Title: | Tools of Heterogeneity Pursuit via Finite Mixture Effects Model |
---|---|
Description: | Heterogeneity pursuit methodologies for regularized finite mixture regression by effects-model formulation proposed by Li et al. (2021) <arXiv:2003.04787>. |
Authors: | Yan Li [aut, cre], Kun Chen [aut] |
Maintainer: | Yan Li <[email protected]> |
License: | GPL (>= 3.0) |
Version: | 0.0-1 |
Built: | 2024-12-21 06:44:11 UTC |
Source: | CRAN |
Produce solution for specified lambda of regularized finite mixture effects model with lasso or adaptive lasso; compute the degrees of freeom, likelihood and information criteria (AIC, BIC and GIC) of the estimators. Model fitting is conducted by EM algorithm and Bregman coordinate descent.
fmrHP(y, X, m, intercept = FALSE, lambda, equal.var = FALSE, ic.type = c("ALL", "BIC", "AIC", "GIC"), B = NULL, prob = NULL, rho = NULL, w = NULL, control = list(), report = FALSE)
fmrHP(y, X, m, intercept = FALSE, lambda, equal.var = FALSE, ic.type = c("ALL", "BIC", "AIC", "GIC"), B = NULL, prob = NULL, rho = NULL, w = NULL, control = list(), report = FALSE)
y |
a vector of response ( |
X |
a matrix of covariate ( |
m |
number of components |
intercept |
indicating whether intercept should be included |
lambda |
value of tuning parameter |
equal.var |
indicating whether variances of different components are equal |
ic.type |
the information criterion to be used; currently supporting "AIC", "BIC", and "GIC". |
B |
initial values for the rescaled coefficients with first column being the
common effect, and the rest |
prob |
initial values for prior probabilitis for different components |
rho |
initial values for rho vector ( |
w |
weight matrix for penalty function. Default option is NULL |
control |
a list of parameters for controlling the fitting process |
report |
indicating whether printing the value of objective function during EM algorithm for validation checking of initial value. |
The available elements for argument control
include
epsilon: Convergence threshold for generalized EM algorithm. Defaults value is 1E-6.
maxit: Maximum number of passes over the data for all lambda values. Default is 1000.
inner.eps: Convergence threshold for Bregman coordinate descent algorithm. Defaults value is 1E-6.
inner.maxit: Maximum number of iteration for Bregman coordinate descent algorithm. Defaults value is 200.
n.ini: Number of initial values for EM algorithm. Default is 10. In EM algorithm, it is preferable to start from several different initial values.
A list consisting of
y |
vector of response |
X |
matrix of covariates |
m |
number of components |
B.hat |
estimated rescaled coefficient ( |
pi.hat |
estimated prior probabilities ( |
rho.hat |
estimated rho values ( |
lambda |
lambda used in model fitting |
plik |
value of penalized log-likelihood |
loglik |
value of log-likelihood |
conv |
indicator of convergence of EM algorithm |
IC |
values of information criteria |
df |
degree of freedom |
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(0, -3, 3), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) fmrHP(y, X, m = m, lambda = 0.01, control = list(n.ini = 10))
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(0, -3, 3), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) fmrHP(y, X, m = m, lambda = 0.01, control = list(n.ini = 10))
Produce solution for specific lambda of regularized finite mixture model with lasso or adaptive lasso penalty; compute the degrees of freeom, likelihood and information criteria (AIC, BIC and GIC) of the estimators. Model fitting is conducted by EM algorithm and coordinate descent.
fmrReg(y, X, m, intercept = FALSE, lambda, equal.var = FALSE, common.var = NULL, ic.type = c("ALL", "BIC", "AIC", "GIC"), B = NULL, prob = NULL, rho = NULL, w = NULL, control = list(), report = FALSE)
fmrReg(y, X, m, intercept = FALSE, lambda, equal.var = FALSE, common.var = NULL, ic.type = c("ALL", "BIC", "AIC", "GIC"), B = NULL, prob = NULL, rho = NULL, w = NULL, control = list(), report = FALSE)
y |
a vector of response ( |
X |
a matrix of covariate ( |
m |
number of components |
intercept |
indicating whether intercept should be included |
lambda |
value of tuning parameter |
equal.var |
indicating whether variances of different components are equal |
common.var |
indicating whether the effects over different components are the same for specific covariates |
ic.type |
the information criterion to be used; currently supporting "AIC", "BIC", and "GIC". |
B |
initial values for the rescaled coefficients with columns being the coefficients for different components |
prob |
initial values for prior probabilitis for different components |
rho |
initial values for rho vector ( |
w |
weight matrix for penalty function. Default option is NULL |
control |
a list of parameters for controlling the fitting process |
report |
indicating whether printing the value of objective function during EM algorithm for validation checking of initial value. |
The available elements for argument control
include
epsilon: Convergence threshold for generalized EM algorithm. Defaults value is 1E-6.
maxit: Maximum number of passes over the data for all lambda values. Default is 1000.
inner.maxit: Maximum number of iteration for flexmix package to compute initial values. Defaults value is 200.
n.ini: Number of initial values for EM algorithm. Default is 10. In EM algorithm, it is preferable to start from several different initial values.
