Package: fields (via r-universe)

June 28, 2024

Version 16.2

Date 2024-06-27
Title Tools for Spatial Data
Maintainer Douglas Nychka douglasnychka@gmail.com
Description For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI doi:10.5065/D6W957CT. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.
License GPL (>=2)
URL https://github.com/dnychka/fieldsRPackage
Depends R (>= 3.5.0), methods, spam, viridisLite Imports maps
NeedsCompilation yes

Repository CRAN

Author Douglas Nychka [aut, cre], Reinhard Furrer [aut], John Paige [aut], Stephan Sain [aut], Florian Gerber [aut], Matthew Iverson [aut], Rider Johnson [aut]

Date/Publication 2024-06-27 21:10:02 UTC

Contents

add.image 4
arrow.plot 5
as.image 6
as.surface 8
BD 10
bplot 11
bplot.xy 12
Chicago ozone test data 13
circulantEmbedding 14
CO2 17
Colorado Monthly Meteorological Data 19
colorbar.plot 23
compactToMat 25
Covariance functions 26
CovarianceUpper 36
cover.design 37
drape.plot 43
envelopePlot 45
Exponential, Matern, Radial Basis 46
fields 49
fields testing scripts 52
fields-stuff 54
fields.grid 56
fields.hints 57
flame 60
glacier 60
grid list 63
image.cov 67
image.plot 71
image.smooth 80
image 21 z 83
imagePlot 86
interp.surface 97
Krig 100
Krig.Amatrix 107
Krig.null.function 109
Krig.replicates 110
KrigFindLambda 111
lennon 114
minitri 114
mKrig 114
mKrigMLE 122
NorthAmericanRainfall 129
offGridWeights 131
ozone2 135
plot.Krig 136
plot.surface 137
poly.image 138
predict.Krig 141
predictSE 143
predictSurface 145
print.Krig 150
pushpin 151
qsreg 152
QTps 155
quilt.plot 159
rat.diet 163
RCMexample 164
rdist 165
rdist.earth 167
registeringCode 169
ribbon.plot 170
RMprecip 171
set.panel 173
sim.spatialProcess 174
smooth.2d 182
spam2lz 184
spatialProcess 186
splint 195
sreg 197
stats 201
stats.bin 202
summary.Krig 203
summary.ncdf 204
supportsArg 205
surface.Krig 206
The Engines: 207
tim.colors 211
Tps 214
transformx 223
US 224
US.dat 225
vgram 225
vgram.matrix 228
Wendland 229
world 232
WorldBankCO2 233
xline 234
yline 235
Index 236
add.image

Adds an image to an existing plot.

Description

Adds an image to an existing plot. Simple arguments control the location and size.

Usage

add.image(xpos, ypos, $z, \operatorname{adj} . x=0.5$, adj.y $=0.5$, image.width $=0.15$, image.height $=$ NULL, col $=$ tim.colors(256), \ldots)

Arguments

xpos $\quad \mathrm{X}$ position of image in user coordinates
ypos Y position of image in user coordinates
z Matrix of intensities comprising the image.
adj.x Location of image relative to x coordinate. Most common values are .5 (centered), 0 (right side of image at x) and 1 (left side of image at x). These are the same conventions that are used for adj in positioning text.
adj.y Location of image relative to y coordinate. Same rules as adj. x
image.width Width of image as a fraction of the plotting region in horizontal direction.
image.height Height of image as a fraction of the plotting region in horizontal direction. If NULL height is scaled to make image pixels square.
col Color table for image. Default is tim.colors.
$\ldots \quad$ Any other plotting arguments that are passed to the image function

See Also

image.plot, colorbar.plot, image, tim.colors

Examples

```
plot( 1:10, 1:10, type="n")
data( lennon)
add.image( 5,4,lennon, col=grey( (0:256)/256))
# reference lines
xline( 5, col=2)
yline( 4,col=2)
#
# add lennon right in the corner beyond the plotting region
#
par(new=TRUE, plt=c(0,1,0,1), mar=c(0,0,0,0), usr=c(0,1,0,1))
add.image( 0,0, lennon, adj.x=0, adj.y=0)
```

```
arrow.plot Adds arrows to a plot
```


Description

Adds arrows at specified points where the arrow lengths are scaled to fit on the plot in a reasonable manner. A classic use of this function is to depict a vector field. At each point (x, y) we have a vector with components (u, v). Like the arrows function this adds arrows to an existing plot.

Usage

arrow.plot(a1, a2, u = NA, v = NA, arrow.ex $=0.05$, xpd $=$ TRUE, true.angle $=$ FALSE, arrowfun=arrows, ...)

Arguments

arrow.ex Controls the length of the arrows. The length is in terms of the fraction of the
a1
a2
u

V
xpd

The x locations of the tails of the arrows or a 2 column matrix giving the x and y coordinates of the arrow tails.
The y locations of the tails of the arrows or a 2 column matrix giving the u and v coordinates of the arrows.

The u components of the direction vectors if they are not specified in the a1 argument
The v components of the direction vectors if they are not specified in the a2 argument shorter axis in the plot. So with a default of .0520 arrows of maximum length can line up end to end along the shorter axis.
If true does not clip arrows to fit inside the plot region, default is not to clip.

true.angle	If true preserves the true angle of the (u, v) pair on the plot. E.g. if $(\mathrm{u}, \mathrm{v})=(1,1)$ then the arrow will be drawn at 45 degrees.
arrowfun	The actual arrow function to use. The default is standard R arrows. However, Tamas K Papp suggests p.arrows from sfsmisc which makes prettier arrows.
\ldots	Graphics arguments passed to the arrows function that can can change the color or arrow sizes. See help on this for details.

Details

This function is useful because (u, v) may be in very different scales from the locations (x, y). So some careful scaling is needed to plot the arrows. The only tricky thing about this function is whether you want the true angles on the plot. For overlaying a vector field on top of contours that are the streamlines true.angle should be false. In this case you want u and v to be scaled in the same way as the x and y variables. If the scaling is not the same then the arrows will not look like tangent vectors to the streamlines. An application where the absolute angles are meaningful might be the hands of a clock showing different times zones on a world map. Here true.angle=T is appropriate, the clock hands should preserve the right angles.

See Also

arrows

Examples

\#
\# 20 random directions at 20 random points
x<- runif(20)
$y<-r u n i f(20)$
u<- rnorm(20)
v<- rnorm(20)
plot (x, y)
arrow.plot(x, y, u, v) \# a default that is unattractive
plot(x, y, type="n")
arrow.plot(x, y, u, v, arrow.ex=.2, length=.1, col='green', lwd=2)
\# thicker lines in green, smaller heads and longer tails. Note length, col and lwd are \# options that the arrows function itself knows about.

Description

Discretizes a set of 2-d locations to a grid and produces a image object with the z values in the right cells. For cells with more than one Z value the average is used.

Usage

```
as.image(Z, ind=NULL, grid=NULL, x=NULL,weights=rep(1, length(Z)),
    na.rm=FALSE, nx=64, ny=64, boundary.grid=FALSE, nrow=NULL, ncol=NULL,
    FUN = NULL)
```


Arguments

Z	Values of image.
ind	A matrix giving the row and column subscripts for each image value in Z. (Not needed if x is specified.)
grid	A list with components x and y of equally spaced values describing the centers of the grid points. The default is to use nrow and ncol and the ranges of the data locations (x) to construct a grid.
x	Locations of image values. Not needed if ind is specified.
nrow	Same as nx this is depreciated.
ncol	Same as ny this is depreciated.
weights	If two or more values fall into the same pixel a weighted average is used to represent the pixel value. Default is equal weights.
na.rm	If true NA's are removed from the Z vector.
nx	Number of grid point in X coordinate.
ny	Number of grid points in Y coordinate.
boundary.grid	If FALSE grid points are assumed to be the grid midpoints. If TRUE they are the grid box boundaries.
FUN	The function to apply to common values in a grid box. The default is a mean (or weighted mean). If FUN is specified the weights are not used.

Details

The discretization is straightforward once the grid is determined. If two or more Z values have locations in the same cell the weighted average value is taken as the value. The weights component that is returned can be used to account for means that have different numbers (or precisions) of observations contributing to the grid point averages. The default weights are taken to be one for each observation. See the source code to modify this to get more information about coincident locations. (See the call to fast.1way)

Value

An list in image format with a few more components. Components x and y are the grid values, z is a nrow X ncol matrix with the Z values. NA's are placed at cell locations where Z data has not been supplied. Component ind is a 2 column matrix with subscripts for the locations of the values in the image matrix. Component weights is an image matrix with the sum of the individual weights for each cell. If no weights are specified the default for each observation is one and so the weights will be the number of observations in each bin.

See Also

image.smooth, image.plot, Krig.discretize, Krig.replicates

Examples

```
# convert precip data to 50X50 image
look<- as.image( RMprecip$y, x= RMprecip$x, nx=50, ny=50)
image.plot( look)
# reduced grid extent compared to the domain
gridList<- list( x = seq(-105,-101,length.out=10),
    y = seq( 38, 42,length.out=10) )
look2<- as.image( RMprecip$y, x= RMprecip$x,grid=gridList)
image.plot( look2)
# number of obs in each cell -- in this case equal to the
# aggregated weights because each obs had equal weight in the call
image.plot( look$x ,look$y, look$weights, col=terrain.colors(50))
# hot spot is around Denver
```

as.surface Creates an "surface" object from grid values.

Description

Reformats the vector from evaluating a function on a grid of points into a list for use with surface plotting function. The list has the usual components x, y and z and is suitable for use with persp, contour, image and image.plot.

Usage

as.surface(obj, z, location=NULL, order.variables="xy")

Arguments

obj A description of the grid used to evaluate the function. This can either be in the form of a grid.list (see help file for grid.list) or the matrix of grid of points produced by make.surface.grid. In the later case obj is a matrix with the grid.list as an attribute.
z The value of the function evaluated at the gridded points.
location A logical or two column matrix of indices indicating the location of the z values within the image matrix.
order.variables
Either "xy" or "yx" specifies how the x and y variables used to evaluate the function are matched with the x and y grids in the surface object.

Details

This function was written to simply to go back and forth between a matrix of gridded values and the stacked vector obtained by stacking columns. The main application is evaluating a function at each grid point and then reforming the results for plotting. (See example below.)

If zimage is matrix of values then the input vector is c(zimage). To go from the stacked vector to the matrix one needs the the nrow ncol and explains why grid information must also be specified.

Note that the z input argument must be in the order values in order of stacking columns of the image. This is also the order of the grid points generated by make.surface.grid.

To convert irregular 2-d data to a surface object where there are missing cells see the function as.image.

Value

A list of class surface. This object is a modest generalization of the list input format ($\mathrm{x}, \mathrm{y}, \mathrm{z}$,) for the S functions contour, image or persp.
$x \quad$ The grid values in the X -axis
$y \quad$ The grid values in the Y-axis
$z \quad$ A matrix of dimensions nrow= length of x and ncol= length of y with entries being the grid point value reformatted from z .

See Also

grid.list, make.surface.grid, surface, contour, image.plot, as.image

Examples

```
# Make a perspective of the surface Z= X**2 -Y**2
# Do this by evaluating quadratic function on a 25 X 25 grid
grid.l<-list( abcissa= seq( -2,2,,15), ordinate= seq( -2,2,,20))
xg<-make.surface.grid( grid.l)
# xg is a 300X2 matrix that has all pairs of X and Y grid values
z<- xg[,1]**2 - xg[,2]**2
# now fold z in the matrix format needed for persp
out.p<-as.surface( xg, z)
persp( out.p)
# also try plot( out.p) to see the default plot for a surface object
```

Data frame of the effect of buffer compositions on DNA strand displacement amplification. A 4-d regression data set with with replication. This is a useful test data set for exercising function fitting methods.

Description

The BD data frame has 89 rows and 5 columns. There are 89 runs with four buffer components ($\mathrm{KCL}, \mathrm{MgCl} 2, \mathrm{KP} 04$, dnTP) systematically varied in a space-filliing design. The response is the DNA amplification rate.

Format

This data frame contains the following columns:

KCl Buffer component.
MgCl2 Buffer component.
KPO4 Buffer component.
dNTP Buffer component, deoxyribonucleotides.
Inya Exponential amplification rate on a log scale, i.e. the actual amplification rate.

Source

Thanks to Perry Haaland and Michael OConnell.
Becton Dickinson Research Center Research Triangle Park, NC

See Also

Tps

Examples

```
# fitting a DNA strand
# displacement amplification surface to various buffer compositions
fit<- Tps(BD[,1:4],BD$lnya,scale.type="range")
surface(fit) # plots fitted surface and contours
```

```
    bplot boxplot
```


Description

Plots boxplots of several groups of data and allows for placement at different horizontal or vertical positions or colors. It is also flexible in the input object, accepting either a list or matrix.

Usage

bplot(x, by, pos=NULL, at $=$ pos, add $=$ FALSE, boxwex =
$0.8, x \mathrm{lim}=$ NULL, ...)

Arguments

X
by If x is a vector, an optional vector (either character or numerical) specifying the categories to divide x into separate data sets. Boxplots are then made for each group.
pos The boxplots will be plotted vertically (horizontally) and pos gives the x (y) locations for their centers. If omitted the boxes are equally spaced at integer values. This is the same as at in the boxplot function
at Same as pos this is the name for this argument in the standard boxplot function.
add If true, do not create a new plots just add the boxplots to a current plot. Note that the pos argument may be useful in this case and should be in the user coordinates of the parent plot.
boxwex A boxplot argument to control the width of the boxplot. It behaves a little different than as an argumetn passed directly to boxplot. To make this a general function it is useful to scale this according to size of positions. Within bplot this happens as boxwex<- boxwex* min $(\operatorname{diff}(\operatorname{sort}(a t)))$. and then the scaled version of boxwex is now passed to boxplot.
x lim Same as the usual argument used in plotting. The plotting limits for the x axis.
Other arguments to be passed to the boxplot function some handy favorites are: names Labels for each boxplot. horizontalIf TRUE draw boxplots horizontally the default is false, produce vertical box plots. lwdWidth(s) of lines in box plots. colColor(s) of bplots. See colors() for some choices.

Details

This function was created as a complement to the usual S / R function for boxplots. The current function makes it possible to put the boxplots at unequal x or y positions in a rational way using the at or pos arguments. This is useful for visually grouping a large set of boxplots into several groups. Also placement of the boxplots with respect to the axis can add information to the plot. Another
aspect is the emphasis on data structures for groups of data. One useful feature is the by option to break up the x vector into distinct groups.

Use axis(3) (axis(4)) to add an axis along the top (right side) or omit the category names and draw on the bottom axis(1) (left side axis(2)).
The older bplot function drew the boxplots from scratch and if one needs to do this refer to the old functions: describe.bplot, draw.bplot.obj, bplot.xy, bplot.obj

Finally to bin data into groups based on a continuous variable and to make bplots of each group see bplot.xy.

See Also

bplot.xy

Examples

\#

set.seed(123)
temp<- matrix (rnorm(12*8), ncol=12)
pos<- c(1:6,9, 12:16)*100
bplot (temp)
\#
par(las=2)
bplot(temp, pos=pos, names=paste("Data",1:12, sep=""))
\# add an axis along top for reference
axis(3)
\#
\# Xmas boxplots in pleasing red and green
bplot(temp, pos=pos, col=c("red4", "green4"))
\# add an axis on top
axis(3)
bplot. $\mathrm{xy} \quad$ Boxplots for conditional distribution

Description

Draws boxplots for y by binning on x . This gives a coarse, but quick, representation of the conditional distrubtion of [$\mathrm{Y} \mid \mathrm{X}$] in terms of boxplots.

Usage

```
bplot.xy(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1),
    plot = TRUE, axes = TRUE, ...)
```


Arguments

x
y
$\mathrm{N} \quad$ Number of bins on x. Default is 10 .

breaks

plot
axes
...
Vector to use for bin membership
Vector to use for constructing boxplot statistics. centers, etc. - More stuff than you can imagine!

Break points defining bin boundaries. These can be unequally spaced.
If FALSE just returns a list with the statistics used for plotting the box plots, bin

The usual plotting argument - If TRUE then axes are plotted.
Any other optional arguments passed to the standard boxplot function.

See Also

bplot, draw.bplot

Examples

```
# condition on swim times to see how run times vary
bplot.xy( minitri$swim, minitri$run, N=5)
# bivariate normal corr= . }
set.seed( 123)
x<-rnorm( 2000)
y<- .8*x + sqrt( 1- . 8**2)*rnorm( 200)
#
bplot.xy(x,y)
#
bplot.xy( x,y, breaks=seq( -3, 3,,25) ,
    xlim =c(-4,4), ylim =c(-4,4), col="grey80", lwd=2)
points( x,y,col=3, cex=.5)
```

```
Chicago ozone test data
```

Data set of ozone measurements at 20 Chicago monitoring stations.

Description

This data set used be named ozone but was changed to avoid conflict with other packages. The Chicago03 data is a list of components, x and y . x component is longitude and latitude position of each of the 20 Chicago monitoring stations, y is the average daily ozone values over the time period $6 / 3 / 87-8 / 30 / 87$. These data are used extensively for the test scripts and simple examples. The lasting scientific value is probably minimal.

Format

This data set is a list containing the following components:
lon.lat Longitude-latitude positions of monitoring stations.
\mathbf{x} An approximate Cartesian set of coordinates for the locations where the units are in miles. The origin is in the center of the locations.
y Average daily ozone values over 1987 summer.

Source

AIRS, the EPA air quality data base.

See Also

Tps, Krig

Examples

```
fit<- Tps(Chicago03$x, Chicago03$y)
# fitting a surface to ozone measurements.
surface( fit, type="I")
```

circulantEmbedding Efficiently Simulates a Stationary 1 and 2D Gaussian random fields

Description

Simulates a stationary Gaussian random field on a regular grid with unit marginal variance. Makes use of the efficient algorithm based on the FFT know as circulant embedding.

Usage

sim.rf(obj)
circulantEmbedding(obj)
circulantEmbeddingSetup(grid, M = NULL, mKrigObject = NULL, cov.function = "stationary.cov", cov.args = NULL, delta = NULL, ...)

Arguments

obj A list (aka covariance object) that includes information about the covariance function and the grid for evaluation. Usually this is created by a setup call to Exp.image.cov, stationary.image.cov, matern.image.cov or other related covariance functions for sim. rf (See details below.) or to circulantEmbeddingSetup for circulantEmbedding
grid A list describing the regular grid. length(grid) is the dimension of the field (1D 2D etc) and each component are the regular locations in that dimension.

M	A vector of dimensions to embed the field. Simulation will be exact if each M[i] is larger than $2 *$ length (grid). The default is to choose a power of 2 larger than this minima bound.
cov.function	A text string with the name of the stationary covariance function to use. Default is stationary.cov and general function that takes advantage of some efficiency in finding distances.
cov.args	A list of arguments to include with the covariance function, Eg. aRange and smoothness for the Matern.
delta	If NULL the spatial domain is artifically doubled in size in all dimensions to account for the periodic wrapping of the fft. If passed this is the amount to extend the domain and can be less than double if a compact covariance function is used.
mKrigObject	Object from fitting surface using the mKrig or spatialProcess functions.
\ldots	For convenience any other arguments to pass to the covariance function.

Details

The functions circulantEmbedding and circulantEmbeddingSetup are more recent fields functions, more easy to read, and recommended over sim.rf. sim.rf is limited to 2 D fields while circulantEmbedding can handle any number of dimensions and has some shortcuts to be efficient for the 2D case.

