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Abstract

This paper illustrates the implementation of resampling methods in flexmix as well
as the application of resampling methods for model diagnostics of fitted finite mixture
models. Convenience functions to perform these methods are available in package flexmix.
The use of the methods is illustrated with an artificial example and the seizure data set.
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1. Implementation of resampling methods
The proposed framework for model diagnostics using resampling (Grün and Leisch 2004)
equally allows to investigate model fit for all kinds of mixture models. The procedure is
applicable to mixture models with different component specific models and does not impose
any limitation such as for example on the dimension of the parameter space of the component
specific model. In addition to the fitting step different component specific models only require
different random number generators for the parametric bootstrap.
The boot() function in flexmix is a generic S4 function with a method for fitted finite mixtures
of class "flexmix" and is applicable to general finite mixture models. The function with
arguments and their defaults is given by:

boot(object, R, sim = c("ordinary", "empirical", "parametric"),
initialize_solution = FALSE, keep_weights = FALSE, keep_groups = TRUE,
verbose = 0, control, k, model = FALSE, ...)

The interface is similar to the boot() function in package boot (Davison and Hinkley 1997;
Canty and Ripley 2010). The object is a fitted finite mixture of class "flexmix" and R
denotes the number of resamples. The possible bootstrapping method are "empirical" (also
available as "ordinary") and "parametric". For the parametric bootstrap sampling from the
fitted mixture is performed using rflexmix(). For mixture models with different component
specific models rflexmix() requires a sampling method for the component specific model.
Argument initialize_solution allows to select if the EM algorithm is started in the original
finite mixture solution or if random initialization is performed. The fitted mixture model
might contain weights and group indicators. The weights are case weights and allow to reduce
the amount of data if observations are identical. This is useful for example for latent class
analysis of multivariate binary data. The argument keep_weights allows to indicate if they
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should be kept for the bootstrapping. Group indicators allow to specify that the component
membership is identical over several observations, e.g., for repeated measurements of the same
individual. Argument keep_groups allows to indicate if the grouping information should also
be used in the bootstrapping. verbose indicates if information on the progress should be
printed. The control argument allows to control the EM algorithm for fitting the model to
each of the bootstrap samples. By default the control argument is extracted from the fitted
model provided by object. k allows to specify the number of components and by default
this is also taken from the fitted model provided. The model argument determines if also the
model and the weights slot for each sample are stored and returned. The returned object is
of class "FLXboot" and otherwise only contains the fitted parameters, the fitted priors, the
log likelihoods, the number of components of the fitted mixtures and the information if the
EM algorithm has converged.
The likelihood ratio test is implemented based on boot() in function LR_test() and returns
an object of class "htest" containing the number of valid bootstrap replicates, the p-value,
the double negative log likelihood ratio test statistics for the original data and the bootstrap
replicates. The plot method for "FLXboot" objects returns a parallel coordinate plot with
the fitted parameters separately for each of the components.

2. Artificial data set
In the following a finite mixture model is used as the underlying data generating process which
is theoretically not identifiable. We are assuming a finite mixture of linear regression models
with two components of equal size where the coverage condition is not fulfilled (Hennig 2000).
Hence, intra-component label switching is possible, i.e., there exist two parameterizations im-
plying the same mixture distribution which differ how the components between the covariate
points are combined.
We assume that one measurement per object and a single categorical regressor with two levels
are given. The usual design matrix for a model with intercept uses the two covariate points
x1 = (1, 0)′ and x2 = (1, 1)′. The mixture distribution is given by

H(y|x, Θ) = 1
2N(µ1, 0.1) + 1

2N(µ2, 0.1),

where µk(x) = x′αk and N(µ, σ2) is the normal distribution.
Now let µ1(x1) = 1, µ2(x1) = 2, µ1(x2) = −1 and µ2(x2) = 4. As Gaussian mixture
distributions are generically identifiable the means, variances and component weights are
uniquely determined in each covariate point given the mixture distribution. However, as the
coverage condition is not fulfilled, the two possible solutions for α are:

Solution 1: α
(1)
1 = (2, 2)′, α

(1)
2 = (1, −2)′,

Solution 2: α
(2)
1 = (2, −3)′, α

(2)
2 = (1, 3)′.

We specify this artificial mixture distribution using FLXdist(). FLXdist() returns an unfitted
finite mixture of class "FLXdist". The class of fitted finite mixture models "flexmix" extends
class "FLXdist". Each component follows a normal distribution. The parameters specified
in a named list therefore consist of the regression coefficients and the standard deviation.
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Function FLXdist() has an argument formula for specifying the regression in each of the
components, an argument k for the component weights and components for the parameters
of each of the components.

> library("flexmix")
> Component_1 <- list(Model_1 = list(coef = c(1, -2), sigma = sqrt(0.1)))
> Component_2 <- list(Model_1 = list(coef = c(2, 2), sigma = sqrt(0.1)))
> ArtEx.mix <- FLXdist(y ~ x, k = rep(0.5, 2),
+ components = list(Component_1, Component_2))

We draw a balanced sample with 50 observations in each covariate point from the mixture
model using rflexmix() after defining the data points for the covariates. rflexmix() can
either have an unfitted or a fitted finite mixture as input. For unfitted mixtures data has to
be provided using the newdata argument. For already fitted mixtures data can be optionally
provided, otherwise the data used for fitting the mixture is used.

