mixHMMR: Simultaneous model-based clustering and segmentation of heterogeneous and dynamical functional data (curves/times series) with changes in regime by a mixture of gaussian regression models with hidden Markov processes, fitted by the EM/Baum-Welch algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="flamingos")
for further details and
references provided by citation("flamingos")
.
mixhmmr <- emMixHMMR(X = x, Y = Y, K, R, p, variance_type, ordered_states,
init_kmeans, n_tries, max_iter, threshold, verbose)
## EM - mixHMMR: Iteration: 1 || log-likelihood: -18975.6323298895
## EM - mixHMMR: Iteration: 2 || log-likelihood: -15198.5811534058
## EM - mixHMMR: Iteration: 3 || log-likelihood: -15118.0350455527
## EM - mixHMMR: Iteration: 4 || log-likelihood: -15086.2933826057
## EM - mixHMMR: Iteration: 5 || log-likelihood: -15084.2502053712
## EM - mixHMMR: Iteration: 6 || log-likelihood: -15083.7770153797
## EM - mixHMMR: Iteration: 7 || log-likelihood: -15083.3586992156
## EM - mixHMMR: Iteration: 8 || log-likelihood: -15082.8291034608
## EM - mixHMMR: Iteration: 9 || log-likelihood: -15082.2407744542
## EM - mixHMMR: Iteration: 10 || log-likelihood: -15081.6808462523
## EM - mixHMMR: Iteration: 11 || log-likelihood: -15081.175618676
## EM - mixHMMR: Iteration: 12 || log-likelihood: -15080.5819574865
## EM - mixHMMR: Iteration: 13 || log-likelihood: -15079.3118011276
## EM - mixHMMR: Iteration: 14 || log-likelihood: -15076.8073408977
## EM - mixHMMR: Iteration: 15 || log-likelihood: -15073.8399600893
## EM - mixHMMR: Iteration: 16 || log-likelihood: -15067.6884092483
## EM - mixHMMR: Iteration: 17 || log-likelihood: -15054.9127597413
## EM - mixHMMR: Iteration: 18 || log-likelihood: -15049.4000307536
## EM - mixHMMR: Iteration: 19 || log-likelihood: -15049.0221351022
## EM - mixHMMR: Iteration: 20 || log-likelihood: -15048.997021329
## EM - mixHMMR: Iteration: 21 || log-likelihood: -15048.9949507534
mixhmmr$summary()
## ------------------------
## Fitted mixHMMR model
## ------------------------
##
## MixHMMR model with K = 3 clusters and R = 3 regimes:
##
## log-likelihood nu AIC BIC ICL
## -15048.99 50 -15098.99 -15134.02 -15134.02
##
## Clustering table (Number of curves in each clusters):
##
## 1 2 3
## 10 10 10
##
## Mixing probabilities (cluster weights):
## 1 2 3
## 0.3333333 0.3333333 0.3333333
##
##
## --------------------
## Cluster 1 (k = 1):
##
## Regression coefficients for each regime/segment r (r=1...R):
##
## Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1 6.870328 5.1511267 3.9901300
## X^1 1.204150 -0.4601777 -0.0155753
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9776399 0.9895623 0.96457
##
## --------------------
## Cluster 2 (k = 2):
##
## Regression coefficients for each regime/segment r (r=1...R):
##
## Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1 4.9512819 6.8393804 4.9076599
## X^1 0.2099508 0.2822775 0.1031626
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9576192 1.045043 0.952047
##
## --------------------
## Cluster 3 (k = 3):
##
## Regression coefficients for each regime/segment r (r=1...R):
##
## Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1 6.3552432 4.2868818 6.5327846
## X^1 -0.2865404 0.6907212 0.2429291
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9587975 0.9481068 1.01388