The simulated field has the marginal variance that is determined by the covariance function for zero distance. Within fields the exponential and matern set this equal to one (e.g. Matern $(0)==1)$ so that one simulates a random field with a marginal variance of one. For stationary.cov the marginal variance is whatever Covariance(0) evaluates to and we recommend that alternative covariance functions also be normalized so that this is one.

Of course if one requires a Gaussian field with different marginal variance one can simply scale the result of this function. See the third example below.
Both sim.rf and circulantEmbedding take an object that includes some preliminary calculations and so is more efficient for simulating more than one field from the same covariance.

The algorithm using an FFT known as circulant embedding, may not always work if the correlation range is large. Specifically the weight function obtained from the FFT of the covariance field will have some negative values. A simple fix is to increase the size of the domain so that the correlation scale becomes smaller relative to the extent of the domain. Increasing the size can be computationally expensive, however, and so this method has some limitations. But when it works it is an exact simulation of the random field.

For a stationary model the covariance object (or list) for circulantEmbedding should have minmally, the components: That is names (obj) should give "m" "grid" "M" "wght"
where m is the number of grid points in each dimension, grid is a list with components giving the grid points in each coordinate. M is the size of the larger grid that is used for "embedding" and simulation. Usually $M=2 * m$ and results in an exact simulation of the stationary Gaussian field. The default if M is not passed is to find the smallest power of 2 greater than $2 * \mathrm{~m}$. wght is an array from the FFT of the covariance function with dimensions M. Keep in mind that for the final results only the array that is within the indices $1: \mathrm{m}[\mathrm{i}]$ for each dimension i is retained. This can give a much larger intermediate array, however, in the computation. E.g. if $m[1]=100$ and $m[2]=200$ by default then $M[1]=256$ and $M[2]=512$. A 256 X 512 array is simluated with to get the 100 by 200 result.

The easiest way to create the object for simulation is to use circulantEmbeddingSetup.
For the older function sim.rf one uses the image based covariance functions with setup=TRUE to create the list for simulation. See the example below for this usage.
The classic reference for this algorithm is Wood, A.T.A. and Chan, G. (1994). Simulation of Stationary Gaussian Processes in [0,1]^d. Journal of Computational and Graphical Statistics, 3, 409-432. Micheal Stein and Tilman Gneiting have also made some additional contributions to the algortihms and theory.

Value

sim.rf: A matrix with the random field values.
circulantEmbedding: An array according to the grid values specified in the setup.
circulantEmbeddingetup: A list with components

```
"m" "grid" "dx" "M" "wght" "call"
```

With the information needed to simulate the field.

See Also

stationary.cov, stationary.image.cov

Examples

```
#Simulate a Gaussian random field with an exponential covariance function,
#range parameter = 2.0 and the domain is [0,5]X [0,5] evaluating the
#field at a 100X100 grid.
    grid<- list( x= seq( 0,5,,100), y= seq(0,5,,100))
    obj<- circulantEmbeddingSetup( grid, Covariance="Exponential", aRange=.5)
    set.seed( 223)
    look<- circulantEmbedding( obj)
# Now simulate another ...
    look2<- circulantEmbedding( obj)
# take a look at first two
    set.panel(2,1)
    image.plot( grid[[1]], grid[[2]], look)
    title("simulated gaussian fields")
    image.plot( grid[[1]], grid[[2]], look2)
    title("another realization ...")
# Suppose one requires an exponential, range = 2
# but marginal variance = 10 ( sigma in fields notation)
look3<- sqrt( 10)*circulantEmbedding( obj)
## Not run:
# an interesting 3D field
grid<- list( 1:40, 1:40, 1:16 )
obj<- circulantEmbeddingSetup( grid,
cov.args=list( Covariance="Matern", aRange=2, smoothness=1.0)
)
```

```
# NOTE: choice of aRange is close to giving a negative weight array
set.seed( 122)
look<- circulantEmbedding( obj )
# look at slices in the 3rd dimension
set.panel( 4,4)
zr<- range( look)
par( mar=c(1,1,0,0))
for( k in 1:16){
image( grid[[1]], grid[[2]], look[,,k], zlim= zr, col=tim.colors(256),
    axes=FALSE, xlab="", ylab="")
}
## End(Not run)
# same as first example using the older sim.rf
grid<- list( x= seq( 0,10,length.out=100) , y= seq( 0,10,length.out=100) )
obj<-Exp.image.cov( grid=grid, aRange=.75, setup=TRUE)
set.seed( 223)
look<- sim.rf( obj)
# Now simulate another ...
look2<- sim.rf( obj)
```


Description

This is an example of moderately large spatial data set and consists of simulated CO 2 concentrations that are irregularly sampled from a lon/lat grid. Also included is the complete CO 2 field (CO 2 .true) used to generate the synthetic observations.

Usage

data(CO2)

Format

The format of CO2 is a list with two components:

- lon.lat: 26633x2 matrix of the longitude/latitude locations. These are a subset of a larger lon/lat grid (see example below).
- y: 26633 CO 2 concentrations in parts per million.

The format of CO2. true is a list in "image" format with components:

- x longitude grid values.
- y latitude grid values.
- z an image matrix with CO 2 concentration in parts per million
- mask a logical image that indicates with grid locations were selected for the synthetic data set CO2.

Details

This data was generously provided by Dorit Hammerling and Randy Kawa as a test example for the spatial analysis of remotely sensed (i.e. satellite) and irregular observations. The synthetic data is based on a true CO 2 field simulated from a geophysical, numerical model.

Examples

```
## Not run:
data(CO2)
#
# A quick look at the observations with world map
quilt.plot( CO2$lon.lat, CO2$y)
world( add=TRUE)
# Note high concentrations in Borneo (biomass burning), Amazonia and
# ... Michigan (???).
# spatial smoothing using the wendland compactly supported covariance
# see help( fastTps) for details
# First smooth using locations and Euclidean distances
# note taper is in units of degrees
out<-fastTps( CO2$lon.lat, CO2$y, aRange=4, lambda=2.0)
#summary of fit note about 7300 degrees of freedom
# associated with fitted surface
    print( out)
# image plot on a grid (this takes a while)
surface( out, type="I", nx=300, ny=150)
# smooth with respect to great circle distance
out2<-fastTps( CO2$lon.lat, CO2$y, lon.lat=TRUE,lambda=1.5, aRange=4*68)
print(out2)
#surface( out2, type="I", nx=300, ny=150)
# these data are actually subsampled from a grid.
# create the image object that holds the data
#
temp<- matrix( NA, ncol=ncol(CO2.true$z), nrow=nrow(CO2.true$z))
temp[ C02.true$mask] <- C02$y
# look at gridded object.
    image.plot(CO2.true$x,CO2.true$y, temp)
# to predict _exactly_ on this grid for the second fit;
```

```
# (this takes a while)
look<- predictSurface( out2, list( x=C02.true$x, y=CO2.true$y) )
image.plot(look)
## End(Not run)
```

Colorado Monthly Meteorological Data
Monthly surface meterology for Colorado 1895-1997

Description

Source: These is a group of R data sets for monthly $\mathrm{min} / \mathrm{max}$ temperatures and precipitation over the period 1895-1997. It is a subset extracted from the more extensive US data record. Temperature is in degrees C and precipitation is total monthly accumulation in millimeters. Note that minimum (maximum) monthly tempertuare is the mean of the daily minimum (maximum) temperatures.
Data domain:
A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the boundary of Colorado comprises approximately 400 stations. Although there are additional stations reported in this domain, stations that only report preicipitation or only report temperatures have been excluded. In addition stations that have mismatches between locations and elevations from the two meta data files have also been excluded. The net result is 367 stations that have colocated temperatures and precipitation.

Format

This group of data sets is organized with the following objects:
CO.info A data frame with columns: station id, elev, lon, lat, station name
CO.elev elevation in meters
CO.elevGrid An image object being elevation in meters on a 4 km grid covering Colorado.
CO.id alphanumeric station id codes
CO.loc locations in lon/lat
CO.Grid Just the grid.list used in the CO.elevGrid.
CO.ppt CO.tmax CO.tmin Monthly means as three dimensional arrays (Year, Month, Station). Temperature is in degrees C and precipitation in total monthly accumulation in millimeters.
CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM Spring seasonal means (March, April,May) as two dimensional arrays (Year, Station).
CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate Spring seasonal means (March, April,May) means by station for the period 1960-1990. If less than 15 years are present over this period an NA is recorded. No detreding or other adjustments have been made for these mean estimates.

Creation of data subset

Here is the precise R script used to create this data subset from the larger US monthly data set. This parent, R binary file can be obtained by contacting Doug Nychka (nychka@ mines.edu).
These technical details are not needed for casual use of the data - skip down to examples for some R code that summarizes these data.

```
attach("RData.USmonthlyMet.bin")
#To find a subset that covers Colorado (with a bit extra):
indt<- UStinfo$lon< -101 & UStinfo$lon > -109.5
indt<- indt & UStinfo$lat<41.5 & UStinfo$lat>36.5
# check US(); points( UStinfo[indt,3:4])
#find common names restricting choices to the temperature names
tn<- match( UStinfo$station.id, USpinfo$station.id)
indt<- !is.na(tn) & indt
# compare metadata locations and elevations.
# initial matches to precip stations
CO.id<- UStinfo[indt,1]
CO.names<- as.character(UStinfo[indt,5])
pn<- match( CO.id, USpinfo$station.id)
loc1<- cbind( UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt])
loc2<- cbind( USpinfo$lon[pn], USpinfo$lat[pn], USpinfo$elev[pn])
abs(loc1- loc2) -> temp
indbad<- temp[,1] > . 02 | temp[,2]> . 02 | temp[,3] > 100
# tolerance at }100\mathrm{ meters set mainly to include the CLIMAX station
# a high altitude station.
data.frame(CO.names[ indbad], loc1[indbad,], loc2[indbad,], temp[indbad,] )
```

\#	CO. names.indbad.	X1	X2	X3	X1. 1	X2.1	X3.1	X1.2	X2.2	X3.2	
\#1	ALTENBERN	-108.38	39.50	1734	-108.53	39.58	2074	0.15	0.08	340	
\#2	CAMPO 7 S	-102.57	37.02	1311	-102.68	37.08	1312	0.11	0.06	1	
\#3	FLAGLER 2	NW	-103.08	39.32	1519	-103.07	39.28	1525	0.01	0.04	6
\#4	GATEWAY 1	SE	-108.98	38.68	1391	-108.93	38.70	1495	0.05	0.02	104
\#5	IDALIA	-102.27	39.77	1211	-102.28	39.70	1208	0.01	0.07	3	
\#6	KARVAL	-103.53	38.73	1549	-103.52	38.80	1559	0.01	0.07	10	
\#7	NEW RAYMER	-103.85	40.60	1458	-103.83	40.58	1510	0.02	0.02	52	

```
# modify the indt list to exclude these mismatches (there are 7 here)
badones<- match( CO.id[indbad], UStinfo$station.id)
indt[ badones] <- FALSE
###### now have working set of CO stations have both temp and precip
##### and are reasonably close to each other.
N<- sum( indt)
# put data in time series order instead of table of year by month.
CO.tmax<- UStmax[,,indt]
CO.tmin<- UStmin[,,indt]
CO.id<- as.character(UStinfo[indt,1])
CO.elev<- UStinfo[indt,2]
CO.loc <- UStinfo[indt,3:4]
CO.names<- as.character(UStinfo[indt,5])
CO.years<- 1895:1997
# now find precip stations that match temp stations
pn<- match( CO.id, USpinfo$station.id)
# number of orphans
sum( is.na( pn))
pn<- pn[ !is.na( pn)]
CO.ppt<- USppt[,,pn]
# checks --- all should zero
ind<- match( CO.id[45], USpinfo$station.id)
mean( abs( c(USppt[,,ind]) - c(CO.ppt[,,45]) ) , na.rm=TRUE)
ind<- match( CO.id[45], UStinfo$station.id)
mean( abs(c((UStmax[,,ind])) - c(CO.tmax[,,45])), na.rm=TRUE)
mean( abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE)
# check order
ind<- match( CO.id, USpinfo$station.id)
    sum( CO.id != USpinfo$station.id[ind])
ind<- match( CO.id, UStinfo$station.id)
    sum( CO.id != UStinfo$station.id[ind])
# (3 4 5) (6 7 8) (9 10 11) (12 1 2)
N<- ncol( CO.tmax)
```

```
CO.tmax.MAM<- apply( CO.tmax[,3:5,],c(1,3), "mean")
CO.tmin.MAM<- apply( CO.tmin[,3:5,],c(1,3), "mean")
CO.ppt.MAM<- apply( CO.ppt[,3:5,],c(1,3), "sum")
# Now average over 1961-1990
ind<- CO.years>=1960 & CO.years < }199
    temp<- stats( CO.tmax.MAM[ind,])
    CO.tmax.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)
    temp<- stats( CO.tmin.MAM[ind,])
    CO.tmin.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)
    CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2
    temp<- stats( CO.ppt.MAM[ind,])
    CO.ppt.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)
save( list=c( "CO.tmax", "CO.tmin", "CO.ppt",
    "CO.id", "CO.loc","CO.years",
    "CO.names","CO.elev",
    "CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM",
    "CO.tmin.MAM.climate", "CO.tmax.MAM.climate",
    "CO.ppt.MAM.climate", "CO.tmean.MAM.climate"),
        file="COmonthlyMet.rda")
```


Examples

```
data(COmonthlyMet)
#Spatial plot of 1997 Spring average daily maximum temps
    quilt.plot( CO.loc,CO.tmax.MAM[103,] )
    US( add=TRUE)
    title( "Recorded MAM max temperatures (1997)")
# min and max temperatures against elevation
matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]),
    pch="o", type="p",
        col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)")
title("Recorded MAM max (red) and min (blue) temperatures 1997")
#Fitting a spatial model:
obj<- Tps(CO.loc,CO.tmax.MAM.climate, Z= CO.elev )
## Not run:
out<- spatialProcess(CO.loc,CO.tmax.MAM.climate,
```

```
smoothness=1.0, Z= CO.elev)
```

surface(out)
\#\# End(Not run)

```
colorbar.plot
```

Adds color scale strips to an existing plot.

Description

Adds one or more color scales in a horizontal orientation, vertical orientation to an existing plot.

```
Usage
colorbar.plot(x, y, strip, strip.width \(=0.1\), strip.length \(=4\) * strip.width, zrange \(=\) NULL, adj. \(x=0.5\), adj.y \(=0.5\), col \(=\) tim.colors(256), horizontal = TRUE, ...)
```


Arguments

x	x position of strip in user coordinates
y	y position of strip in user coordinates
strip	Either a vector or matrix giving the values of the color strip(s). If a matrix then strips are assumed to be the columns.
strip.width	Width of strip as a fraction of the plotting region.
strip.length	Length of strip as a function of the plotting region. Default is a pleasing 8 times width.
zrange	If a vector these are the common limits used for assigning the color scale. Default is to use the range of values in strip. If a two column matrix, rows are used as the limits for each strip.
adj. x	Location of strip relative to x coordinate. Most common values are .5 (centered), 0 (right end at x) and 1 (left end of at x). These are the same conventions that are used for adj in positioning text.
adj.y	Location of strip relative to y coordinate. Same rules as adj. x
col	Color table used for strip. Default is our favorite tim.colors being a scale from a dark blue to dark red.
horizontal	If TRUE draws strips horizontally. If FALSE strips are drawn vertically optional graphical arguments that are passed to the image function.

Details

This function draws the strips as a sequence of image plots added to the existing plot. The main work is in creating a grid (x, y) for the image that makes sense when superimposed on the plot. Note that although the columns of strip are considered as separate strips these can be oriented either horizontally or vertically based on the value of horizontal. The rows of zrange are essentially the zlim argument passed to the image function when each strip is drawn.
Don't forget to use locator to interactively determine positions. text can be used to label points neatly in conjunction with setting adj.x and adj.y. Although this function is inefficient for placing images at arbitrary locations on a plot the code can be easily adapted to do this.

This function was created to depict univariate posterior distribution on a map. The values are quantiles of the distribution and the strips when added under a common color scale give an overall impression of location and scale for several distributions.

Author(s)

Doug Nychka

See Also

image.plot, arrow.plot, add.image

Examples

```
# set up a plot but don't plot points and no "box"
plot( 1:10, (1:10)*10, type="n", bty="n")
# of course this could be anything
y<- cbind( 1:15, (1:15)+25)
colorbar.plot( 2.5, 30, y)
points( 2.5,30, pch="+", cex=2, adj=.5)
# note that strip is still in 1:8 aspect even though plot has very
# different ranges for x and y.
# adding legend using image.plot
zr<- range( c( y))
image.plot( legend.only=TRUE, zlim= zr)
# see help(image.plot) to create more room in margin etc.
zr<- rbind( c(1,20), c(1,100)) # separate ranges for columns of y.
colorbar.plot( 5, 70, y, adj.x=0, zrange= zr)
# some reference lines to show placement
xline( 5, lty=2) # strip starts at x=5
yline(70, lty=2) # strip is centered around y=7 (because adj.y=.5 by default)
# many strips on common scale.
y<- matrix( 1:200, ncol=10)
colorbar.plot( 2, 75, y, horizontal=FALSE, col=rainbow(256))
```

```
# Xmas strip
y<- cbind( rep( c(1,2),10))
y[15] <- NA # NA's should work
colorbar.plot( 6, 45, y, adj.y=1,col=c("red", "green"))
text(6,48,"Christmas strip", cex=2)
# lennon thumbnail
# there are better ways to this ... see add.image for example.
data( lennon)
colorbar.plot( 7.5,22, lennon,
    strip.width=.25, strip.length=.25, col=grey(seq( 0,1,,256)))
```


Description

compactToMat transforms a matrix from compact, vector form to a standard matrix. Only symmetric matrices can be stored in this form, since a compact matrix is stored as a vector with elements representing the upper triangle of the matrix. This function assumes the vector does not contain diagonal elements of the matrix.

An example of a matrix stored in compact form is any matrix generated from the rdist function with compact=TRUE.

Usage

compactToMat(compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE)

Arguments

compactMat A symmetric matrix stored as a vector containing elements for the lower-triangular portion of the true matrix (and none of the diagonal elements), as returned by rdist with compact=TRUE.
diagVal A number to put in the diagonal entries of the output matrix.
lower.tri Whether or not to fill in the upper triangle of the output matrix
upper.tri Whether or not to fill in the lower triangle of the output matrix

Value

The standard form matrix represented by the input compact matrix

Author(s)

John Paige

See Also

```
rdist,link{dist}
```


Examples

```
################
#Calculate distance matrix from compact form:
################
#make a distance matrix
distOut = rdist(1:5, compact=TRUE)
print(distOut)
#note that distOut is in compact form:
print(c(distOut))
#convert to standard matrix form:
distMat = compactToMat(distOut)
################
#fast computation of covariance matrix:
################
#generate 5 random points on [0,1]x[0,1] square
x = matrix(runif(10), nrow=5)
#get compact distance matrix
distOut = rdist(x, compact=TRUE)
#evaluate Exponential covariance with range=1. Note that
#Covariance function is only evaluated over upper triangle
#so time is saved.
diagVal = Exponential(0, range=1)
compactCovMat = Exponential(distOut, range=1)
upperCovMat = compactToMat(compactCovMat, diagVal)
lowerCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=FALSE)
fullCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=TRUE)
compactCovMat
lowerCovMat
upperCovMat
fullCovMat
```

Covariance functions Exponential family, radial basis functions, cubic spline, compactly supported Wendland family, stationary covariances and non-stationary covariances.

