mixHMM: Clustering and segmentation of heterogeneous curves/time series by mixture of gaussian Hidden Markov Models (MixHMMs) fitted by the EM/Baum-Welch algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="flamingos")
for further details and
references provided by citation("flamingos")
.
mixhmm <- emMixHMM(Y = Y, K, R, variance_type, ordered_states, init_kmeans,
n_tries, max_iter, threshold, verbose)
## EM - mixHMMs: Iteration: 1 | log-likelihood: -19054.7157954833
## EM - mixHMMs: Iteration: 2 | log-likelihood: -15386.7973253636
## EM - mixHMMs: Iteration: 3 | log-likelihood: -15141.8435629464
## EM - mixHMMs: Iteration: 4 | log-likelihood: -15058.7251666378
## EM - mixHMMs: Iteration: 5 | log-likelihood: -15055.5058566489
## EM - mixHMMs: Iteration: 6 | log-likelihood: -15055.4877310423
## EM - mixHMMs: Iteration: 7 | log-likelihood: -15055.4876146553
mixhmm$summary()
## -----------------------
## Fitted mixHMM model
## -----------------------
##
## MixHMM model with K = 3 clusters and R = 3 regimes:
##
## log-likelihood nu AIC BIC
## -15055.49 41 -15096.49 -15125.21
##
## Clustering table (Number of curves in each clusters):
##
## 1 2 3
## 10 10 10
##
## Mixing probabilities (cluster weights):
## 1 2 3
## 0.3333333 0.3333333 0.3333333
##
##
## -------------------
## Cluster 1 (k = 1):
##
## Means:
##
## r = 1 r = 2 r = 3
## 4.987066 6.963998 4.987279
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9578459 1.045573 0.952294
##
## -------------------
## Cluster 2 (k = 2):
##
## Means:
##
## r = 1 r = 2 r = 3
## 7.00202 4.964273 3.979626
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9858726 0.9884542 0.9651437
##
## -------------------
## Cluster 3 (k = 3):
##
## Means:
##
## r = 1 r = 2 r = 3
## 6.319189 4.583954 6.722627
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9571803 0.9504731 1.01553