A list consisting of
y |
vector of response |
X |
matrix of covariates |
m |
number of components |
B.hat |
estimated rescaled coefficient ( |
pi.hat |
estimated prior probabilities ( |
rho.hat |
estimated rho values ( |
lambda |
lambda used in model fitting |
plik |
value of penalized log-likelihood |
loglik |
value of log-likelihood |
conv |
indicator of convergence of EM algorithm |
IC |
values of information criteria |
df |
degree of freedom |
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(0, -3, 3), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) fmrReg(y, X, m = m, lambda = 0.01, control = list(n.ini = 10))
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(0, -3, 3), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) fmrReg(y, X, m = m, lambda = 0.01, control = list(n.ini = 10))
Produce solution paths of regularized finite mixture effects model with lasso or adaptive lasso penalty; compute the degrees of freeom, likelihood and information criteria (AIC, BIC and GIC) of the estimators. Model fitting is conducted by EM algorithm and Bregman coordinate descent.
path.fmrHP(y, X, m, equal.var = FALSE, ic.type = "ALL", B = NULL, prob = NULL, rho = NULL, control = list(), modstr = list(), report = FALSE)
path.fmrHP(y, X, m, equal.var = FALSE, ic.type = "ALL", B = NULL, prob = NULL, rho = NULL, control = list(), modstr = list(), report = FALSE)
y |
a vector of response ( |
X |
a matrix of covariate ( |
m |
number of components |
equal.var |
indicating whether variances of different components are equal |
ic.type |
the information criterion to be used; currently supporting "AIC", "BIC", and "GIC". |
B |
initial values for the rescaled coefficients with first column being the
common effect, and the rest |
prob |
initial values for prior probabilitis for different components |
rho |
initial values for rho vector ( |
control |
a list of parameters for controlling the fitting process |
modstr |
a list of model parameters controlling the model fitting |
report |
indicating whether printing the value of objective function during EM algorithm for validation checking of initial value. |
Model parameters can be specified through argument modstr
. The
available include
lambda: A vector of user-specified lambda values with default NULL.
lambda.min.ratio: Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value.
nlambda: The number of lambda values.
w: Weight matrix for penalty function. Default option is NULL, which means lasso penailty is used for model fitting.
intercept: Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE).
common.only: A vector of user-specified indicators of the variables only with common effects.
common.no.penalty: A vector of user-specified indicators of the variables with no penalty on the common effect.
cluster.no.penalty: A vector of user-specified indicators of the variables with no penalty on the cluster-specific effects.
select.ratio: A user-specified ratio indicating the ratio of variables to be selected.
The available elements for argument control
include
epsilon: Convergence threshold for generalized EM algorithm. Defaults value is 1E-6.
maxit: Maximum number of passes over the data for all lambda values. Default is 1000.
inner.eps: Convergence threshold for Bregman coordinate descent algorithm. Defaults value is 1E-6.
inner.maxit: Maximum number of iteration for Bregman coordinate descent algorithm. Defaults value is 200.
n.ini: Number of initial values for EM algorithm. Default is 10. In EM algorithm, it is preferable to start from several different initial values.
A list consisting of
lambda |
vector of lambda used in model fitting |
lambda.used |
vector of lambda in model fitting after truncation by select.ratio |
B.hat |
estimated rescaled coefficient ( |
pi.hat |
estimated prior probabilities ( |
rho.hat |
estimated rho values ( |
IC |
values of information criteria |
Li, Y., Yu, C., Zhao, Y., Yao, W., Aseltine, R. H., & Chen, K. (2021). Pursuing Sources of Heterogeneity in Modeling Clustered Population.