Description

Given two sets of locations these functions compute the cross covariance matrix for some covariance families. In addition these functions can take advantage of spareness, implement more efficient multiplcation of the cross covariance by a vector or matrix and also return a marginal variance to be consistent with calls by the Krig function.
stationary.cov and Exp.cov have additional arguments for precomputed distance matrices and for calculating only the upper triangle and diagonal of the output covariance matrix to save time. Also, they support using the rdist function with compact=TRUE or input distance matrices in compact form, where only the upper triangle of the distance matrix is used to save time.
Note: These functions have been been renamed from the previous fields functions using 'Exp' in place of 'exp' to avoid conflict with the generic exponential function (exp(. .))in R.

Usage

```
Exp.cov(x1, x2 = NULL, aRange = 1, p = 1, distMat = NA, C =
    NA, marginal = FALSE, onlyUpper = FALSE, theta = NULL,
    ...)
Exp.simple.cov(x1, x2, aRange =1, C=NA,marginal=FALSE, theta=NULL)
Rad.cov(x1, x2, p = 1, m=NA, with.log = TRUE, with.constant = TRUE,
    C=NA,marginal=FALSE, derivative=0)
cubic.cov(x1, x2, aRange = 1, C=NA, marginal=FALSE, theta=NULL)
Rad.simple.cov(x1, x2, p=1, with.log = TRUE, with.constant = TRUE,
    C = NA, marginal=FALSE)
stationary.cov(x1, x2=NULL, Covariance = "Exponential", Distance = "rdist",
    Dist.args = NULL, aRange = 1, V = NULL, C = NA, marginal = FALSE,
    derivative = 0, distMat = NA, onlyUpper = FALSE, theta=NULL, ...)
stationary.taper.cov(x1, x2, Covariance="Exponential",
            Taper="Wendland",
            Dist.args=NULL, Taper.args=NULL,
            aRange=1.0,V=NULL, C=NA, marginal=FALSE,
            spam.format=TRUE,verbose=FALSE, theta=NULL,...)
Tps.cov(x1, x2 = NULL, cardinalX, m=2,
                        C = NA, aRange=NA,
                        marginal = FALSE
    )
wendland.cov(x1, x2, aRange = 1, V=NULL, k = 2, C = NA,
    marginal =FALSE,Dist.args = list(method = "euclidean"),
    spam.format = TRUE, derivative = 0, verbose=FALSE, theta=NULL)
Paciorek.cov(x1,
    x2 = NULL,
```

```
Distance = "rdist",
Dist.args = NULL,
aRangeObj = 1,
rhoObj = NULL,
C = NA,
marginal = FALSE,
smoothness = . 5)
```


Arguments

x1
theta
cardinalX Locations added to the thin plate plate radial function to make it positive definite (See Details below).

Covariance Character string that is the name of the covariance shape function for the distance between locations. Choices in fields are Exponential, Matern
derivative If nonzero evaluates the partials of the covariance function at locations x1. This must be used with the "C" option and is mainly called from within a predict function. The partial derivative is taken with respect to $\times 1$.
Distance Character string that is the name of the distance function to use. Choices in fields are rdist, rdist.earth
distMat If the distance matrix between $x 1$ and $x 2$ has already been computed, it can be passed via this argument so it won't need to be recomputed.
Dist.args A list of optional arguments to pass to the Distance function.
marginal If TRUE returns just the diagonal elements of the covariance matrix using the $\times 1$ locations. In this case this is just 1.0. The marginal argument will trivial for this function is a required argument and capability for all covariance functions used with Krig.
m
Matrix of first set of locations where each row gives the coordinates of a particular point.
Matrix of second set of locations where each row gives the coordinatesof a particular point. If this is missing $\times 1$ is used.

Range (or scale) parameter. This should be a scalar (use the V argument for other scaling options). Any distance calculated for a covariance function is divided by aRange before the covariance function is evaluated. For Tps.cov this argument is ignored.
aRangeObj A fit object that defines the Range (or scale) parameter for arbitray locations using the generic predict function.

C
k

A vector or matrix with the same rows as the number of rows of $x 2$. If specified the covariance matrix will be multiplied by this vector/matrix.

The order of the Wendland covariance function. See help on Wendland. used with Krig.
For the radial basis function $\mathrm{p}=2 \mathrm{~m}-\mathrm{d}$, with d being the dimension of the loca- tions, is the exponent applied to the distance between locations. (m is a common way of parametrizing this exponent.) Equivalently in Tps.cov the order of the spline. (See Details section below).

onlyUpper	For internal use only, not meant to be set by the user. Automatically set to TRUE by mKrigMLEJoint or mKrigMLEGrid if lambda.profile is set to TRUE, but set to FALSE for the final parameter fit so output is compatible with rest of fields. If TRUE, only the upper triangle and diagonal of the covariance matrix is com- puted to save time (although if a non-compact distance matrix is used, the on- lyUpper argument is set to FALSE). If FALSE, the entire covariance matrix is computed. In general, it should only be set to TRUE for mKrigMLEJoint and mKrigMLEGrid, and the default is set to FALSE so it is compatible with all of fields.
Exponent in the exponential covariance family. p=1 gives an exponential and	
p=2 gives a Gaussian. Default is the exponential form. For the radial basis	
function this is the exponent applied to the distance between locations.	

Details

For purposes of illustration, the function Exp.cov.simple is provided in fields as a simple example and implements the R code discussed below. List this function out as a way to see the standard
set of arguments that fields uses to define a covariance function. It can also serve as a template for creating new covariance functions for the Krig and mKrig functions. Also see the higher level function stationary.cov to mix and match different covariance shapes and distance functions.
A common scaling for stationary covariances: If $x 1$ and $x 2$ are matrices where nrow $(x 1)=m$ and nrow $(x 2)=n$ then this function will return a $m X n$ matrix where the (i, j) element is the covariance between the locations $\times 1[i$,$] and \times 2[j$,$] . The exponential covariance function is computed as$ $\exp (-(\mathrm{D} . \mathrm{ij}))$ where D.ij is a distance between $\times 1[\mathrm{i}$,$] and \times 2[\mathrm{j}$,$] but having first been scaled by$ aRange. Specifically if aRange is a matrix to represent a linear transformation of the coordinates, then let $u=x 1 \% * \% t($ solve(aRange)) and $v=x 2 \% * \% t(s o l v e(a R a n g e))$. Form the $m X n$ distance matrix with elements:
$D[i, j]=\operatorname{sqrt}(\operatorname{sum}((u[i]-,v[j]) * * 2)$,$) .$
and the cross covariance matrix is found by $\exp (-D)$. The tapered form (ignoring scaling parameters) is a matrix with i, j entry $\exp (-D[i, j]) * T(D[i, j])$. With T being a positive definite tapering function that is also assumed to be zero beyond 1 .
Note that if aRange is a scalar then this defines an isotropic covariance function and the functional form is essentially $\exp (-D / a R a n g e)$.
Implementation: The function r.dist is a useful FIELDS function that finds the cross Euclidean distance matrix (D defined above) for two sets of locations. Thus in compact R code we have
$\exp (-r d i s t(u, v))$
Note that this function must also support two other kinds of calls:
If marginal is TRUE then just the diagonal elements are returned (in R code diag(exp(-rdist(u,u)))).

If C is passed then the returned value is $\exp (-r d i s t(u, v)) \% * \% C$.
Some details on particular covariance functions:
Stationary covariance stationary.cov: Here the computation is to apply the function Covariance to the distances found by the Distance function. For example
Exp. $\operatorname{cov}(x 1, x 2$, aRange=MyTheta)
and
stationary.cov(x1, x2, aRange=MyTheta, Distance= "rdist",Covariance="Exponential")
are the same. This also the same as
stationary. cov($x 1, x 2$, aRange=MyTheta, Distance= "rdist", Covariance="Matern", smoothness=.5).
Radial basis functions (Rad. cov: The functional form is Constant* rdist($u, v)^{* *}$ p for odd dimensions and Constant* $\operatorname{rdist}(\mathrm{u}, \mathrm{v})^{* *} \mathrm{p} * \log (\operatorname{rdist}(\mathrm{u}, \mathrm{v}))$ For an m th order thin plate spline in d dimensions $\mathrm{p}=2 * \mathrm{~m}-\mathrm{d}$ and must be positive. The constant, depending on m and d , is coded in the fields function radbas. constant. This form is only a generalized covariance function - it is only positive definite when restricted to linear subspace. See Rad. simple.cov for a coding of the radial basis functions in R code.

Tps.cov This covariance can be used in a standard "Kriging" computation to give a thin-plate spline (TPS). This is useful because one can use the high level function spatialProcess and supporting functions for the returned object, including conditional simulation. The standard computation for a TPS uses the radial basis functions as given in Rad.cov and uses a QR decomposition based a polynoimial matrix to reduce the dimension of the radial basis function and yield a positive definite matrix. This reduced matrix is then used in the regular compuations
to find the spatial estimate. The function Krig and specifically Tps implements this algoritm. The interested reader should look at Krig.engine. default and specifically at the TMatrix polynomial matrix and resulting reduced positive definite matrix tempM. The difficulty with this approach is that is not amenable to taking advantage of sparsity in the covariance matrix.
An alternative that is suggested by Grace Wahba in Spline models for observational data is to augment the radial basis functions with a low rank set of functions based on a low order polynomial evaluated at a set of points. The set of locatios for this modifications are called cardinal points due the to property mentioned below. This is implemented in Tps.cov leading to a full rank (non-stationary!) covariance function. If the fixed part of the spatial model also includes this same order polynomial then the final result gives a TPS and is invariant to the choice of cardinal points. To streamline using this covariance when it isspecified in the spatialProcess function the cardinal points will choosen automaitcally based on the observation locations and the spline order, m using a space filling design. A simple example with fixed smoothing parameter, lambda <- . 1 may help

```
data( "ozone2")
s<- ozone2$lon.lat
y<- ozone2$y[16,]
fitTps1<- spatialProcess( s,y, cov.function= "Tps.cov", lambda=.1)
```

and compare the results to the standard algorithm.

```
fitTps2<- Tps( s,y, scale.type ="unscaled", lambda=.1)
stats( abs(fitTps2$fitted.values - fitTps1$fitted.values))
```

Here the default choice for the order is 2 and in two dimensions implies a linear polynomial. The arguments filled in by default are shown below

```
    fitTps1$args
$cardinalX
            [,1] [, 2]
[1,] -85.289 40.981
[2,] -90.160 38.330
[3,] -91.229 43.812
attr(,"scaled:scale")
[1] 1 1
attr(,"scaled:center")
[1] 0 0
$aRange
[1] NA
fitTps1$mKrig.args
[[1]]
NULL
[1] 2
\$collapseFixedEffect
[1] TRUE
\$find.trA
[1] TRUE
cardinalX are the cardinal points chosen using a space filling criterion. These are attached to the covariance arguments list so they are used in the subsequent computations for this fit (such as predict, predictSE, sim.spatialProcess).
In general, if \(d\) is the dimension of the locations and \(m\) the order of the spline one must have \(2 * m-d>0\). The polynomial will have choose ( \(m+d-1, d\) ) terms and so this many cardinal points need to be specified. As mentioned above these are chosen in a reasonable way if spatialProcess is used.
Stationary tapered covariance stationary.taper.cov: The resulting cross covariance is the direct or Shure product of the tapering function and the covariance. In R code given location matrices, \(x 1\) and \(x 2\) and using Euclidean distance.
```

Covariance(rdist(x1, x2)/aRange)*Taper(rdist(x1,x2)/Taper.args\$aRange)

```

By convention, the Taper function is assumed to be identically zero outside the interval [ 0,1\(]\). Some efficiency is introduced within the function to search for pairs of locations that are nonzero with respect to the Taper. This is done by the SPAM function nearest.dist. This search may find more nonzero pairs than dimensioned internally and SPAM will try to increase the space. One can also reset the SPAM options to avoid these warnings. For spam.format TRUE the multiplication with the \(C\) argument is done with the spam sparse multiplication routines through the "overloading" of the \(\% * \%\) operator.
Nonstationary covariance function, Paciorek.cov This implements the nonstationary model developed by Chris Paciorek and Mark Schervish that allows for a varying range parameter over space and also a varying marginal variance. This is still experimental and spatialProcess has not been generalized to fit the parameter surfaces. It can, however, be used to evaluate the model at fixed parameter surfaces. See the last example below.
This covariance works by specifying a object aRangeObj such that the generic call predict (aRangeObj, loc) will evaluate the aRange function at the locations loc. This object can be as simple a fit to local estimated aRange parameters using a fields function such as Tps or spatialProcess. More specific applications one can create a special predict function. For example suppose log aRange follows a linear model in the spatial coordinates and these coefficients are the vector Afit. Define a class and a predict function.
```

aRangeObj<- list(coef=Afit)
class(aRangeObj)<- "myclass"
predict.myclass<- function(aRangeObj, x){
aRange<- exp(cbind(1,x) %*% aRangeObj\$coef)
return(aRange)
}

```

Now use spatialProcess with this object and make sure predict.myclass is also loaded.

A similar strategy will also work for a varying marginal variance by creating sigmaObj and if needed a companion predict method.

About the FORTRAN: The actual function Exp.cov and Rad.cov call FORTRAN to make the evaluation more efficient this is especially important when the C argument is supplied. So unfortunately the actual production code in Exp.cov is not as crisp as the R code sketched above. See Rad. simple.cov for a R coding of the radial basis functions.

\section*{Value}

If the argument C is NULL the cross covariance matrix is returned. In general if nrow( x 1 ) \(=\mathrm{m}\) and nrow \((x 2)=n\) then the returned matrix will be \(m X n\). Moreover, if x 1 is equal to x 2 then this is the covariance matrix for this set of locations.
If \(C\) is a vector of length \(n\), then returned value is the multiplication of the cross covariance matrix with this vector.

\section*{See Also}

Krig, rdist, rdist.earth, gauss.cov, Exp.image.cov, Exponential, Matern, Wendland.cov, mKrig

\section*{Examples}
```


exponential covariance matrix (marginal variance =1) for the ozone

\#locations
out<- Exp.cov(Chicago03\$x, aRange=100)

out is a 20X20 matrix

out2<- Exp.cov(Chicago03$x[6:20,],Chicago03$x[1:2,], aRange=100)

out2 is 15X2 matrix

Kriging fit where the nugget variance is found by GCV

Matern covariance shape with range of 100.

fit<- Krig(Chicago03$x, Chicago03$y, Covariance="Matern", aRange=100,smoothness=2)
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]

Omit the NAs

good<- !is.na(y)
x<- x[good,]
y<- y[good]

example of calling the taper version directly

Note that default covariance is exponential and default taper is

Wendland (k=2).

stationary.taper.cov(x[1:3,],x[1:10,] , aRange=1.5, Taper.args= list(k=2,aRange=2.0,
dimension=2))-> temp

```
```


temp is now a tapered 3X10 cross covariance matrix in sparse format.

 is.spam(temp) # evaluates to TRUE

should be identical to

the direct matrix product

 temp2<- Exp.cov(x[1:3,],x[1:10,], aRange=1.5) * Wendland(rdist(x[1:3,],x[1:10,]),
 aRange= 2.0, k=2, dimension=2)
 test.for.zero(as.matrix(temp), temp2)

Testing that the "V" option works as advertized ...

x1<- x[1:20,]
x2<- x[1:10,]
V<- matrix(c(2,1,0,4), 2,2)
Vi<- solve(V)
u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))
look<- exp(-1*rdist(u1,u2))
look2<- stationary.cov(x1,x2, V= V)
test.for.zero(look, look2)

Here is an example of how the cross covariance multiply works

and lots of options on the arguments

 Ctest<- rnorm(10)
 temp<- stationary.cov(x,x[1:10,], C= Ctest,
 Covariance= "Wendland",
 k=2, dimension=2, aRange=1.5)

do multiply explicitly

 temp2<- stationary.cov(x,x[1:10,],
 Covariance= "Wendland",
 k=2, dimension=2, aRange=1.5)%*% Ctest
 test.for.zero(temp, temp2)

use the tapered stationary version

cov.args is part of the argument list passed to stationary.taper.cov

within Krig.

This example needs the spam package.

Not run:

```
```

Krig(x,y, cov.function = "stationary.taper.cov", aRange=1.5,
cov.args= list(Taper.args= list(k=2, dimension=2,aRange=2.0))
) -> out2

NOTE: Wendland is the default taper here.

End(Not run)

BTW this is very similar to

Not run:

 Krig(x,y, aRange= 1.5)-> out

End(Not run)

\#

nonstationary covariance Paciorek.cov

\#

Not run:

M<- 20
gridList<- list(x=seq(0,1,length.out=M),
y=seq(0,1, length.out=M))
sGrid<- make.surface.grid(gridList)

An aRange surface

aRangeObj<- list(coef= c(1,4,0))
class(aRangeObj)<- "myclass"
predict.myclass<- function(aRangeObj, x){
aRange<- exp(cbind(1,x) %*% aRangeObj\$coef)
return(aRange)
}
covMatrix<- Paciorek.cov(sGrid, sGrid, aRangeObj=aRangeObj)

examine correlation surface between selected locations and the full grid.

set.panel(2,2)
{
imagePlot(as.surface(sGrid, covMatrix[,10]))
imagePlot(as.surface(sGrid, covMatrix[,205]))
imagePlot(as.surface(sGrid, covMatrix[,305]))
imagePlot(as.surface(sGrid, covMatrix[,390]))
}

simulation of the field

set.seed(222)
n<- nrow(sGrid)
f<- t(chol(covMatrix)) %*% rnorm(M^2)
set.panel()
imagePlot(as.surface(sGrid,f))
y<- f + .05*rnorm(n)
fitP<- spatialProcess(sGrid, y, cov.function="Paciorek.cov",
cov.args= list(aRangeObj = aRangeObj))

check estimated tau and sigma

fitP\$summary

```
```


fitted surface

surface(fitP)