> ArtEx.data <- data.frame(x = rep(0:1, each = 100/2))
> suppressWarnings(RNGversion("3.5.0"))
> set.seed(123)
> ArtEx.sim <- rflexmix(ArtEx.mix, newdata = ArtEx.data)
> ArtEx.data$y <- ArtEx.sim$y[[1]]
> ArtEx.data$class <- ArtEx.sim$class

In Figure 1 the sample is plotted together with the two solutions for combining x1 and x2,
i.e., this illustrates intra-component label switching.
We fit a finite mixture to the sample using stepFlexmix().

> set.seed(123)
> ArtEx.fit <- stepFlexmix(y ~ x, data = ArtEx.data, k = 2, nrep = 5,
+ control = list(iter = 1000, tol = 1e-8, verbose = 0))

2 : * * * * *

The fitted mixture can be inspected using summary() and parameters().

> summary(ArtEx.fit)

Call:
stepFlexmix(y ~ x, data = ArtEx.data, control = list(iter = 1000,

tol = 1e-08, verbose = 0), k = 2, nrep = 5)

prior size post>0 ratio
Comp.1 0.56 55 77 0.714
Comp.2 0.44 45 65 0.692

'log Lik.' -82.52413 (df=7)
AIC: 179.0483 BIC: 197.2845
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Figure 1: Balanced sample from the artificial example with the two theoretical solutions.

> parameters(ArtEx.fit)

Comp.1 Comp.2
coef.(Intercept) 1.9130903 0.9269647
coef.x 2.1270909 -2.0597489
sigma 0.3167696 0.2738558

Obviously the fitted mixture parameters correspond to the parameterization we used to specify
the mixture distribution. Using standard asymptotic theory to analyze the fitted mixture
model gives the following estimates for the standard deviations.

> ArtEx.refit <- refit(ArtEx.fit)
> summary(ArtEx.refit)

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.914496 0.072060 26.568 < 2.2e-16 ***
x 2.125685 0.093203 22.807 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.927075 0.068756 13.484 < 2.2e-16 ***
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x -2.059859 0.089780 -22.943 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The fitted mixture can also be analyzed using resampling techniques. For analyzing the
stability of the parameter estimates where the possibility of identifiability problems is also
taken into account the parametric bootstrap is used with random initialization. Function
boot() can be used for empirical or parametric bootstrap (specified by the argument sim).
The logical argument initialize_solution specifies if the initialization is in the original
solution or random. By default random initialization is made. The number of bootstrap
samples is set by the argument R. Please note that the arguments are chosen to correspond
to those for function boot in package boot (Davison and Hinkley 1997).

> set.seed(123)
> ArtEx.bs <- boot(ArtEx.fit, R = 200, sim = "parametric")
> ArtEx.bs

Call:
boot(ArtEx.fit, R = 200, sim = "parametric")

Function boot() returns an object of class "FLXboot". The default plot compares the boot-
strap parameter estimates to the confidence intervals derived using standard asymptotic the-
ory in a parallel coordinate plot (see Figure 2). Clearly two groups of parameter estimates
can be distinguished which are about of equal size. One subset of the parameter estimates
stays within the confidence intervals induced by standard asymptotic theory, while the second
group corresponds to the second solution and clusters around these parameter values.
In the following the DIP-test is applied to check if the parameter estimates follow a unimodal
distribution. This is done for the aggregated parameter esimates where unimodality implies
that this parameter is not suitable for imposing an ordering constraint which induces a unique
labelling. For the separate component analysis which is made after imposing an ordering
constraint on the coefficient of x rejection the null hypothesis of unimodality implies that
identifiability problems are present, e.g. due to intra-component label switching.

> require("diptest")
> parameters <- parameters(ArtEx.bs)
> Ordering <- factor(as.vector(apply(matrix(parameters[,"coef.x"],
+ nrow = 2), 2, order)))
> Comp1 <- parameters[Ordering == 1,]
> Comp2 <- parameters[Ordering == 2,]
> dip.values.art <- matrix(nrow = ncol(parameters), ncol = 3,
+ dimnames=list(colnames(parameters),
+ c("Aggregated", "Comp 1", "Comp 2")))
> dip.values.art[,"Aggregated"] <- apply(parameters, 2, dip)
> dip.values.art[,"Comp 1"] <- apply(Comp1, 2, dip)
> dip.values.art[,"Comp 2"] <- apply(Comp2, 2, dip)
> dip.values.art
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> print(plot(ArtEx.bs, ordering = "coef.x", col = Colors))

Min

Max

coef.(Intercept) coef.x sigma prior

Figure 2: Diagnostic plot of the bootstrap results for the artificial example.

