percent (numeric)

Examples

# While transect_phys can be used with a .csv file downloaded
# manually from the universal FQA website, it is most typically used
# in combination with download_transect().


tyler <- download_transect(6352)
transect_phys(tyler)

Extract quadrat/subplot-level inventories from a transect assessment

Description

transect_subplot_inventories() accepts a floristic quality transect assessment data set obtained from universalfqa.org and returns a list of species inventories, one per quadrat/subplot.

Usage

transect_subplot_inventories(transect)

Arguments

transect

A data set downloaded from universalfqa.org either manually or using download_transect().

Value

A list of data frames, each with 9 columns:

  • scientific_name (character)

  • family (character)

  • acronym (character)

  • nativity (character)

  • c (numeric)

  • w (numeric)

  • physiognomy (character)

  • duration (character)

  • common_name (character)

Examples

cbg_fen <- download_transect(5932)
cbg_inventories <- transect_subplot_inventories(cbg_fen)