End(Not run)

```

CovarianceUpper Evaluate covariance over upper triangle of distance matrix

\section*{Description}

Evaluates the covariance over the upper triangle of a distance matrix rather than over the entire matrix to reduce computation time. Note that the chol function only requires the upper triangle of the covariance matrix to perform the Cholesky decomposition.

\section*{Usage}

ExponentialUpper(distMat, range = 1, alpha = 1/range, theta = NULL)

\section*{Arguments}
\begin{tabular}{ll} 
distMat & The distance matrix to evaluate the covariance over. \\
range & \begin{tabular}{l} 
Range parameter default is one. Note that the scale can also be specified through \\
the "aRange" scaling argument used in fields covariance functions)
\end{tabular} \\
alpha & \(1 /\) range \\
theta & Also the range parameter.
\end{tabular}

\section*{Value}

The covariance matrix, where only the upper triangle is calculated.

\section*{Author(s)}

John Paige

\section*{See Also}

Exponential

\section*{Examples}
```

set.seed(123)
\#a distance matrix
coords = matrix(runif(10), ncol=2)
distMat = rdist(coords)
\#compute covariance matrix, but only over the upper triangle
upperCov = ExponentialUpper(distMat, range=.1)
print(distMat)
print(upperCov)

```
cover.design Computes Space-Filling "Coverage" designs using Swapping Algo-
rithm

\section*{Description}

Finds the set of points on a discrete grid (Candidate Set) which minimize a geometric space-filling criterion. The strength of this method is that the candidate set can satisfy whatever constraints are important for the problem.

\section*{Usage}
cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL,
            scale.type = "unscaled", R.center, R.scale, \(P=-20, Q=20\),
            start \(=\) NULL, DIST \(=\) NULL, return.grid \(=\) TRUE, return.transform \(=\)
TRUE, max.loop=20, verbose=FALSE)

\section*{Arguments}

R
nd \(\quad\) Number of points to add to the design. If points exist and are to remain in the design (see "fixed" option), nd is the number of points to add. If no points are fixed, nd is the design size.
nruns The number of random starts to be optimized. Uses random starts unless "start" is specified. If nruns is great than 1 , the final results are the minimum.
nn Logical value specifying whether or not to consider only nearest neighbors in the swapping algorithm. When \(\mathrm{nn}=\mathrm{FALSE}\), then the swapping algorithm will consider all points in the candidate space. When nn=TRUE, then the swapping algorithm will consider only the num.nn closest points for possible swapping. The default is to use nearest neighbors only ( \(\mathrm{nn}=\) TRUE).
num.nn Number of nearest-neighbors to search over. The default number is 100. If \(\mathrm{nn}=\mathrm{F}\) then this argument will be ignore.
\begin{tabular}{ll} 
fixed & A matrix or vector specifying points to be forced into the experimental design. \\
If fixed is a matrix, it gives coordinates of the fixed points in the design. In this \\
case fixed must be a subset of R. If fixed is a vector, then fixed gives the row \\
numbers from the candidate matrix R that identify the fixed points. The number \\
of points to be generated, nd, is in addition to the number of points specified by \\
fixed. \\
A character string that tells how to scale the candidate matrix, R, before calcu- \\
lating distances. The default is "unscaled", no transformation is done. Another \\
option is "range" in which case variables are scaled to a [0,1] range before ap- \\
plying any distance functions. Use "unscaled" when all of the columns of R are \\
commensurate; for example, when R gives x and y in spatial coordinates. When \\
the columns of R are not in the same units, then it is generally thought that an ap- \\
propriate choice of scaling will provide a better design. This would be the case, \\
for example, for a typical process optimization. Other choices for scale.type are \\
"unit.sd", which scales all columns of R to have 0 mean and unit standard devia- \\
tion, and "user", which allows a user specified scaling (see R.center and R.scale \\
arguments). \\
R.center & A vector giving the centering values if scale.type=user. \\
R.scale & A vector giving the scale values if scale.type=user. \\
P & The "p" exponent of the coverage criterion (see below). It affects how the dis- \\
tance from a point x to a set of design points D is calculated. P=1 gives average \\
distance. P=-1 gives harmonic mean distance. P=-Inf would give minimum dis- \\
tance (not available as a value). As P gets large and negative, points will tend to
\end{tabular}

\section*{Details}

OTHER DISTANCE FUNCTIONS: You can supply an R/S-function to be used as the distance metric. The expected calling sequence for this distance function is function \((\mathrm{X} 1, \mathrm{X} 2)\{\ldots\).\(\} where \mathrm{X} 1\) and X2 are matrices with coordinates as the rows. The returned value of this function should be the pairwise distance matrix. If nrow ( X 1\()=\mathrm{m}\) and nrow \((\mathrm{X} 2)=\mathrm{n}\) then the function should return an m by n matrix of all distances between these two sets of points. See the example for Manhattan distance below.

The candidate set and DIST function can be flexible and the last example below using sample correlation matrices is an example.

COVERAGE CRITERION: For nd design points in the set D and nc candidate points ci in the set C, the coverage criteria is defined as:
\(\mathrm{M}(\mathrm{D}, \mathrm{C})=\left[\operatorname{sum}(\mathrm{ci}\right.\) in C\()\left[\operatorname{sum}(\mathrm{di} \text { in } \mathrm{D})\left(\operatorname{dist}(\operatorname{di}, \mathrm{ci})^{* *}\right]^{* *}(\mathrm{Q} / \mathrm{P})\right]^{* *}(1 / \mathrm{Q})\)
Where \(P\), less than 0 , and Q , greater than 0 , are parameters. The algorithm used in "cover.design" to find the set of nd points in \(C\) that minimize this criterion is an iterative swapping algorithm which will be described briefly. The resulting design is referred to as a "coverage design" from among the class of space-filling designs. If fixed points are specified they are simply fixed in the design set and are not allowed to be swapped out.

ALGORITHM: An initial set of nd points is chosen randomly if no starting configuration is provided. The nc x nd distance matrix between the points in C and the points in D is computed, and raised to the power P. The "row sums" of this matrix are computed. Denote these as rs.i and the vector of row sums as rs. Using rs, \(\mathrm{M}(\mathrm{D}, \mathrm{C})\) is computed as:
\(\left[\text { sum } \mathrm{i}(\mathrm{rs.i})^{* *}(\mathrm{Q} / \mathrm{P})\right]^{* *}(1 / \mathrm{Q})\)
Note that if point d.i is "swapped" for point c.j, one must only recompute 1 column of the original distance matrix, and 1 row. The row elements not in the ith column will be the same for all j and so only need computing when the first swapping occurs for each d.i . Denote the sum of these off-i elements as "newrow(i)". The index is i here since this is the same for all rows ( \(\mathrm{j}=1, \ldots \mathrm{nc}\) ). Thus, for each swap, the row sums vector is updated as
rs(new) \(=\operatorname{rs}(\) old \()-\) column \((i, o l d)+\operatorname{column}(i\), new \()\)
And the jth element of rs(new) is replaced by:
rs(new) \([\mathrm{j}]=\operatorname{column}(\mathrm{i}\), new \()[\mathrm{k}]+\) newrow \((\mathrm{i})\)
Finally, \(\mathrm{M}(\mathrm{D}, \mathrm{C})\) is computed for this swap of the ith design point for the jth candidate point using [2]. The point in \(C\) that when swapped produces the minimum value of \(M(D, C)\) replaces d.i. This is done for all nd points in the design, and is iterated until \(M(D, C)\) does not change. When the nearest neighbor option is selected, then the points considered for swapping are limited to the num.nn nearest neighbors of the current design point.

\section*{STABILITY}

The algorithm described above is guaranteed to converge. However, upon convergence, the solution is sensitive to the initial configuration of points. Thus, it is recommended that multiple optimizations be done (i.e. set nruns greater than 1 ). Also, the quality of the solution depends on the density of the points on the region. At the same time, for large regions, optimization can be computationally prohibitive unless the nearest neighbor option is employed.

\section*{Value}

Returns a design object of class spatialDesign. Subscripting this object has the same effect as subscripting the first component (the design). The returned list has the following components:
\begin{tabular}{|c|c|}
\hline design & The best design in the form of a matrix. \\
\hline best.id & Row numbers of the final design from the original candidate matrix, R. \\
\hline fixed & Row numbers of the fixed points from the original candidate matrix, R. \\
\hline opt.crit & Value of the optimality criterion for the final design. \\
\hline start.design & Row numbers of the starting design from the original candidate matrix, R. \\
\hline start.crit & Value of the optimality criterion for the starting design. \\
\hline history & The swapping history and corresponding values of the optimality criterion for the best design. \\
\hline other.designs & The designs other than the best design generated when nruns is greater than 1. \\
\hline other.crit & The optimality criteria for the other designs when nrun is greate than 1. \\
\hline DIST & The distance function used in calculating the design criterion. \\
\hline nn & Logical value for nearest-neighbor search or not. \\
\hline num.nn & The number of nearest neighbor set. \\
\hline grid & The matrix R is returned if the argument return.grid=T. \\
\hline transform & The type of transformation used in scaling the data and the values of the centering and scaling constants if the argument return.transform=T. \\
\hline call & The calling sequence. \\
\hline P & The parameter value for calculating criterion. \\
\hline Q & The parameter value for calculating criterion. \\
\hline nhist & The number of swaps performed. \\
\hline nloop & The number of outer loops required to reach convergence if nloop is less the max.loop. \\
\hline minimax.crit & The minimax design criterion using DIST. \\
\hline max.loop & The maximum number of outer loops. \\
\hline
\end{tabular}

\section*{References}

Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26, 131-148. SAS/QC Software. Volume 2: Usage and Reference. Version 6. First Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus Drive,

\section*{See Also}
rdist, rdist.earth

\section*{Examples}
```


first generate candidate set

set.seed(123) \# setting seed so that you get the same thing I do!
test.df <- matrix(runif(600), ncol=3)
test1.des<-cover.design(R=test.df,nd=10)
summary(test1.des)
plot(test1.des)

Not run:

candidates<- make.surface.grid(list(seq(0,5,,20), seq(0,5,,20)))
out<- cover.design(candidates, 15)

find 10 more points keeping this original design fixed

out3<-cover.design(candidates, 10,fixed=out\$best.id)

see what happened

plot(candidates[,1:2], pch=".")
points(out$design, pch="x")
points(out3$design, pch="o")

here is a strange graph illustrating the swapping history for the

the first design. Arrows show the swap done

at each pass through the design.

h<- out$history
cd<- candidates
plot(cd[,1:2], pch=".")
points(out$design, pch="O", col=2)
points(out\$start.design, pch="x", col=5)
arrows(
cd[h[,2],1],
cd[h[,2], 2],
cd[h[,3],1],
cd[h[, 3], 2], length=.1)
text(cd[h[,2],1],
cd[h[,2],2], h[,1], cex=1.0)

try this out using "Manhattan distance"

(distance following a grid of city streets)

dist.man<- function(x1,x2) {
d<- ncol(x1)

```
```

 temp<- abs(outer(x1[,1], x2[,1],'-'))
 for (k in 2:d){
 temp<- temp+abs(outer(x1[,k], x2[,k],'-'))
 }
temp }

use the design from the Euclidean distance as the starting

\#configuration.
cover.design(candidates, 15, DIST=dist.man, start= out3\$best.id)-> out2

this takes a while ...

plot(out2$design)
points(out3$design, col=2)

find a design on the sphere

candidates<- make.surface.grid(list(x=seq(-180,180, ,20), y= seq(-85,
85, ,20)))
out4<-cover.design(candidates, 15, DIST=rdist.earth)

this takes a while

plot(candidates, pch="+", cex=2)
points(out4\$design, pch="o", cex=2, col="blue")

covering based on correlation for 153 ozone stations

data(ozone2)
cor.mat<-cor(ozone2\$y, use="pairwise")
cor.dist<- function(x1,x2)
{matrix(1-cor.mat[x1,x2], ncol=length(x2))}

find 25 points out of the 153

here the "locations" are just the index but the distance is

determined by the correlation function.

out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled")
plot(ozone2$lon.lat, pch=".")
points(ozone2$lon.lat[out5\$best.id,],pch="0", col=4)

this seems a bit strange probably due some funny correlation values

reset panel

set.panel(1,1)

End(Not run)

```
drape.plot Perspective plot draped with colors in the facets.

\section*{Description}

Function to produce the usual wireframe perspective plot with the facets being filled with different colors. By default the colors are assigned from a color bar based on the z values. drape. color can be used to create a color matrix different from the z matrix used for the wireframe.

\section*{Usage}
drape.plot(x, y, z, z2=NULL, col = tim.colors(64), zlim = range(z, na.rm=TRUE), zlim2 = NULL, add.legend \(=\) TRUE, horizontal \(=\) TRUE, theta \(=30\), phi \(=20\), breaks=NA, ...)
drape.color(z, col = tim.colors(64), zlim = NULL,breaks, transparent.color = "white", midpoint=TRUE, eps=1e-8)

\section*{Arguments}
\(\mathrm{x} \quad\) grid values for x coordinate (or if x is a list the components x y and z are used.)
\(y \quad\) grid values for \(y\) coordinate
\(z \quad\) A matrix of \(z\) heights
z2 A matrix of z values to use for coloring facets. If NULL then z is used for this purpose
col A color table for the z values that will be used for draping
zlim the \(z\) limits for \(z\) these are used to set up the scale of the persp plot. This defaults to range \((\mathrm{z}\), na.rm=TRUE) as in persp
zlim2 the \(z\) limits for \(z 2\) these are used to set up the color scale. This defaults to
add. legend If true a color strip is added as a legend.
horizontal If true color strip is put at bottom of the plot, if FALSE it is placed vertically on the right side.
theta \(\quad x-y\) rotation angle for perspective.
phi \(\quad z\)-angle for perspective.
transparent.color
Color to use when given an NA in \(z\)
midpoint If TRUE color scale is formed for midpoints of z obtained by averaging 4 corners.
breaks Numerical divisions for the color scale. If the default (NA) is N+1 equally spaced points in the range zlim where N is the number of colors in col. This is the argument has the same effect as used in the image and image.plot functions.
eps Amount to inflate the range (1+/- eps) to inlude points on break endpoints.
... Other arguments that will be passed to the persp function. The most common is zlim the \(z\) limits for the \(3-\mathrm{d}\) plot and also the limits to set up the color scale. The default for zlim is the range of \(z\).

\section*{Details}

The legend strip may obscure part of the plot. If so, add this as another step using image.plot.
When using drape.color just drop the results into the col argument of persp. Given this function there are no surprises how the higher level drape.plot works: it calls drape.color followed by persp and finally the legend strip is added with image.plot.
The color scales essentially default to the ranges of the \(z\) values. However, by specifying zlim and/or zlim 2 one has more control of how the perspective plot is scaled and the limits of the color scale used to fill the facets. The color assignments are done by dividing up the zlim 2 interval into equally spaced bins and adding a very small inflation to these limits. The mean \(z 2\) values, comprising an \((\mathrm{M}-1) \mathrm{X}(\mathrm{N}-1)\) matrix, for each facet are discretized to the bins. The bin numbers then become the indices used for the color scale. If zlim2 is not specified it is the range of the z 2 matrix is used to generate the ranges of the color bar. Note that this may be different than the range of the mean facets. If z 2 is not passed then z is used in its place and in this case the zlim2 or zlim argument can used to define the color scale.

This kind of plot is also supported through the wireframe function in the lattice package. The advantage of the fields version is that it uses the standard R graphics functions - and is written in R code.
The drape plot is also drawn by the fields surface function with type=" \(P\) ".

\section*{Value}
drape.plot If an assignment is made the projection matrix from persp is returned. This information can be used to add additional 3-d features to the plot. See the persp help file for an example how to add additional points and lines using the trans3d function and also the example below.
drape. color If \(\operatorname{dim}(z)=M, N\) this function returns a list with components:
color.index An (M-1)X(N-1) matrix (midpoint= TRUE) or MXN matrx (midpoint=FALSE) where each element is a text string specifying the color.
breaks The breaks used to assign the numerical values in z to color categories.

\section*{Author(s)}
D. Nychka

\section*{See Also}
image.plot, quilt.plot, persp, plot.surface, surface, lattice, trans3d

\section*{Examples}
```


an obvious choice:

Dr. R's favorite New Zealand Volcano!

data(volcano)

```
```

M<- nrow(volcano)
N<- ncol(volcano)
x<- seq(0,1,,M)
y<- seq(0,1,,N)
pm<- drape.plot(x,y,volcano, col=terrain.colors(128))

use different range for color scale and persp plot

setting of border omits the mesh lines

 drape.plot(x,y,volcano, col=topo.colors(128),zlim=c(0,300),
 zlim2=c(120,200), border=NA)

note tranparent color for facets outside the zlim2 range

\#The projection has been saved in pm

add a point marking the summit

zsummit <- max(volcano)
ix<- row(volcano)[volcano==zsummit]
iy <- col(volcano)[volcano==zsummit]
uv <- trans3d(x[ix], y[iy],zsummit,pm)
points(uv, col="magenta", pch="+", cex=2)

overlay volcano wireframe with gradient in x direction.

dz<- (
volcano[1:(M-1), 1:(N-1)] - volcano[2:(M), 1:(N-1)] +
volcano[1:(M-1), 2:(N)] - volcano[2:(M), 2:(N)]
)/2

convert dz to a color scale:

 zlim<- range(c(dz), na.rm=TRUE)
 zcol<-drape.color(dz, zlim =zlim, col = viridis(64))$color.index

with these colors

 persp(volcano, col=zcol, theta=30, phi=20,
 border=NA, expand=.3)

add legend using image.plot function

 image.plot(zlim=zlim, legend.only =TRUE, horizontal =TRUE,
 col= viridis(64))
    ```
envelopePlot Add a shaded the region between two functions to an existing plot

\section*{Description}

This function shades the region vertically between two functions, specified as pairs of x and y vectors, and draws the functions in a darker shade. More formally, it shades all points ( \(\mathrm{x}, \mathrm{y}\) ) such
that \(\mathrm{f} 1(\mathrm{x})<\mathrm{y}<\mathrm{f} 2(\mathrm{x})\) or \(\mathrm{f} 2(\mathrm{x})<\mathrm{y}<\mathrm{f} 1(\mathrm{x})\). When both functions have the same group of x values, the \(x\) values only need to be set once but \(y 2\) needs to be passed in by name. If the two functions intersect, the vertical space between the functions will be shaded on both sides, as implied in the definition above.

\section*{Usage}
```

envelopePlot(x1, y1, x2 = x1, y2,
col ="thistle1" , lineCol = "thistle3", ...)

```

\section*{Arguments}
\(x 1\) The x coordinates for the first function (or possibly both functions).
\(\mathrm{y} 1 \quad\) The y coordinates for the first function.
\(x 2\) The x coordinates for the second function.
y2 The \(y\) coordinates for the second function.
col The color to make the filling between the functions.
lineCol The color to make the lines representing the functions.
... Additional arguments to the base R function polygon

\section*{Author(s)}

Matt Iverson

\section*{Examples}
```

x <- seq(0, 2*pi,, 100)
y1<- cos(x)
y2 <- sin(x)
plot(x, y1, type="l")
envelopePlot(x, y1, y2=y2)
x1 <- c(0, 0.5, 1)
y1 <- c(0, 2, 1)
x2 <- c(0, 1)
y2 <- c(-1, 0)
plot(x1, y1, type="l", ylim=c(-1, 2))
envelopePlot(x1, y1, x2, y2)

```
Exponential, Matern, Radial Basis

\section*{Description}

Functional form of covariance function assuming the argument is a distance between locations. As they are defined here, they are in fact correlation functions. To set the marginal variance (sill) parameter, use the sigma argument in mKrig or Krig. To set the nugget variance, use the tau2 argument in mKrig or Krig.

\section*{Usage}
```

Exponential(d, aRange = 1, phi = 1, theta = NULL, range = NULL)
Matern(d , range = 1,alpha=1/range, smoothness = 0.5,
nu= smoothness, phi=1.0)
Matern.cor.to.range(d, nu, cor.target=.5, guess=NULL,...)
RadialBasis(d,M,dimension, derivative = 0)

```

\section*{Arguments}
\begin{tabular}{ll} 
aRange & \begin{tabular}{l} 
The usual range parameter for a covariance function. We use this names to be \\
distinct from the "range"" function and the generic parameter name "theta"."
\end{tabular} \\
d & \begin{tabular}{l} 
Vector of distances or for Matern. cor. to. range just a single distance. \\
Range parameter default is one. Note that the scale can also be specified through \\
the "aRange" scaling argument used in fields covariance functions)
\end{tabular} \\
range & 1/range \\
alpha & Same as alpha \\
theta & \begin{tabular}{l} 
This parameter option is added to be compatible with older versions of fields \\
and refers to the marginal variance of the process. e.g. phi* exp ( -d/aRange) \\
is the exponential covariance for points separated by distance and range aRange. \\
phi
\end{tabular} \\
Throughout fields this parameter is equivalent to sigma and it recommended that \\
sigma be used. If one is simulating random fields. See the help on sim. rf for \\
more details.
\end{tabular}

\section*{Details}

Exponential:
\(\exp (-d / a\) Range \()\)

Matern:
con*(d**nu) * besselK(d, nu )
Matern covariance function transcribed from Stein's book page 31 nu==smoothness, alpha \(==\) 1/range
GeoR parameters map to kappa==smoothness and \(\mathrm{phi}==\) range check for negative distances
con is a constant that normalizes the expression to be 1.0 when \(\mathrm{d}=0\).
Matern.cor.to.range: This function is useful to find Matern covariance parameters that are comparable for different smoothness parameters. Given a distance d, smoothness nu, target correlation cor. target and range aRange, this function determines numerically the value of aRange so that
Matern( d, range=aRange, nu=nu) == cor.target
See the example for how this might be used.
Radial basis functions:
\[
\begin{array}{lll}
\text { C.m,d } & r * *(2 m-d) & d-\text { odd } \\
\text { C.m,d } & r * *(2 m-d) \ln (r) & d-\text { even }
\end{array}
\]
where C.m.d is a constant based on spline theory and \(r\) is the radial distance between points. See radbas. constant for the computation of the constant.