Aggregated Comp 1 Comp 2
coef.(Intercept) 0.14645350 0.13751542 0.12421745
coef.x 0.17752155 0.13334510 0.12088640
sigma 0.01952704 0.01813353 0.01956338
prior 0.02480076 0.01680661 0.01680661

The critical value for column Aggregated is 0.027 and for the columns of the separate com-
ponents 0.037. The component sizes as well as the standard deviations follow a unimodal
distribution for the aggregated data as well as for each of the components. The regression
coefficients are multimodal for the aggregate data as well as for each of the components.
While from the aggregated case it might be concluded that imposing an ordering constraint
on the intercept or the coefficient of x is suitable, the component-specific analyses reveal that
a unique labelling was not achieved.

3. Seizure
In Wang, Puterman, Cockburn, and Le (1996) a Poisson mixture regression is fitted to data
from a clinical trial where the effect of intravenous gammaglobulin on suppression of epileptic
seizures is investigated. The data used were 140 observations from one treated patient, where
treatment started on the 28th day. In the regression model three independent variables were
included: treatment, trend and interaction treatment-trend. Treatment is a dummy variable
indicating if the treatment period has already started. Furthermore, the number of parental
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observation hours per day were available and it is assumed that the number of epileptic
seizures per observation hour follows a Poisson mixture distribution. The number of epileptic
seizures per parental observation hour for each day are plotted in Figure 3. The fitted mixture
distribution consists of two components which can be interpreted as representing ’good’ and
’bad’ days of the patients.
The mixture model can be formulated by

H(y|x, Θ) = π1P (λ1) + π2P (λ2),

where λk = ex′αk for k = 1, 2 and P (λ) is the Poisson distribution.
The data is loaded and the mixture fitted with two components.

> data("seizure", package = "flexmix")
> model <- FLXMRglm(family = "poisson", offset = log(seizure$Hours))
> control <- list(iter = 1000, tol = 1e-10, verbose = 0)
> set.seed(123)
> seizMix <- stepFlexmix(Seizures ~ Treatment * log(Day),
+ data = seizure, k = 2, nrep = 5, model = model, control = control)

2 : * * * * *

The fitted regression lines for each of the two components are shown in Figure 3.
The parameteric bootstrap with random initialization is used to investigate identifiability
problems and parameter stability. The diagnostic plot is given in Figure 3. The coloring
is according to an ordering constraint on the intercept. Clearly the parameter estimates
corresponding to the solution where the bad days from the base period are combined with
the good days from the treatement period and vice versa for the good days of the base period
can be distinguished and indicate the slight identifiability problems of the fitted mixture.

> set.seed(123)
> seizMix.bs <- boot(seizMix, R = 200, sim = "parametric")
> seizMix.bs

Call:
boot(seizMix, R = 200, sim = "parametric")

> parameters <- parameters(seizMix.bs)
> Ordering <- factor(as.vector(apply(matrix(parameters[,"coef.(Intercept)"],
+ nrow = 2), 2, order)))
> Comp1 <- parameters[Ordering == 1,]
> Comp2 <- parameters[Ordering == 2,]

For applying the DIP test also an ordering constraint on the intercept is used. The critical
value for column Aggregated is 0.027 and for the columns of the separate components 0.037.
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> par(mar = c(5, 4, 2, 0) + 0.1)
> plot(Seizures/Hours~Day, data=seizure, pch = as.integer(seizure$Treatment))
> abline(v = 27.5, lty = 2, col = "grey")
> matplot(seizure$Day, fitted(seizMix)/seizure$Hours, type="l",
+ add = TRUE, col = 1, lty = 1, lwd = 2)
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Figure 3: Seizure data with the fitted values for the Wang et al. model. The plotting character
for the observed values in the base period is a circle and for those in the treatment period a
triangle.

> dip.values.art <- matrix(nrow = ncol(parameters), ncol = 3,
+ dimnames = list(colnames(parameters),
+ c("Aggregated", "Comp 1", "Comp 2")))
> dip.values.art[,"Aggregated"] <- apply(parameters, 2, dip)
> dip.values.art[,"Comp 1"] <- apply(Comp1, 2, dip)
> dip.values.art[,"Comp 2"] <- apply(Comp2, 2, dip)
> dip.values.art

Aggregated Comp 1 Comp 2
coef.(Intercept) 0.06583068 0.01804866 0.02018400
coef.TreatmentYes 0.13399150 0.04622830 0.03917898
coef.log(Day) 0.01650747 0.01973665 0.01759147
coef.TreatmentYes:log(Day) 0.13377082 0.04117169 0.04141171
prior 0.14736993 0.04541915 0.04541915

For the aggregate results the hypothesis of unimodality cannot be rejected for the trend.
For the component-specific analyses unimodality cannot be rejected only for the intercept
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> print(plot(seizMix.bs, ordering = "coef.(Intercept)", col = Colors))
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coef.(Intercept) coef.TreatmentYes coef.log(Day) coef.TreatmentYes:log(Day) prior

Figure 4: Diagnostic plot of the bootstrap results for the seizure data.

(where the ordering condition was imposed on) and again the trend. For all other parameter
estimates unimodality is rejected which indicates that the ordering constraint was able to
impose a unique labelling only for the own parameter and not for the other parameters. This
suggests identifiability problems.
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