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(1, 1, 1), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) ## lasso fit1 <- path.fmrHP(y, X, m = m, modstr = list(nlambda = 10), control = list(n.ini = 1)) ## adaptive lasso fit2 <- path.fmrHP(y, X, m = m, modstr = list(w = abs(select.tuning(fit1)$B + 1e-6)^2))
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(1, 1, 1), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) ## lasso fit1 <- path.fmrHP(y, X, m = m, modstr = list(nlambda = 10), control = list(n.ini = 1)) ## adaptive lasso fit2 <- path.fmrHP(y, X, m = m, modstr = list(w = abs(select.tuning(fit1)$B + 1e-6)^2))
Produce solution paths of regularized finite mixture model with lasso or adaptive lasso penalty; compute the degrees of freeom, likelihood and information criteria (AIC, BIC and GIC) of the estimators. Model fitting is conducted by EM algorithm and coordinate descent.
path.fmrReg(y, X, m, equal.var = FALSE, ic.type = "ALL", B = NULL, prob = NULL, rho = NULL, control = list(), modstr = list(), report = FALSE)
path.fmrReg(y, X, m, equal.var = FALSE, ic.type = "ALL", B = NULL, prob = NULL, rho = NULL, control = list(), modstr = list(), report = FALSE)
y |
a vector of response ( |
X |
a matrix of covariate ( |
m |
number of components |
equal.var |
indicating whether variances of different components are equal |
ic.type |
the information criterion to be used; currently supporting "ALL", "AIC", "BIC", and "GIC". |
B |
initial values for the rescaled coefficients with columns being the columns being the coefficient for different components |
prob |
initial values for prior probabilitis for different components |
rho |
initial values for rho vector ( |
control |
a list of parameters for controlling the fitting process |
modstr |
a list of model parameters controlling the model fitting |
report |
indicating whether printing the value of objective function during EM algorithm for validation checking of initial value. |
Model parameters can be specified through argument modstr
. The
available include
lambda: A vector of user-specified lambda values with default NULL.
lambda.min.ratio: Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value.
nlambda: The number of lambda values.
w: Weight matrix for penalty function. Default option is NULL, which means lasso penailty is used for model fitting.
intercept: Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE).
no.penalty: A vector of user-specified indicators of the variables with no penalty.
common.var: A vector of user-specified indicators of the variables with common effect among different components.
select.ratio: A user-specified ratio indicating the ratio of variables to be selected.
The available elements for argument control
include
epsilon: Convergence threshold for generalized EM algorithm. Defaults value is 1E-6.
maxit: Maximum number of passes over the data for all lambda values. Default is 1000.
inner.maxit: Maximum number of iteration for flexmix package to compute initial values. Defaults value is 200.
n.ini: Number of initial values for EM algorithm. Default is 10. In EM algorithm, it is preferable to start from several different initial values.
A list consisting of
lambda |
vector of lambda used in model fitting |
B.hat |
estimated rescaled coefficient ( |
pi.hat |
estimated prior probabilities ( |
rho.hat |
estimated rho values ( |
IC |
values of information criteria |
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(1, 1, 1), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) ## lasso fit1 <- path.fmrReg(y, X, m = m, modstr = list(nlambda = 10), control = list(n.ini = 1)) ## adaptive lasso fit2 <- path.fmrReg(y, X, m = m, modstr = list(w = abs(select.tuning(fit1)$B + 1e-6)^2))
library(fmerPack) ## problem settings n <- 100; m <- 3; p <- 5; sigma2 <- c(0.1, 0.1, 0.4); rho <- 1 / sqrt(sigma2) phi <- rbind(c(1, 1, 1), c(1, 1, 1), c(1, 1, 1), c(-3, 3, 0), c(3, 0, -3)) beta <- t(t(phi) / rho) ## generate response and covariates z <- rmultinom(n, 1, prob= rep(1 / m, m)) X <- matrix(rnorm(n * p), nrow = n, ncol = p) y <- MASS::mvrnorm(1, mu = rowSums(t(z) * X[, 1:(nrow(beta))] %*% beta), Sigma = diag(colSums(z * sigma2))) ## lasso fit1 <- path.fmrReg(y, X, m = m, modstr = list(nlambda = 10), control = list(n.ini = 1)) ## adaptive lasso fit2 <- path.fmrReg(y, X, m = m, modstr = list(w = abs(select.tuning(fit1)$B + 1e-6)^2))
Select tuning parameter via AIC, BIC or GIC from objects generated by
path.fmrHP
.
select.tuning(object, figure = FALSE, criteria = c("BIC", "GIC", "AIC"))
select.tuning(object, figure = FALSE, criteria = c("BIC", "GIC", "AIC"))
object |
Object generated from |
figure |
incidator for showing plot of information criteria. |
criteria |
information criteria for selection of tuning parameter. |
list of parameters of selected model.