\section*{Value}

For the covariance functions: a vector of covariances.
For Matern.cor.to.range: the value of the range parameter.

\section*{Author(s)}

Doug Nychka

\section*{References}

Stein, M.L. (1999) Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.

\section*{See Also}
stationary.cov, stationary.image.cov, Wendland,stationary.taper.cov rad.cov

\section*{Examples}
```


a Matern correlation function

 d<- seq(0,10,,200)
 y<- Matern(d, range=1.5, smoothness=1.0)
 plot(d,y, type="l")

Several Materns of different smoothness with a similar correlation

range

```
```


find ranges for nu = .5, 1.0 and 2.0

where the correlation drops to . 1 at a distance of 10 units.

r1<- Matern.cor.to.range(10, nu=.5, cor.target=.1)
r2<- Matern.cor.to.range(10, nu=1.0, cor.target=.1)
r3<- Matern.cor.to.range(10, nu=2.0, cor.target=.1)

note that these equivalent ranges

with respect to this correlation length are quite different

due the different smoothness parameters.

d<- seq(0, 15, , 200)
y<- cbind(Matern(d, range=r1, nu=.5),
Matern(d, range=r2, nu=1.0),
Matern(d, range=r3, nu=2.0))
matplot(d, y, type="l", lty=1, lwd=2)
xline(10)
yline(.1)

```
fields fields - tools for spatial data

\section*{Description}
fields is a collection of functions for curve and function fitting with an emphasis on spatial data and spatial statistics. It was developed over \(20+\) years to provide easy to use but sophisticated tools for analyzing spatial data, particularly that encountered in the environmental sciences. For the impatient users, jump to the examples below to see how easy this is use. Please send bugs and questions to Doug Nychka, nychka@mines.edu. Positive comments are also welcome!
The major methods implemented include cubic and thin plate splines, universal Kriging and Kriging for large data sets. A more modern framework for Kriging is spatial process estimation with covariance parameters determined by maximum likelihood and the uncertainty derived from assumptions of a Gaussian process. Throughout we try to include reasonable defaults in functions that reflect our experience with analyzing spatial data. For example, the Matern covariance function is the default choice for the main spatial method.
A key feature of this package is any covariance function implemented in R code can be used for spatial prediction through the spatial functions. Another important feature is that fields will take advantage of compactly supported covariance functions in a seamless way through the spam package. See library (help=fields) for a listing of all the fields contents. We also recommend the thoughtful vignette created by Ashton Weins, Mitchell Krock, and Emma Lilly (fieldsVignette.pdf) in the fields github repository.
fields strives to have readable and tutorial code. Take a look at the source code for mKrig to see how things work "under the hood". E.g. how a linear algebra computation is overloaded to handle sparse matrices and how an output object is built up sequentially throughout a computation.
The fields source code is liberally commented. Unfortunately on loading this package, R will strip comments from the source for efficiency. You can go to CRAN fields page to download the
latest "tarball" ( aka Package Source) and unzip to get code with comments. We also keep the most recent version of this package at the fields github repository. and for commented source go to the the subdirectory fields/R. This may be a more recent version, however, than what is posted to CRAN.

\section*{Details}

\section*{Major methods}
- spatialProcess An easy to use method that fits a spatial process model (e.g. Kriging) but also estimates the key spatial parameters: nugget variance, sill variance and range parameter by maximum likelihood. The default covariance model is a Matern covariance. This function and related functions called by this are the core methods in fields and have much flexibility. spatialProcess allows one to supply a covariance function that is written in native R code. See (stationary.cov) that includes several families of covariances including the Matern and several distance metrics including great circle distance. sim. spatialProcess and simLocal. spatialProcess provide "one liners" for conditional simulation of the fitted surface.
- Tps Thin Plate spline regression including GCV and REML estimates for the smoothing parameter. For moderate size data sets as a first look we use Tps all the time. See also fastTps for an approximate method to handle very large numbers of spatial locations. Also see the help file for spatialProcess to see how to fit a thin plate plate using the more extensive set of spatial stats functions.
- sreg, splint Fast 1-D cubic smoothing splines and interpolating splines, a workhorse algorithm for more EDA and more complicated methods.
- mKrig (micro Krig) Efficient Universal Kriging and Gaussian process function, that can take advantage of sparse covariance functions and is the core algorithm called by optimization functions and for spatial predictio.
- QTps A easy to use extension of thin plate splines for quantile and robust surface fitting.
- mKrigMLEGrid and mKrigMLEJoint for maximum likelihood estimates of covariance parameters. These functions also handle replicate fields, assumed to be independent realizations, at the same locations and can also take any covariate function function written in R following the fields format

\section*{Other noteworthy functions}
- vgram and vgram.matrix find variograms for spatial data (and with temporal replications.
- cover. design Generates space-filling designs where the distance function is expresed in R code.
- There are many convenient functions for working with image data and rationally (well, maybe reasonably) creating and placing a color scale on plots. This suite of tools are for the users who want to extend the "base R grahics" and retain control over details. See the last amusing example in help(imagePlot) for an example. as.image, imagePlot, bubblePlot, drape.plot, quilt. plot add.image, crop.image, half.image, average.image, designer.colors, color.scale, in. poly See also grid.list for how fields works with grids and US and world for adding a map quickly.

\section*{Generic functions that support the methods}
plot-diagnostic plots of fit
summary- statistical summary of fit
print- shorter version of summary
surface- graphical display of fitted surface
predict- evaluation fit at arbitrary points
predictSE- prediction standard errors at arbitrary points.
sim.rf-Simulate a random fields on a 2 -d grid.

\section*{Getting Started}

Try some of the examples from help files for spatialProcess or Tps.

\section*{Some fields datasets}
- CO2 Global satelite CO 2 concentrations (simulated field)
- COmonthlymet Monthly mean temperatures and precip for Colorado
- glacier An elevation dataset of a glacier also used by the applied math community to test interpolation methods.
- lennon Image of John Lennon
- NorthAmericanRainfall 50+ year average and trend for summer rainfall at 1700+ stations.
- ozone2 Daily max 8 hour ozone concentrations for the US midwest for summer 1987.
- PRISMelevation Digital elevations for the continental US at approximately 4 km resolution
- rat. diet Small paired study on rat food intake over time.
- RCMexample Regional climate model output
- RMelevation Digital elevations for the Rocky Mountain Empire
- WorldBankCO2 Demographic and carbon emission data for 75 countries and for 1999.

\section*{DISCLAIMER:}

The authors can not guarantee the correctness of any function or program in this package.

\section*{Examples}
```


some air quality data, daily surface ozone measurements for

the Midwest:

data(ozone2)
s<-ozone2$lon.lat
y<- ozone2$y[16,] \# June 18, 1987

quick plot of spatial data with map

bubblePlot(s,y)
US(add=TRUE) \# add US map

fitting a thin plate spline surface (always a good place to

start). Here the default smoothing (aka lambda) found by cross-validation

 fit0<- Tps(s,y)
    ```
```


fits a GCV thin plate smoothing spline surface to ozone measurements.

Hey, it does not get any easier than this!

 summary(fit0) #diagnostic summary of the fit
 set.panel(2,2)
 plot(fit0) # four diagnostic plots of fit and residuals.
 # quick plot of predicted surface
 set.panel()
 surface(fit0) # contour/image plot of the fitted surface

see also predictSurface for more control over the evaluation grid

 US(add=TRUE, col="magenta", lwd=2) # US map overlaid
 title("Daily max 8 hour ozone in PPB, June 18th, 1987")
 ####
 fit2<- spatialProcess(s,y)
 # a "Kriging" model. The covariance defaults to a Matern
 # with smoothness 1.0.
 # the nugget, sill and range parameters are found by maximum likelihood
 # summary, plot, and surface also work for \code{fit2} !
 surface(fit2) # contour/image plot of the fitted surface
 US(add=TRUE, col="magenta", lwd=2) # US map overlaid
 title("Daily max 8 hour ozone in PPB, June 18th, 1987")

Not run:

And 20 approximate conditional draws of the spatial field on a grid

with uncertainty in the 120PPB contour

 look<- simLocal.spatialProcess(fit2, M=20)
 for(k in 1:20){
 contour(look$x, look$y, look$z[,,k], add=TRUE, level=c(120),
 col="white", drawlabels=FALSE)
 }

End(Not run)

```
fields testing scripts

\section*{Description}

Some of the basic methods in fields can be tested by directly implementing the linear algebra using matrix expressions and other functions can be cross checked within fields. These comparisons are done in the the R source code test files in the tests subdirectory of fields. The function test.for.zero is useful for comparing the tests in a meaninful and documented way.

\section*{Usage}
test.for.zero( xtest, xtrue, tol= 1.0e-8, relative=TRUE, tag=NULL)

\section*{Arguments}
xtest Vector of target values
xtrue Vector of reference values
tol Tolerance to judge whether the test passes.
relative If true a relative error comparison is used. (See details below.)
tag A text string to be printed out with the test results as a reference

\section*{Details}

IMPORTANT: If the R object test. for. zero. flag exists with any value (e.g. test. for. zero.flag \(<-1\) ) then when the test fails this function will also generate an error in addition to printing a message. This option is added to insure that any test scripts will generate an error when any individual test fails.

An example:
```

> test.for.zero(1:10, 1:10 + 1e-10, tag="First test")
Testing: First test
PASSED test at tolerance 1e-08
> test.for.zero(1:10, 1:10 + 1e-10, tag="First test", tol=1e-12)
Testing: First test
FAILED test value = 1.818182e-10 at tolerance 1e-12
> test.for.zero.flag <- 1
Testing: First test
FAILED test value = 1.818182e-10 at tolerance 1e-12
Error in test.for.zero(1:10, 1:10 + 1e-10, tag = "First test", tol = 1e-12) :

```

The scripts in the tests subdirectory are
Krig.test.R: Tests basic parts of the Krig and Tps functions including replicated and weighted observations.

Krig.se.test.R: Tests computations of standard errors for the Kriging estimate.
Krig.se.grid.test.R Tests approximate standard errors for the Krig function found by Monte Carlo conditional simulation.
Krig.test.W.R Tests predictions and A matrix when an off diagonal observation weight matrix is used.
Krig.se.W.R Tests standard errors when an off diagonal observation weight matrix is used.
spam.test.R Tests sparse matrix formats and linear algebra.
Wend.test.R Tests form for Wendland covariance family and its use of sparse matrix formats.
diag.multiply.test.R Tests special (efficient) version of matrix multiply for diagonal matrices.
evlpoly.test.R Tests evaluation of univariate and multivariate polynomial evaluation.
mKrig.test.R Tests the micro Krig function with and without sparse matrix methods.
To run the tests just attach the fields library and source the testing file. In the fields source code these are in a subdirectory "tests". Compare the output to the "XXX.Rout.save" text file.
test.for.zero is used to print out the result for each individual comparison. Failed tests are potentially bad and are reported with a string beginning
"FAILED test value = ... "
If the object test.for.zero.flag exists then an error is also generated when the test fails.
FORM OF COMPARISON: The actual test done is the sum of absolute differnces:
test value \(=\operatorname{sum}(\operatorname{abs}(c(x\) test \()-c(x\) true \())) /\) denom
Where denom is either mean ( abs \((c(x t r u e))\) ) for relative error or 1.0 otherwise.
Note the use of "c" here to stack any structure in xtest and xtrue into a vector.
fields-stuff Fields supporting functions

\section*{Description}

Some supporting functions that are internal to fields top level methods. Variants of these might be found in the R base but these have been written for cleaner code or efficiency.

\section*{Usage}
fields.duplicated.matrix(mat, digits = 8)
fields.mkpoly(x, m = 2, tag = "term")
fields.derivative.poly(x, m,dcoef)
fields.evlpoly( x, coef)
fields.evlpoly2( x, coef, ptab)

\section*{Arguments}
\begin{tabular}{ll} 
mat & Arbitrary matrix for examining rows \\
digits & \begin{tabular}{l} 
Number of significant digits to use for comparing elements to determine duplci- \\
ate values.
\end{tabular} \\
\(x\) & Arbitrary matrix where rows are components of a multidimensional vector \\
\(m\) & The null space degree - results in a polynomial of degree \((\mathrm{m}-1)\) \\
dcoef & Coefficients of a multidimensional polynomial \\
coef & Polynomial coefficients.
\end{tabular}
\[
\begin{array}{ll}
\text { ptab } & \text { Table of powers of different polnomial terms. } \\
\text { tag } & \text { mkpoly fills in as columns names the higher order terms of the polynomial terms. } \\
\text { The tag is the text string prefix for thes column names and the powers of the } \\
\text { individual variables are appended. Default is just "terms". }
\end{array}
\]

\section*{Details}
fields.duplicated finds duplicate rows in a matrix. The digits arguments is the number of digits that are considered in the comparison. The returned value is an array of integers from \(1: \mathrm{M}\) where M is the number of unique rows and duplicate rows are referenced in the same order that they appear as the rows of mat.
fields.mkpoly computes the complete matrix of all monomial terms up to degree (m-1). Each row of \(x\) is are the componets of a vector. (The fields function mkpoly returns the number of these terms.) In 2 dimensions with \(m=3\) there 6 polynomial terms up to quadratic ( \(3-1=2\) ) order and will be returned as the matrix:
cbind ( \(1, \mathrm{x}[, 1], \mathrm{x}[, 2], \mathrm{x}[, 1]^{* *} 2, \mathrm{x}[, 1]^{*} \mathrm{x}[, 2], \mathrm{x}[, 2]^{* *} 2\) )
This function is used for the fixed effects polynomial or spatial drift used in spatial estimating functions Krig, Tps and mKrig. The matrix ptab is a table of the powers in each term for each variable and is included as an attribute to the matrix returned by this function. See the attr function for extracting an attribute from an object.
ptab for the example above is
\begin{tabular}{lll}
\multicolumn{3}{c}{\([, 1][, 2]\)} \\
{\([1]\),} & 0 & 0 \\
{\([2]\),} & 1 & 0 \\
{\([3]\),} & 0 & 1 \\
{\([4]\),} & 2 & 0 \\
{\([5]\),} & 1 & 1 \\
{\([6]\),} & 0 & 2
\end{tabular}

This information is used in finding derivatives of the polynomial is also used to create column names for the terms that are of higher order than linear.
fields.deriviative.poly finds the partial derivative matrix of a multidimensional polynomial of degree ( \(\mathrm{m}-1\) ) at different vector values and with coefficients dcoef. This function has been orgainzed to be a clean utility for the predicting the derivative of the estimated function from Krig or mKrig. Within the fields context the polynomial itself would be evaluated as fields.mkpoly( \(\mathrm{x}, \mathrm{m}) \% * \%\) dcoef. If x has d columns ( also the dimension of the polynomial) and n rows the partial derivatives of this polynomial at the locations \(x\) can be organized in a \(n X d\) matrix. This is the object returned by ths function.
evlpoly and evlpoly2 are FORTRAN based functions for evaluating univariate polynomials and multivariate polynomials. The table of powers (ptab) needed for evlpoly2 is the same format as that returned my the fields.mkpoly function.

\section*{Author(s)}

Doug Nychka
fields.grid
Using MKrig for predicting on a grid.

\section*{Description}

This is an extended example for using the sparse/fast interpolation methods in mKrig to evaluate a Kriging estimate on a large grid.

\section*{Details}
mKrig is a flexible function for surface fitting using a spatial process model. It can also exploit sparse matrix methods forlarge data sets by using a compactly supported covariance. The example below shows how ot evaluate a solution on a big grid. (Thanks to Jan Klennin for this example.)

\section*{Examples}
```

x<- RMprecip$x
y<- RMprecip$y
Tps(x,y)-> obj

make up an 80X80 grid that has ranges of observations

use same coordinate names as the x matrix

glist<- fields.x.to.grid(x, nx=80, ny=80) \# this is a cute way to get a default grid that covers x

convert grid list to actual x and y values (try plot(Bigx, pch="."))

 make.surface.grid(glist)-> Bigx

include actual x locations along with grid.

 Bigx<- rbind(x, Bigx)

evaluate the surface on this set of points (exactly)

 predict(obj, x= Bigx)-> Bigy

set the range for the compact covariance function

this will involve less than 20 nearest neighbors that have

nonzero covariance

 V<- diag(c(2.5*(glist$lon[2]-glist$lon[1]),
 2.5*(glist$lat[2]-glist$lat[1])))

Not run:

this is an interplotation of the values using a compact

but thin plate spline like covariance.

 mKrig(Bigx,Bigy, cov.function="wendland.cov",k=4, V=V,
 lambda=0)->out2

the big evaluation this takes about 45 seconds on a Mac G4 latop

 predictSurface(out2, nx=400, ny=400)-> look
    ```
```


End(Not run)

the nice surface

Not run:

 surface(look)
 US(add=TRUE, col="white")

End(Not run)

```
fields.hints fields-graphics hints

\section*{Description}

Here are some technical hints for assembling multiple plots with common legends or axes and setting the graphics parameters to make more readable figures. Also we an index to the defaultcolors in R graphics and setting their definitions in LaTeX. All these hints use the standard graphics environment.

\section*{Usage}
fields.style()
fields.color.picker()

\section*{Details}
fields.style is a simple function to enlarge the characters in a plot and set the colors. List this out to modify the choices.
```

\#\#Two examples of concentrating a panel of plots together

to conserve the white space.

see also the example in image.plot using split.screen.

The basic trick is to use the oma option to reserve some space around the

plots. Then unset the outer margins to use that room.

library(fields)

some hokey image data

x<- 1:20
y<- 1:15
z<- outer(x,y,"+")
zr<- range(c(z))

add common legend to 3X2 panel

```
```

par(oma=c(4,0,0,0))
set.panel(3,2)
par(mar=c(1,1,0,0))

squish plots together with just 1 space between

for (k in 1:6){
image(x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)
}
par(oma=c(0,0,0,0))
image.plot(zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

you may have to play around with legend.mar and the oma settings to

get enough space.

also add some axes on the sides. in a lattice style

note oma adds some more room at bottom.

par(oma=c(8,6,1,1))
set.panel(3,2)
par(mar=c(1,1,0,0))

for (k in 1:6){
image(x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)
box() \# box around figure

maybe draw an x axis

 if(k %in% c(5,6)){
 axis(1, cex.axis=1.5)
 mtext(line=4, side=1, "Xstuff")}

maybe draw a y axis

 if(k %in% c(1,3,5)){
 axis(2, cex.axis=1.5)
 mtext(line=4, side=2, "Ystuff")}
 }

same trick of adding a legend strip.

par(oma=c(0,0,0,0))
image.plot(zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

reset panel

set.panel()

```
```


show colors

the factory colors:

clab<- colors()
n<- length(clab)
N<- ceiling(sqrt(n))
M<- N
temp<- rep(NA,M*N)
temp[1:n] <- 1:n
z<- matrix(temp, M,N)
image(seq(.5,M+.5, ,M+1), seq(.5,N+.5, ,N+1)
, z, col=clab, axes=FALSE, xlab="", ylab="")

see the function fields.color.picker() to locate colors

dumping out colors by name for a latex document

this creates text strings that are the LaTeX color definitions

using the definecolor function.

grab all of the R default colors

clab<- colors()
for(nn in clab){
temp<- signif(col2rgb(nn)/256, 3)
cat(
"\definecolor{",
nn, "}",
"{rgb}{", temp[1],
",", temp[2],
",", temp[3],
"}", fill=TRUE , sep="")
}

this loop prints out definitions such as

\definecolor{yellowgreen}{rgb}{0.602,0.801,0.195}

having loaded the color package in LaTeX

defining this color

use the construction {\color{yellowgreen} THIS IS A COLOR}

to use this color in a talk or document.

this loop prints out all the colors in LaTeX language

as their names and can be converted to a pdf for handy reference.

```
```

sink("showcolors.tex")
clab<- colors()
for(nn in clab){
temp<- signif(col2rgb(nn)/256, 3)
cat(
"\definecolor{",
nn, "}",
"{rgb}{", temp[1],
",", temp[2],
",", temp[3],
"}", fill=TRUE , sep="")
cat(paste("{ \color{",nn,"} ", nn," \bullet
 }", sep=""),
fill=TRUE)
}
sink()

```
flame Response surface experiment ionizing a reagent

\section*{Description}

The characteristics of an ionizing flame are varied with the intent of maximizing the intensity of emitted light for lithuim in solution. Areas outside of the measurements are where the mixture may explode! Note that the optimum is close to the boundary. Source of data is from a master's level lab experiment in analytical chemistry from Chuck Boss's course at NCSU. <s-section name= "DATA DESCRIPTION" \(>\) This is list with the following components

\section*{Arguments}
x
\(x\) is a 2 column matrix with the different Fuel and oxygen flow rates for the burner.
y
\(y\) is the response. The intensity of light at a particular wavelength indicative of Lithium ions.
glacier Franke's Glacier Elevation Data

\section*{Description}

A moderate size (about 8400 locations) spatial dataset that is well-known in the applied mathematics approximation literature for testing interpolation methods.

\section*{Usage}
```

data(glacier)

```

\section*{Format}

The format of glacier is a list with two components:
loc: \(8338 \times 2\) matrix of the locations (meters??).
\(\mathbf{y}\) : A vector of elevations (meters ??).

\section*{Details}

This data set appears in papers that develop interpolation methods for scattered data and serves as an interesting bridge to the examples in applied math that develop radial basis function surface fitting. The data was originally used by R. Franke.
Unfortunately at this time we can not find any background on where these data were collected or indeed even the location of this glacier. However, it is an interesting data set in that it appears that the elevations are reported along lnes of equal elevation, i.e. contours, perhaps from a digitization of a topographic map or survey. It is important to estimate the surface in a way that the artifacts from discretization are not present. In the example below the compactly supported kernel interpolation still has some artifacts.

The glacier data set is available at this website https://oleg-davydov.de/scat_data.html
The examples below are useful for comparing different approximations to a Gaussian spatial process estimate for the elevation surface. Of course in using a stationary covariance ( e.g. the Matern or Wendland) these are also radial basis smoothing or interpolation of the data.

\section*{Examples}
```

data(glacier)

EDA for raw obs:

bubblePlot(glacier$loc, glacier$y, highlight=FALSE, size=.5)

identifying contour levels. Note this is reported at regular levels

(Every 25m ???)

table(glacier\$y)

find sigma and rho by maximum likelihood

for a fixed range

the default is the Wendland covariance with k=2

See help(Wendland)

this takes about 5 minutes

macbook pro Quad-Core Intel Core i5 8 GB

\#options(spam.nearestdistnnz=c(5e7,1e3))

```
```

\#system.time(

obj0<- fastTps(glacier$loc, glacier$y,

theta=2,

profileLambda=TRUE)

\#)

set.panel(2,2)

plot(obj0)

set.panel()

just evaluate at MLE

reset default matrix size that the spam pacakge will use.

Not run:

options(spam.nearestdistnnz=c(5e7,1e3))
system.time(obj1<-
fastTps(glacier$loc, glacier$y,
theta=2,
lambda= 7.58e-5
)
)
system.time(
look1<- predictSurface(obj1, nx=150, ny=150)
)
imagePlot(look1)
system.time(
out<- simLocal.spatialProcess(obj1, M=3, nx=150, ny=150)
)
set.panel(2,2)
imagePlot(look1)
zlim<- range(out$z, na.rm=TRUE)
for(k in 1:3){
imagePlot(outx, outy, out$z[,,k], zlim=zlim)
}

near interpolation surface using Matern smoothness . 5

 system.time(
 obj2<- spatialProcess(glacier$loc, glacier$y,
 aRange = 1.5,
 lambda = 1e-5,
 smoothness = .5)
)
 system.time(
out<- simLocal.spatialProcess(obj2, M=3, nx=150, ny=150,
fast=TRUE)
)

```
```

set.panel(2,2)
imagePlot(look1)
zlim<- range(out$z, na.rm=TRUE)
for(k in 1:3){
imagePlot(outx, outy, out$z[,,k], zlim=zlim)
}
system.time(
look2<- predictSurface.mKrig(obj2, nx=150, ny=150,
fast=TRUE, NNSize=5)
)
system.time(
look2B<- predictSurface(obj2, nx=150, ny=150,
fast=FALSE)
)
err<- c((look2$z - look2B$z)/look2B\$z)
stats(log10(abs(err)))

some error plots (percent relative error)

imagePlot(look2$x, look2$y, 100*(look2$z - look2B$z)/look2B$z)
imagePlot(look2$x, look2$y, 100*(look1$z - look2B$z)/look2B$z)

End(Not run)

```
grid list Some simple functions for working with gridded data and the grid for-
    mat (grid.list) used in fields.

\section*{Description}

The object grid.list refers to a list that contains information for evaluating a function on a 2 dimensional grid of points. If a function has more than two independent variables then one also needs to specify the constant levels for the variables that are not being varied. This format is used in several places in fields for functions that evaluate function estimates and plot surfaces. These functions provide some default conversions among information and the gird.list. The function discretize.image is a useful tool for "registering" irregular 2-d points to a grid.

\section*{Usage}
makeMultiIndex(M)
parse.grid.list( grid.list, order.variables="xy")
fields.x.to.grid(x,nx=80, ny=80, \(x y=c(1,2))\)
fields.convert.grid( midpoint.grid )
discretize.image(x, m = 64, \(\mathrm{n}=64\), grid \(=\) NULL,
```

 expand = c(1 + 1e-08, 1 + 1e-08),
 boundary.grid = FALSE, na.rm = TRUE)
    ```
make.surface.grid( grid.list)
unrollZGrid( grid.list, ZGrid)

\section*{Arguments}

M An vector of integers.
grid.list No surprises here - a grid list! These can be unequally spaced.
order.variables
If "xy" the \(x\) variable will be subsequently plotted as the horizontal variable. If " \(y x\) " the \(x\) variable will be on the vertical axis.
\(x \quad\) A matrix of independent variables such as the locations of observations given to Krig.
\(\mathrm{nx} \quad\) Number of grid points for x variable.
ny \(\quad\) Number of grid points for \(y\) variable.
\(m \quad\) Number of grid points for \(x\) variable.
\(\mathrm{n} \quad\) Number of grid points for y variable.
na.rm Remove missing values if TRUE
\(\mathrm{xy} \quad\) The column positions that locate the x and y variables for the grid.
grid A grid list!
expand A scalar or two column vector that will expand the grid beyond the range of the observations.
midpoint.grid Grid midpoints to convert to grid boundaries.
boundary.grid If TRUE interpret grid points as boundaries of grid boxes. If FALSE interpret as the midpoints of the boxes.
ZGrid An array or list form of covariates to use for prediction. This must match the grid. list argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid is an array then the first two indices are the \(x\) and \(y\) locations in the grid. The third index, if present, indexes the covariates. e.g. For evaluation on a 10X15 grid and with 2 covariates. \(\operatorname{dim}(Z G r i d)==c(10,15,2)\). If ZGrid is a list then the components x and y shold match those of grid.list and the z component follows the shape described above for the no list case.

\section*{Details}
makeMultiIndex creates an expanded set of indices to referencce a regular grid. M are L integers with product prodM Will create a prodM by L matrix that is all combinations of \((1: \mathrm{M}[\mathrm{i}])\) for \(\mathrm{i}=1,2\), ...L This is organized in the standard array ordering where the first column varies the fastest for M \(=c(3,2,4)\) the result will be a 24 X 3 matrix with the entries:
\[
\begin{aligned}
& 1,1,1 \\
& 2,1,1 \\
& 3,1,1 \\
& 1,2,1
\end{aligned}
\]
\[
\begin{aligned}
& \\
& \\
& \\
& \text { etc } \quad \begin{array}{r}
2,2,1 \\
3,2,1
\end{array} \\
& \ldots \\
& \text { and ending with } \\
& \\
& \\
& 2,2,4 \\
& 3,2,4
\end{aligned}
\]

\section*{All about grid lists:}

The form of a grid.list is
```

list(var.name1= what1, var.name2=what2, ...var.nameN=what3)

```

Here var.names are the names of the independent variables. The what options describe what should be done with this variable when generating the grid. These should either an increasing sequence of points or a single vaules. Obviously there should be only be two variables with sequences to define a grid for a surface.
Most of time the gridding sequences are equally spaced and are easily generated using the seq function. Also throughout fields the grid points are typically the midpoints of the grid rather the grid box boundaries. However, these functions can handle unequally spaced grids and the logical boundary.grid can indicate a grid being the box boundaries.
The variables in the list components are assumed to be in the same order as they appear in the data matrix.

A useful function that expands the grid from the grid.list description into a full set of locations is make.surface.grid and is just a wrapper around the \(R\) base function expand.grid. A typical operation is to go from a grid.list to the set of grid locations. Evaluate a fucntion at these lcoations and then reformat this as an image for plotting. Here is how to do this cleanly:
```

grid.list<- list(x= 1:10, y=1:15)
xg<- make.surface.grid(grid.list)

look at a surface dependin on xg locations

z<- xg[,1] + 2*xg[,2]
out<- list(x=grid.list$x, y= grid.list$y, z=matrix(z, nrow=10, ncol=15))

now for example

image.plot(out)

```

The key here is that xg and matrix both organize the grid in the same order.
Some fields internal functions that support interpreting grid list format are:
fields.x.to.grid: Takes an "x" matrix of locations or independent variables and creates a reasonable grid list. This is used to evaluate predicted surfaces when a grid list is not explicited given to predictSurface. The variables (i.e. columns of \(x\) ) that are not part of the grid are set to the median values. The \(x\) grid values are \(n x\) equally spaced points in the range \(x[, x y[1]]\). The \(y\) grid values are ny equally spaced points in the range \(\mathrm{x}[, \mathrm{xy}[2]]\).
parse.grid.list: Takes a grid list and returns the information in a more expanded list form that is easy to use. This is used, for example, by predictSurface to figure out what to do!
fields. convert.grid: Takes a vector of \(n\) values assumed to be midpoints of a grid and returns the \(\mathrm{n}+1\) boundaries. See how this is used in discretize.image with the cut function. This function will handle unequally spaced grid values.
discretize.image: Takes a vector of locations and a 2-d grid and figures out to which boxes they belong. The output matrix ind has the grid locations. If boundary.grid is FALSE then the grid list (grid) is assumed to be grid midpoints. The grid boundaries are taken to be the point half way between these midpoints. The first and last boundaries points are determined by extrapolating so that the first and last box has the midpoint in its center. (See the code in fields.convert.grid for details.) If grid is NULL then midpoints are found from \(m\) and \(n\) and the range of the \(x\) matrix.
unrollZGrid Checks that the ZGrid object is compatible with the grid.list and concatenates the grid arrays into vectors. This version of the covariates are used the usual predict function.

\section*{See Also}
as.surface, predictSurface, plot.surface, surface, expand.grid, as.image

\section*{Examples}
```

\#Given below are some examples of grid.list objects and the results
\#when they are used with make.surface.grid. Note that
\#make.surface.grid returns a matrix that retains the grid.list
\#information as an attribute.
grid.l<- list(1:3, 2:5)
make.surface.grid(grid.l)
grid.l <- list(1:3, 10, 1:3)
make.surface.grid(grid.l)
\#The next example shows how the grid.list can be used to
\#control surface plotting and evaluation of an estimated function.

first create a test function

set.seed(124)
X<- 2*cbind(runif(30), runif(30), runif(30)) -1
dimnames(X)<- list(NULL, c("X1","X2","X3"))
y<- X[,1]**2 + X[,2]**2 + exp(X[,3])

fit an interpolating thin plate spline

out<- Tps(X,y)
grid.l<- list(X1= seq(0,1,, 20), X2=.5, X3=seq(0,1, ,25))
surface(out, grid.list=grid.l)

surface plot based on a 20X25 grid in X1 an X3

over the square [0,2] and [0,2]

holding X2 equal to 1.0.


```
```


test of discretize to make sure points on boundaries are counted right

set.seed(123)
x<- matrix(runif(200), 100,2)
look<- discretize.image(x, m=2,n=2)
xc<- seq(min(x[,1]), max(x[,1]),,5)
xc<- xc[2:4]
yc<- seq(min(x[,2]), max(x[,2]),,5)
yc<- yc[2:4]
grid <- list(x= xc, y= yc)
look2<- discretize.image(x, m=2,n=2)
table(look$index)
table(look2$index)

indicator image of discretized locations

look<- discretize.image(RMprecip$x, m=15, n=15)
image.plot(look$grid$x, look$grid$y,look$hist)

actual locations

points(RMprecip\$x,col="magenta", pch=".")

```
image.cov Exponential, Matern and general covariance functions for 2-d gridded locations.

\section*{Description}

Given two sets of locations defined on a 2-d grid efficiently multiplies a cross covariance with a vector. The intermediate compuations (the setup) can also be used for fast simulation of the processes on a grid using the circulant embedding technique.

\section*{Usage}
stationary.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, \(M=N U L L, N=N U L L\), cov.function="stationary.cov", delta = NULL, cov.args = NULL, . . .)

Exp.image.cov(ind1, ind2, \(Y\), cov. obj = NULL, setup = FALSE, grid, ...)
Rad.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)
matern.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M=NULL, \(\mathrm{N}=\) NULL, aRange= 1.0 , smoothness=.5, theta=NULL)
wendland.image.cov(ind1, ind2, Y, cov.obj = NULL,


\section*{Arguments}
\begin{tabular}{ll} 
ind1 & \begin{tabular}{l} 
Matrix of indices for first set of locations this is a two column matrix where each \\
row is the row/column index of the image element. If missing the default is to \\
use all grid locations. \\
Matrix of indices for second set of locations. If missing this is taken to be ind2. \\
If ind1 is missing ind2 is coerced to be all grid locations. \\
Vector to multiply by the cross covariance matrix. Y must be the same locations \\
as those referred to by ind2.
\end{tabular} \\
ind2 & Any additional arguments or parameters to the covariance function. \\
cov.args & \begin{tabular}{l} 
A list with the information needed to do the multiplication by convolutions. This \\
is usually found by using the returned list when setup=T.
\end{tabular} \\
cov. obj & \begin{tabular}{l} 
Name of the (stationary) covariance function.
\end{tabular} \\
cov.function \\
setup & \begin{tabular}{l} 
If true do not do the multiplication but just return the covariance object required \\
by this function.
\end{tabular} \\
A distance that indicates the range of the covariance when it has compact sup- \\
port. For example this is the aRange parameter in the Wendland covariance. \\
A grid list giving the X and Y grids for the image. (See example below.) This is
\end{tabular}

\section*{Details}

This function was provided to do fast computations for large numbers of spatial locations and supports the conjugate gradient solution in krig.image. In doing so the observations can be irregular spaced but their coordinates must be 2-dimensional and be restricted to grid points. (The function as.image will take irregular, continuous coordinates and overlay a grid on them.)
Returned value: If ind1 and ind2 are matrices where nrow(ind1)=m and nrow(ind2)=n then the cross covariance matrix, Sigma, is an mXn matrix (i,j) element is the covariance between the grid locations indexed at ind1[i,] and ind2[j,]. The returned result is Sigma multiplied by Y. Note that one can always recover the coordinates themselves by evaluating the grid list at the indices. E.g. If \(x\) and \(y\) are the grids for the \(X\) and \(Y\) dimensions, cbind ( \(x[\) ind1[,1]], \(y[i n d 1[, 2])\) ) will give the coordinates associated with ind1. Clearly it is better just to work with ind1!

Functional Form: Following the same form as Exp.cov stationary.cov for irregular locations, the covariance is defined as phi( D.ij) where D. ij is the Euclidean distance between \(\mathrm{x} 1[\mathrm{i}\),\(] and \mathrm{x} 2[\mathrm{j}\),\(] but\) having first been scaled by aRange. Specifically,
D.ij \(=\operatorname{sqrt}(\operatorname{sum} . k((x 1[i, k]-x 2[j, k]) / a R a n g e[k]) * * 2)\).

See Matern for the version of phi for the Matern family.
Note that if aRange is a scalar then this defines an isotropic covariance function.
Implementation: This function does the multiplication on the full grid efficiently by a 2-d FFT. The irregular pattern in Y is handled by padding with zeroes and once that multiplication is done only the appropriate subset is returned.
As an example assume that the grid is 100X100 let big.Sigma denote the big covariance matrix among all grid points ( If the parent grid is \(100 \times 100\) then big.Sigma is 10 K by 10 K !) Here are the computing steps:
temp<- matrix \((0,100,100)\)
temp[ ind2] <- Y
temp2<- big.Sigma\%*\% temp
temp2[ind1]
Notice how much we pad with zeroes or at the end throw away! Here the matrix multiplication is effected through convolution/FFT tricks to avoid creating and multiplying big.Sigma explicitly. It is often faster to multiply the regular grid and throw away the parts we do not need then to deal directly with the irregular set of locations.
Note: In this entire discussion Y is treated as vector. However if one has complete data then Y can also be interpreted as a image matrix conformed to correspond to spatial locations. See the last example for this distinction.

\section*{Value}

A vector that is the multiplication of the cross covariance matrix with the vector Y .

\section*{See Also}
smooth.2d, as.image, krig.image, stationary.cov

\section*{Examples}
```


multiply 2-d isotropic exponential with aRange=4 by a random vector

junk<- matrix(rnorm(100*100), 100,100)
cov.obj<- stationary.image.cov(setup=TRUE,
grid=list(x=1:100,y=1:100),aRange=8)
result<- stationary.image.cov(Y=junk,cov.obj=cov.obj)
image(matrix(result, 100,100)) \# NOTE that is also a smoother!

to do it again, no setup is needed

e.g.

junk2<- matrix(rnorm(100**2, 100,100))

```
```


result2<- stationary.image.cov(Y=junk2, cov.obj=cov.obj)

generate a grid and set of indices based on discretizing the locations

in the precip dataset

 out<-as.image(RMprecip$y, x= RMprecip$x)
 ind1<- out$ind
 grid<- list(x= out$x, y=out$y)

discretized x locations to use for comparison

 xd<- cbind(out$x[out$ind[,1]], out$y[out$ind[,2]])

setup to create cov.obj for exponential covariance with range= 1.25

 cov.obj<- stationary.image.cov(setup=TRUE, grid=grid, aRange=1.25)

multiply covariance matrix by an arbitrary vector

 junk<- rnorm(nrow(ind1))
 result<- stationary.image.cov(ind1, ind1, Y= junk,cov.obj=cov.obj)

The brute force way would be

result<- stationary.cov(xd, xd, aRange=1.25, C=junk)

or

result<- stationary.cov(xd, xd, aRange=1.25) %*% junk

both of these take much longer

evaluate the covariance between all grid points and the center grid point

 Y<- matrix(0,cov.obj$m, cov.obj$n)
 Y[32,32]<- 1
 result<- stationary.image.cov(Y= Y,cov.obj=cov.obj)

covariance surface with respect to the grid point at (32,32)

reshape "vector" as an image

 temp<- matrix(result, cov.obj$m,cov.obj$n)
 image.plot(cov.obj$grid$x,cov.obj$grid$y, temp)

or persp(cov.obj$grid$x,cov.obj$grid$y, temp)

check out the Matern

 grid<- list(x= seq(-105,-99,,64), y= seq(40,45, ,64))
 cov.obj<- matern.image.cov(
 setup=TRUE, grid=grid, aRange=.55, smoothness=1.0)
 Y<- matrix(0,64,64)
 Y[16,16]<- 1
 result<- matern.image.cov(Y= Y,cov.obj=cov.obj)
 temp<- matrix(result, cov.obj$m,cov.obj$n)
 image.plot(cov.obj$grid$x,cov.obj$grid$y, temp)

Note we have centered at the location (grid$x[16],grid$y[16]) for this case

using sim.rf to simulate an Matern field

 look<- sim.rf(cov.obj)
    ```
```

image.plot(grid$x, grid$y, look)

```
image.plot Draws an image plot with a legend strip for the color scale based on either a regular grid or a grid of quadrilaterals.

\section*{Description}

This function combines the R image function with some automatic placement of a legend. This is done by splitting the plotting region into two parts. Putting the image in one and the legend in the other. After the legend is added the plot region is reset to the image plot. This function also allows for plotting quadrilateral cells in the image format that often arise from regular grids transformed with a map projection or a scaling and rotation of coordinates. See the example where this function can create a similar graphic to the ggplot package. image. plot functionality has been frozen, see the more recent function imagePlot which is backwardly compatible with this function.

\section*{Usage}
```


S3 method for class 'plot'

image(...,
add = FALSE,
breaks= NULL, nlevel = 64, col = NULL,
horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2,
legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL,
legend.line= 2,
graphics.reset = FALSE, bigplot = NULL, smallplot = NULL,
legend.only = FALSE, lab.breaks = NULL,
axis.args = NULL, legend.args = NULL, legend.cex=1.0,
midpoint = FALSE, border = NA,
lwd = 1,verbose = FALSE)

```

\section*{Arguments}
\(\qquad\)
add

The usual arguments to the image function as \(\mathrm{x}, \mathrm{y}\), or z or as a list with \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) as components. One can also include a breaks argument for an unequal spaced color scale with color scale boundaries at the breaks (see example below). If a "quadrilateral grid", arguments must be explicitly \(\mathrm{x}, \mathrm{y}\) and z with x , and y being matrices of dimensions equal to, or one more than, \(z\) giving the grid locations. The basic concept is that the coordinates of x and y still define a grid but the image cells are quadrilaterals rather than being restricted to rectangles. NOTE: graphical argruments passed here will only have impact on the image plot. To change the graphical defaults for the legend use the individual legend arguments and/or legend. arg listed below.
\begin{tabular}{ll} 
bigplot & \begin{tabular}{l} 
Plot coordinates for image plot. If not passed these will be determined within \\
the function.
\end{tabular} \\
border & \begin{tabular}{l} 
This only works if x and y are matrices - if NA the quadralaterals will have a \\
border color that is the same as the interior color. Otherwise this specifies the \\
color to use.
\end{tabular} \\
Break points in sorted order to indicate the intervals for assigning the colors. \\
Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If \\
breaks is not specified (nlevel+1) equally spaced breaks are created where the \\
first and last bin have their midpoints at the minimum and maximum values in z \\
or at zlim. \\
breaks
\end{tabular}
\begin{tabular}{ll} 
midpoint & \begin{tabular}{l} 
This option for the case of unequally spaced grids with x and y being matrices \\
of grid point locations. If FALSE (default) the quadralaterals will be extended to \\
surround the z locations as midpoints. If TRUE z values will be averaged to yield \\
a midpoint value and the original grid points be used to define the quadralaterals. \\
(See help on poly.image for details). In most cases midpoint should be FALSE \\
to preserve exact values for z and let the grid polygons be modified.
\end{tabular} \\
nlevel & \begin{tabular}{l} 
Number of color levels used in legend strip
\end{tabular} \\
smallplot & \begin{tabular}{l} 
Plot coordinates for legend strip. If not passed these will be determined within \\
the function. Be sure to leave room for the axis labels. For example, if the \\
legend is on the right side smallplot \(\mathrm{c}(.85, .9,0,1)\) will leave (.1 in plot \\
coordinates) for the axis labels to the right of the color strip. This argument \\
is useful for drawing a plot with the legend that is the same size as the plots \\
without legends.
\end{tabular} \\
verbose & \begin{tabular}{l} 
If TRUE prints intermediate information about setting up plots (for debugging).
\end{tabular} \\
&
\end{tabular}

\section*{Details}

This is a function using the basic R graphics. The coding was done to make it easier for users to see how this function works and to modify.
How this function works: The strategy for image. plot is simple, divide the plotting region into two smaller regions bigplot and smallplot. The image goes in one and the legend in the other. This way there is always room for the legend. Some adjustments are made to this rule by not shrinking the bigplot if there is already room for the legend strip and also sticking the legend strip close to the image plot. One can specify the plot regions explicitly by bigplot and smallplot if the default choices do not work.(Note that these in figure coordinates. ) There may be problems with small plotting regions in fitting both of these elements into the plot region and one may have to change the default character sizes or margins to make things fit. Sometimes this function will not reset the type of margins correctly and the "null" call par (mar = par ("mar")) may help to fix this issue.

The text is too small! This always seems to happen as one is rushing to finish a talk and the figures have tiny default axis labels. Try just calling the function fields. style before plotting. List out this function to see what is changed, however, all text is increased by \(20 \%\) in size.
Why "image.plot" and not "image"? The R Base function image is very useful but it is awkward to place a legend quickly. However, that said if you are drawing several image plots and want a common legend use the image function and just just use image. plot to add the legend. See the example in the help file. Note that you can use image to draw a bunch of images and then follow with image.plot and legend.only=TRUE to add a common legend. (See examples below.)
Almost cloropleths too: It should be noted that this image function is slightly different than a cloropleth map because the legend is assuming that a continous scale has been discretized into a series of colors. To make the image.plot function as a cloropleth graphic one would of course use the breaks option and for clarity perhaps code the different regions as different integer values. In addition, for publication quality one would want to use the legend. args to add more descriptive labels at the midpoints in the color strip.

Relationship of \(\mathbf{x}, \mathbf{y}\) and \(\mathbf{z}\) : If the z component is a matrix then the user should be aware that this function locates the matrix element \(z[i, j]\) at the grid locations ( \(x[i], y[j]\) ) this is very different than simply listing out the matrix in the usual row column tabular form. See the example below for
details on the difference in formatting. What does one do if you do not really have the " z " values on a regular grid? See the functions quilt.plot.Rd and as.image to discretise irregular observations to a grid. If the values makes sense as points on a smooth surface see Tps and fastTps for surface interpolation.
Adding separate color to indicate the grid box boundaries. Sometimes you want to show to the grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way to do this as an option in image. But if your image is formatted in the "poly image" style where x and y are also matrices you can use the polyimage (see the border argument above) option to draw in boundaries.

Grids with unequally spacing - quadrialteral pixels: If \(x\) and \(y\) are matrices that are a smooth transformation of a regular grid then \(z[i, j]\) can be interperted as representing the average value in a quadrilateral that is centered at \(\mathrm{x}[\mathrm{i}, \mathrm{j}]\) and \(\mathrm{y}[\mathrm{i}, \mathrm{j}]\) (midpoint TRUE). The details of how this cell is found are buried in poly. image but it it essentially found using midpoints between the centers. If midpoint is FALSE then \(x\) and \(y\) are interpreted as the corners of the quadrilateral cells. But what about \(z\) ? The four values of \(z\) are now averaged to represent a value at the midpoint of the cell and this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded output of geophysical models where the regular grid is defined according to one map projection but the image plotting is required in another projection. Typically the regular grid becomes distorted in a smooth way when this happens. See the regional climate example for a illustration of this application. One can add border colors in this case easily because these choices are just passed onto the polygon function.
Adding the pixel grid for rectangular images: For adding the grid of pixel borders to a rectangular image try this example after calling image.plot.
```

dx <- x[2] - x[1]
dy <- y[2] - y[1]
xtemp<- seq(min(x)- dx/2, max(x)+ dx/2,
length.out = length(x) +1)
ytemp<- seq(min(y)- dy/2, max(y)+ dy/2,
length.out = length(y) +1)
xline(xtemp, col="grey", lwd=2)
yline(ytemp, col="grey", lwd=2)

```

Here x and y here are the x and y grid values from the image list.
Fine tuning color scales: This function gives some flexibility in tuning the color scale to fit the rendering of \(z\) values. This can either be specially designed color scale with specific colors ( see help on designer.colors), positioning the colors at specific points on the [0,1] scale, or mapping distinct colors to intervals of z . The examples below show how to do each of these. In addition, by supplying lab.break strings or axis parameters one can annotate the legend axis in an informative matter.
Adding just the legend strip: Note that to add just the legend strip all the numerical information one needs is the zlim argument and the color table! See examples for tricks in positioning.

About color tables: We like tim. colors as a default color scale and so if this what you use this can be omitted. Unfortunately this is not the default for the image function. Another important color scale is viridis() from the viridis package. It seems that by and large everyone seems to react postively to viridis - guess that is the point!

The topographic color scale (topo.colors) is also a close second showing our geophysical bias. Users may find larry.colors useful for coding distinct regions in the style of a cloropleith map. See also terrain. colors for a subset of the topo ones and designer.colors to "roll your own" color table. One nice option in this last function is to fix color transitions at particular quantiles of the data rather than at equally spaced intervals. For color choices see how the nlevels argument figures into the legend and main plot number of colors. Also see the colors function for a listing of all the colors that come with the R base environment.

The details of placing the legend and dividing up the plotting real estate: It is surprising how hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in device coordinates. The plot region is assumed to be \([0,1] \mathrm{X}[0,1]\) and plotting regions are defined as rectangles within this square. We found these easier to work with than user coordinates.
legend.width and legend.mar are in units of character spaces. These units are helpful in thinking about axis labels that will be put into these areas. To add more or less space between the legend and the image plot alter the mar parameters. The default mar settings \((5.1,5.1,5.1,2.1)\) leaves 2.1 spaces for vertical legends and 5.1 spaces for horizontal legends.
There are always problems with default solutions to placing information on graphs but the choices made here may be useful for most cases. The most annoying thing is that after using image.plot and adding information the next plot that is made may have the slightly smaller plotting region set by the image plotting. The user should set reset.graphics=TRUE to avoid the plotting size from changing. The disadvantage, however, of resetting the graphics is that one can no longer add additional graphics elements to the image plot. Note that filled.contour always resets the graphics but provides another mechanism to pass through plotting commands. Apparently filled.contour, while very pretty, does not work for multiple plots.
About setup and add legend functions These came about to create a scatterplot in Base R Graphics where the points are colored with a color scale and the scale can be plotted as part of the figure See bubblePlot for a version of this kind of figure. The function setuplegend should be used first to create enough space to add a color scale later. After plotting then addLegend will add the color scale. Note that if the color scale has been created by the color. scale function the last call to this function will use the color scale and limits created in color. scale.
In summary here is an example of using these functions with the colors in mind:
```

info<- setupLegend()
colTab<- rainbow(10)
plot(1:10, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(1,10))

```

Here is one where four colors are mapped to specific values (ala image).
```

info<-setupLegend()
colTab= color.scale(201:210, rainbow(4))
plot(1:10, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(201,210))

```

More complete graphics languages, such as that in ggplot, do not need such functions because the entire graphics segment is parsed to create the complete figure. In this way room for a color scale can be created automatically. The functions proposed here are a simple work around to create these figures using base R graphics.

Other packages levelplot that is part of the lattice package has a very similar function to image.plot and a formula syntax in the call. The geom_raster for setting up a graphics object within ggplot is another alternative forr image plots with legends. See the last example to compare the steps in creating an image plot using image. plot that is close to the ggplot version. Mostly this involves resetting base graphics parameters using the par function.
Multiple images: By keeping the zlim argument the same across images one can generate the same color scale. (See the image help file.) One useful technique for a panel of images is to just draw the images with good old image and then use image.plot to add a legend to the last plot. (See example below for messing with the outer margins to make this work.) Usually a square plot (pty="s") done in a rectangular plot region will have room for the legend stuck to the right side without any other adjustments. See the examples below for more complicated arrangements of multiple image plots and a summary legend. The reader is also referred to the package autoimage as a set of functions in base to help with drawing multiple images and also more support for geographic coordinates.

\section*{Side Effects}

After exiting, the plotting region may be changed to make it possible to add more features to the plot. To be explicit, par() \(\backslash \$ p l t\) may be changed to reflect a smaller plotting region that has accommodated room for the legend subplot.

If xlim and ylim are specified the pixels may overplot the axis lines. Just use the box function to redraw them.

\section*{See Also}
imagePlot, image,poly.image, filled.contour, quilt.plot, bubblePlot, plot.surface, add.image, colorBar, tim.colors, designer.colors

\section*{Examples}
```

 x<- 1:10
 y<- 1:15
 z<- outer(x,y,"+")
 image.plot(x,y,z)

or

 obj<- list(x=x,y=y,z=z)
 image.plot(obj, legend.lab="Sverdrups")
 \#

the next sequence of examples explain how to quickly

adpat this basic plot to include morre features

In another direction see the very last example where

we use many of the setting in base R graphic to mimic a

(beautiful) ggplot version.

\#

add some points on diagonal using standard plot function

\#(with some clipping beyond 10 anticipated)
points(5:12, 5:12, pch="X", cex=3)

```
```


in general image.plot will reset the plot window so you

can add any feature that normally works in base R

e.g. lines, text, contour, boxplots,

adding breaks and distinct colors for intervals of z

with and without lab.breaks

 brk<- quantile(c(z))
 image.plot(x,y,z, breaks=brk, col=rainbow(4))

annotate legend strip with the break point values and add a label

 image.plot(x,y,z, breaks=brk, col=rainbow(4),
 lab.breaks=names(brk))

compare to

 zp <-quantile(c(z), c(.05, .1,.5, .9,.95))
 image.plot(x,y,z,
 axis.args=list(at=zp, labels=names(zp)))

a log scaling for the colors

 ticks<- c(1, 2,4,8,16,32)
 image.plot(x,y,log(z), axis.args=list(at=log(ticks), labels=ticks))

see help file for designer.colors to generate a color scale that adapts to

quantiles of z.

Add some color scales together here is an example of 5 blues to white to 5 reds

with white being a specific size.

 colorTable<- designer.colors(11, c("blue","white", "red"))

breaks with a gap of 10 to 17 assigned the white color

 brks<- c(seq(1, 10,,6), seq(17, 25,,6))
 image.plot(x,y,z,breaks=brks, col=colorTable)

\#fat (5 characters wide) and short (50% of figure) color bar on the bottom
image.plot(x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE)

adding a label with all kinds of additional arguments.

use side=4 for vertical legend and side= 1 for horizontal legend

to be parallel to axes. See help(mtext).

image.plot(x,y,z,
legend.args=list(text="unknown units",
col="magenta", cex=1.5, side=4, line=2))

and finally add some grid lines

 dx <- x[2] - x[1]
 dy <- y[2] - y[1]
 xtemp<- seq(min(x)- dx/2, max(x)+ dx/2,
 length.out = length(x) +1)
 ytemp<- seq(min(y)-dy/2, max(y)+dy/2,

```
```

 length.out = length(y) +1)
 xline(xtemp, col="grey", lwd=2)
yline(ytemp, col="grey", lwd=2)
\#

example using an irregular quadrilateral grid

\#
data(RCMexample)
image.plot(RCMexample$x, RCMexample$y, RCMexample$z[,,1])
ind<- 50:75 # make a smaller image to show bordering lines
image.plot(RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1],
border="grey50", lwd=2)
\#

multiple images with a common legend

\#
set.panel()

Here is quick but quirky way to add a common legend to several plots.

The idea is leave some room in the margin and then at the end

overplot the legend in this margin

par(oma=c(0,0,0,4)) \# margin of 4 spaces width at right hand side
set.panel(2,2) \# 2X2 matrix of plots

now draw all your plots using usual image command

for (k in 1:4){
data<- matrix(rnorm(150), 10,15)
image(data, zlim=c(-4,4), col=tim.colors())

and just for fun add a contour plot

 contour(data, add=TRUE)
 }
par(oma=c(0,0,0,1))\# reset margin to be much smaller.
image.plot(legend.only=TRUE, zlim=c(-4,4))

image.plot tricked into plotting in margin of old setting

set.panel() \# reset plotting device

Here is a more learned strategy to add a common legend to a panel of

plots consult the split.screen help file for more explanations.

For this example we draw two

images top and bottom and add a single legend color bar on the right side

first divide screen into the figure region (left) and legend region (right)

 split.screen(rbind(c(0, . 8,0,1), c(.8,1,0,1)))

now subdivide up the figure region into two parts

 split.screen(c(2,1), screen=1)-> ind
 zr<- range(2,35)
    ```
```


first image

 screen(ind[1])
 image(x,y,z, col=tim.colors(), zlim=zr)

second image

 screen(ind[2])
 image(x,y,z+10, col=tim.colors(), zlim =zr)

move to skinny region on right and draw the legend strip

 screen(2)
 image.plot(zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7),
 col=tim.colors())
 close.screen(all=TRUE)

you can always add a legend arbitrarily to any plot;

note that here the plot is too big for the vertical strip but the

horizontal fits nicely.

plot(1:10, 1:10)
image.plot(zlim=c(0,25), legend.only=TRUE)
image.plot(zlim=c(0,25), legend.only=TRUE, horizontal =TRUE)

combining the usual image function and adding a legend

first change margin for some more room

Not run:

par(mar=c(10,5,5,5))
image(x,y,z, col=topo.colors(64))
image.plot(zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE,
col=topo.colors(64))

End(Not run)

adding a legend by automatically making room.

and coloring points

 info<- setupLegend()
 colTab<- rainbow(10)
 plot(201:210, 201:210, col=colTab, pch=16)
 addLegend(info, col=colTab, zlim = c(201,210))

\#

Comparison to ggplot

\#

the following example was created as way avoid doing more important

things

Note how close base graphics can get to reproducing the ggplot style.

Not run:

library(viridis)
library(ggplot2)

```
```

x<- 1:20
y<- 1:24
z<- outer(x, y, "+")

ggplot version

 mesh<- expand.grid(x= x, y=y)
 mesh$z <- c(z)
 ggplot(data=mesh, aes(x=x, y=y, fill=z)) +
 geom_raster(interpolate= FALSE) +
 scale_fill_continuous(type = "viridis") +
 theme_bw()
 # inflate range to give a margin around image
 xr<- range(x) + c(-.08, .08)* diff(range(x))
 yr<- range(y) + c(-.08, .08)* diff(range(y))
 # changing these graphics parameters tends to push
 # text closer to the axes.
 par(mgp=c(1.5,.5,0),mar=c(2.5,2.5,.5,1), cex=.8)
 image.plot(x,y,z,
 col = viridis(128),
 legend.shrink = .27,
 xlim = xr,
 ylim = yr,
 legend.width = 1.5,
 legend.mar = 3,
 legend.args = list(text = "z",
 cex = .8,
 side = 3,
 line = .5)
)

End(Not run)

```
    image.smooth
        Kernel smoother for irregular 2-d data

\section*{Description}

Takes an image matrix and applies a kernel smoother to it. Missing values are handled using the Nadaraya/Watson normalization of the kernel.

\section*{Usage}
\#\# S3 method for class 'smooth'
```

image(x, wght $=$ NULL, $d x=1, d y=1$,
kernel.function = double.exp,
aRange $=1$, grid $=$ NULL, tol $=1 \mathrm{e}-08$, xwidth $=$ NULL, ywidth $=$ NULL,
weights $=$ NULL, theta=NULL, ...)
setup.image.smooth(nrow = 64, ncol = 64, dx = 1, dy = 1,
kernel.function = double.exp,
aRange $=1$, $x w i d t h=$ nrow $* d x$, ywidth $=$ ncol $* d x$,
lambda=NULL, theta=NULL, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline x & A matrix image. Missing values can be indicated by NAs. \\
\hline wght & FFT of smoothing kernel. If this is NULL the default is to compute this object. \\
\hline grid & A list with x and y components. Each are equally spaced and define the rectangular. ( see grid.list) \\
\hline dx & Grid spacing in x direction \\
\hline dy & Grid spacing in x direction \\
\hline \multicolumn{2}{|l|}{kernel.function} \\
\hline & An \(R\) function that takes as its argument the squared distance between two points divided by the bandwidth. The default is \(\exp (-\mathrm{abs}(\mathrm{x}))\) yielding a normal kernel \\
\hline aRange & the bandwidth or scale parameter. \\
\hline theta & Same as aRange. \\
\hline xwidth & Amount of zero padding in horizontal dimension in units of the grid spacing. If NULL the default value is equal to the width of the image the most conservative value but possibly inefficient for computation. Set this equal to zero to get periodic wrapping of the smoother. This is useful to smooth a Mercator map projection. \\
\hline ywidth & Same as xwidth but for the vertical dimension. \\
\hline weights & Weights to apply when smoothing. \\
\hline tol & Tolerance for the weights of the N-W kernel. This avoids kernel estimates that are "far" away from data. Grid points with weights less than tol are set to NA. \\
\hline nrow & X dimension of image in setting up smoother weights \\
\hline ncol & Y dimension of image \\
\hline lambda & Smoothing parameter if smoother is interpreted in a spline-like way. \\
\hline & Other arguments to be passed to the kernel function \\
\hline
\end{tabular}

\section*{Details}

The function works by taking convolutions using an FFT. The missing pixels are taken into account and the kernel smoothing is correctly normalized for the edge effects following the classical Nadaraya-Watson estimator. For this reason the kernel doe snot have to be a desity as it is automatically normalized when the kernel weight function is found for the data. If the kernel has limited support then the width arguments can be set to reduce the amount of computation. (See example below.) For multiple smoothing compute the fft of the kernel just once using setup.image. smooth and pass this as the wght argument to image.smooth. this will save an FFT in computations.

\section*{Value}

The smoothed image in R image format. ( A list with components x , y and z .) setup. image . smooth returns a list with components W a matrix being the FFT of the kernel, \(\mathrm{dx}, \mathrm{dy}\), xwidth and ywidth.

\section*{See Also}
as.image, sim.rf, image.plot

\section*{Examples}
```


first convert precip data to the 128X128 discretized image format (with

missing values to indicate where data is not observed)

out<- as.image(RMprecip$y, x= RMprecip$x, nx=128, ny=128)

out\$z is the image matrix

dx<- out$x[2]- out$x[1]
dy<- out$y[2] - out$y[1]

grid scale in degrees and choose kernel bandwidth to be . }25\mathrm{ degrees.

look<- image.smooth(out, aRange= .25)

pass in a tophat kernel

topHat<- function(dd, h){ ifelse(dd <= h^2, 1, 0)}

dd is the distance squared

look2<- image.smooth(out, kernel.function=topHat, h=.8)
image.plot(look)
points(RMprecip\$x)
US(add=TRUE, col="grey", lwd=2)

to save on computation, decrease the padding with zeroes

only pad 32 grid points around the margins ofthe image.

look<- image.smooth(out\$z, dx=dx, dy=dy, aRange= . 25, xwidth=32*dx,ywidth=32*dy)

the range of these data is ~ 10 degrees and so

with a padding of 32 grid points 32*(10/128) = 2.5

about 10 standard deviations of the normal kernel so there is still

lots of room for padding

a minimal choice might be xwidth = 4*(.25)= 1 4 SD for the normal kernel

creating weighting object outside the call

this is useful when one wants to smooth different data sets but on the

same grid with the same kernel function

random fields from smoothing white noise with this filter.

set.seed(123)

```
```

test.image<- matrix(rnorm(128**2),128,128)
dx<- . }
dy<- . }
wght<- setup.image.smooth(nrow=128, ncol=128, dx=dx, dy=dy,
aRange=.25, xwidth=2.5, ywidth=2.5)

look<- image.smooth(test.image, dx=dx, dy=dy, wght)

NOTE: this is the same as using

image.smooth(test.image , 128,128), xwidth=2.5,

ywidth=2.5, dx=dx,dy=dy, aRange=.25)

but the call to image.smooth is faster because the fft of kernel

has been precomputed.

```
\# periodic smoothing in the horizontal dimension
look<- image.smooth( test.image , xwidth=1.5, ywidth=2.5, \(\mathrm{dx}=\mathrm{dx}, \mathrm{dy}=\mathrm{dy}\), aRange=1.5)
look2<- image.smooth( test.image , xwidth=0, ywidth=2.5, \(d x=d x, d y=d y\), aRange=1.5)
\# compare these two
set.panel ( 1,2 )
image.plot( look, legend.mar=7.1)
title("free boundaries")
image.plot( look2, legend.mar=7.1) \# look for periodic continuity at edges!
title("periodic boundary in horizontal")
set. panel(1,1)
image2lz Some simple functions for subsetting images

\section*{Description}

These function help in subsetting images or reducing its size by averaging adjecent cells.

\section*{Usage}
crop.image(obj, loc=NULL,...)
which.max.matrix(z)
which.max.image(obj)
get. rectangle()
average.image(obj, Q=2)
half.image(obj)
in.poly( xd, xp, convex.hull=FALSE, inflation=1e-07)
in.poly.grid( grid.list,xp, convex.hull=FALSE, inflation=1e-07)

\section*{Arguments}
obj
A list in image format with the usual \(\mathrm{x}, \mathrm{y}\) defining the grid and z a matrix of image values.
loc A 2 column matrix of locations within the image region that define the subset. If not specified then the image is plotted and the rectangle can be specified interactively.
Q Number of pixels to average.
xd A 2 column matrix of locations that are the points to check for being inside a polygon.
xp A 2 column matrix of locations that are vertices of a polygon. The last point is assumed to be connected to the first.
convex.hull If TRUE then the convex hull of \(x p\) is used instead of the polygon.
grid.list A list with components \(x\) and \(y\) specifing the 2-d grid values. (See help( grid.list) for more details.)
inflation A small expansion factor to insure that points precisely on the boundaries and vertices of the convex hull are included as members.
z A matrix of numerical values
Graphics arguments passed to image.plot. This is only relevant when loc is NULL and the locator function is called via get. rectangle.

\section*{Details}

If loc has more than 2 rows then the largest rectangle containing the locations is used.
crop.image Creates a subset of the image obj by taking using the largest rectangle in the locations loc. This is useful if one needs to extract a image that is no bigger in extant than som edata location. If locations are omitted the parent image is plotted and the locations from two mouse clicks on the image. Returned value is an image with appropriate \(\mathrm{x}, \mathrm{y}\) and z components.
get.rectangle Given an image plots and waits for two mouse clicks that are returned.
which.max.image Returns a list with components \(x, y, z\), and ind giving the location of the maximun and value of the maximum in the image based on the grid values and also on the indicies of the image matrix.
average.image, half.image Takes passed image and averages the pixel values and adjusts the grid to create an image that has a smaller number of elements. If \(\mathrm{Q}=2\) in average.image it has the same effect as half.image but might be slower - if the original image is \(m X n\) then half image will be an image \((\mathrm{m} / 2) \mathrm{X}(\mathrm{n} / 2)\). This begs the question what happens when m or n is odd or when \((m / Q)\) or ( \(n / Q\) ) are not integers. In either case the largest rows or columns are dropped. (For large Q the function might be modified to drop about half the pixels at both edges.)
in.poly, in.poly.grid Determines whether the points xd,yd are inside a polygon or outside. Return value is a logical vector with TRUE being inside or on boundary of polygon. The test expands the polygon slightly in size (on the order of single precision zero) to include points that are
at the vertices. in. poly does not really depend on an image format however the grid version in. poly.grid is more efficient for considering the locations on a regular grid See also in. land.grid that is hard coded to work with the fields world map.

\section*{Author(s)}

\section*{Doug Nychka}

\section*{See Also}
drape.plot, image.plot, interp.surface, interp.surface.grid, in.land.grid

\section*{Examples}
```

data(RMelevation)

region defining Colorado Front Range

 loc<- rbind(c(-106.5, 40.8),
 c(-103.9, 37.5))

extract elevations for just CO frontrange.

 FR<- crop.image(RMelevation, loc)
 image.plot(FR, col=terrain.colors(256))
 which.max.image(FR)

average cells 4 to 1 by doing this twice!

 temp<- half.image(RMelevation)
 temp<- half.image(temp)

or in one step

 temp<- average.image(RMelevation, Q=4)-> temp
 image.plot(temp, col=terrain.colors(256))

a polygon (no special meaning entered with just locator)

x1p<- c(
-106.2017, -104.2418, -102.9182, -102.8163, -102.8927, -103.3254, -104.7763,
-106.5581, -108.2889, -109.1035, -109.3325, -108.7980)
x2p<- c(
43.02978, 42.80732, 41.89727, 40.84566, 39.81427, 38.17618, 36.53810, 36.29542,
36.90211, 38.29752, 39.45025, 41.02767)
xp<- cbind(x1p,x2p)
image.plot(temp)
polygon(xp[,1], xp[,2], lwd=2)

find all grid points inside poly

 fullset<- make.surface.grid(list(x= temp$x, y= temp$y))
 ind<- in.poly(fullset,xp)
    ```
```


take a look

 plot(fullset, pch=".")
 polygon(xp[,1], xp[,2], lwd=2)
 points(fullset[ind,], pch="o", col="red", cex=.5)

masking out the image NA == white in the image plot

 temp$z[!ind] <- NA
 image.plot(temp)
 polygon(xp[,1], xp[,2], lwd=2)

This is more efficient for large grids:

because the large number of grid location (xg above) is

never explicitly created.

 ind<- in.poly.grid(list(x= temp$x, y= temp$y), xp)

now use ind in the same way as above to mask points outside of polygon

```
imagePlot

Draws an image plot with a legend strip for the color scale based on either a regular grid or a grid of quadrilaterals.

\section*{Description}

These functions combines the R image function with some automatic placement of a colorbar legend. imagePlot is backwardly compatible with the older function image.plot. plotMatrix gives an image plot but shuffles the matrix so that it is in its usual tabular order. There are also some supporting functions to place color bars on other kinds of plots.

\section*{Usage}
```

imagePlot(..., add = FALSE, breaks = NULL, nlevel = 64, col =
NULL, horizontal = FALSE, legend.shrink = 0.9,
legend.width = 1.2, legend.mar = ifelse(horizontal,
3.1, 5.1), legend.lab = NULL, legend.line = 2,
graphics.reset = FALSE, bigplot = NULL, smallplot =
NULL, legend.only = FALSE, lab.breaks = NULL,
axis.args = NULL, legend.args = NULL, legend.cex = 1,
midpoint = FALSE, border = NA, lwd = 1, lowerTriangle
= FALSE, upperTriangle = FALSE, asp = NA, verbose =
FALSE)
colorBar(breaks, smallplot, colorTable, horizontal = FALSE,
lab.breaks, axis.args, legend.lab, legend.line = 2,
legend.args, legend.cex = 1, lowerTriangle = FALSE,
upperTriangle = NULL)

```
```

setupLegend(horizontal = FALSE,
legend.shrink = 0.9,
legend.width = 1.2,
legend.mar = ifelse(horizontal, 3.1, 5.1)
)
addLegend(legendLayout, col, zlim, axis.args = NULL, legend.args
= NULL, legend.cex = 1, legend.lab = NULL, legend.line
= 2)
addColorBarTriangle(lowerColor=NULL,
upperColor=NULL,
horizontal=TRUE)
plotMatrix(A, M = 5, N = 5, ...)

```

\section*{Arguments}
... \begin{tabular}{l} 
The usual arguments to the image function as \(x, y, o r z\) or as a list with \(x, y, z\) as \\
components. One can also include a breaks argument for an unequal spaced \\
color scale with color scale boundaries at the breaks (see example below). If a \\
"quadrilateral grid", arguments must be explicitly \(x, y\) and \(z\) with \(x\), and y being \\
matrices of dimensions equal to, or one more than, \(z\) giving the grid locations. \\
The basic concept is that the coordinates of \(x\) and y still define a grid but the \\
image cells are quadrilaterals rather than being restricted to rectangles. NOTE: \\
graphical argruments passed here will only have impact on the image plot. To \\
change the graphical defaults for the legend use the individual legend arguments, \\
axis.args, or legend.arg listed below. \\
If true add image and a legend strip to the existing plot. \\
add \\
Plot aspect. The same function as in the plot or image functions. \\
axis.args \\
A list giving additional arguments for the axis function used to create the legend \\
axis. Some typicalones are at and labels and specify cex to control the size of \\
the labels. (See example below adding a log scaling.) \\
Matrix to plot as an image. \\
Alot coordinates for image plot. If not passed these will be determined within \\
bigplot \\
the function. \\
This only works if \(x\) and y are matrices - if NA the quadralaterals will have a
\end{tabular}
border color that is the same as the interior color. Otherwise this specifies the
color to use.
colorTable The colors for the color scale - the same as col.
graphics.reset If FALSE (default) the plotting region ( plt in par) will not be reset and one can add more information onto the image plot. (e.g. using functions such as points or lines.) If TRUE will reset plot parameters to the values before entering the function.
horizontal If FALSE (default) legend will be a vertical strip on the right side. If TRUE the legend strip will be along the bottom.
lab.breaks If breaks are supplied these are text string labels to put at each break value. This feature is useful, for example, to label the legend axis on a transformed scale such as logs. It is also used in the bubblePlot function to label the colors when z is categorical.
legend.only If TRUE just add the legend to a the plot in the plot region defined by the coordinates in smallplot. In the absence of other information the range for the legend is determined from the zlim argument.
legend.args Arguments for a complete specification of the legend label, e.g. if you need to the rotate text or other details. This is in the form of list and is just passed to the mtext function and you will need to give both the side and line arguments for positioning. This usually will not be needed. (See example below.)
legend.cex Character expansion to change size of the legend label.
legend.line Distance in units of character height (as in mtext) of the legend label from the color bar. Make this larger if the label collides with the color axis labels.
legend.mar Width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend.
legend.lab Label for the axis of the color legend. Default is no label as this is usual evident from the plot title.
legend. shrink Amount to shrink the size of legend relative to the full height or width of the plot.
legend.width Width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character.
legendLayout The list returned by setupLegend used to layout the legend after a plot is drawn. lowerColor The name of a color for the triangle added to the upper end of the color bar.
lowerTriangle If TRUE a triangle will be added to the lower end of the color bar using the first color in the color table. (i.e. the color of col[1]). If FALSE a normal color strip will be drawn.
lwd Line width of bordering lines around pixels. This might need to be set less than 1.0 to avoid visible rounding of the pixel corners.

M Number of rows to label in plotMatrix
midpoint This option is for the case of unequally spaced grids with x and y being matrices of grid point locations. If FALSE (default) the quadralaterals will be extended to surround the z locations as their midpoints. If TRUE z values will be averaged to yield a midpoint value and the original grid points be used to define the quadralaterals. (See help on poly.image for details). In most cases midpoint should be FALSE to preserve exact values for z and let the grid polygons be modified.
\begin{tabular}{ll}
N & \begin{tabular}{l} 
Number of columns to label in plotMatrix \\
nlevel \\
smallplot
\end{tabular} \\
\begin{tabular}{l} 
Number of color levels used in legend strip
\end{tabular} \\
\begin{tabular}{l} 
Plot coordinates for legend strip. If not passed these will be determined within \\
the function. Be sure to leave room for the axis labels. For example, if the \\
legend is on the right side smallplot \(\mathrm{c}(.85, .9,0,1)\) will leave (.1 in plot \\
coordinates) for the axis labels to the right of the color strip. This argument \\
is useful for drawing a plot with the legend that is the same size as the plots \\
without legends.
\end{tabular} \\
upperColor & \begin{tabular}{l} 
The color for the triangle added to the upper end of the color bar.
\end{tabular} \\
upperTriangle & \begin{tabular}{l} 
If TRUE a triangle added to the upper end of the color bar using the last color in \\
the color table. (i.e. the col argument). If FALSE a normal color strip will be \\
drawn.
\end{tabular} \\
verbose & \begin{tabular}{l} 
If TRUE prints intermediate information about setting up plots (for debugging).
\end{tabular} \\
zlim & \begin{tabular}{l} 
For addLegend, the range of color scale. Default is to use range set by most \\
recent call to color.scale
\end{tabular}
\end{tabular}

\section*{Details}

This is a function using base R graphics. The coding was done to make it easier for users to see how this function works and to modify. This will have the same functionaity as the older image. plot but calls the colorBar function in place of direct coding in the main function. The functions colorBar and addColorBarTriangle are used internally and included for completeness.

\section*{How this function works:}

This function works by splitting the plotting region into two parts. Putting the image in one and the legend in the other. After the legend is added the plot region is reset to the main image plot. This function also allows for plotting quadrilateral cells in the image format that often arise from regular grids transformed with a map projection or a scaling and rotation of coordinates. Finally, see the last example where this function can create a similar graphic to the ggplot package but using all base R graphics. Two additional functions are provided to add a color scale to other kinds of figures.
The strategy for imagePlot is simple: divide the plotting region into two smaller regions bigplot and smallplot. The image goes in one and the legend in the other. This way there is always room for the legend. Some adjustments are made to this rule by not shrinking the bigplot if there is already room for the legend strip and also sticking the legend strip close to the image plot. The functionality has evolved over many uses of image plots for geophysical data and the examples given below show the flexibility of this function. Also this function is backwardly compatible with the older image. plot but includes adding endcap trianglesto the color bar to indicate values beyond the range of the color scale. Also the function uses colorBar to add the legend strip a function that is useful on its own in other applictions.
Figure real estate One can specify the plot regions explicitly by bigplot and smallplot if the default choices do not work.(Note that these in figure coordinates. ) There may be problems with small plotting regions in fitting both of these elements into the plot region and one may have to change the default character sizes or margins to make things fit. Sometimes this function will not reset the type of margins correctly and the "null" call par (mar = par ("mar")) may help to fix this issue.

The text is too small! This always seems to happen as one is rushing to finish a talk and the figures have tiny default axis labels. Try just calling the function fields. style before plotting and list out this function to see how to make further changes.
Why "imagePlot" and not "image"? The R Base function image is very useful but it is awkward to place a legend quickly. However, that said if you are drawing several image plots and want a common legend use the image function and just just use imagePlot to add the legend. See the example in the help file. Note that you can use image to draw a bunch of images and then follow with imagePlot and legend. only=TRUE to add a common legend. (See examples below.)
Almost cloropleths too! This image function is slightly different than a cloropleth map because the legend is assuming that a continous scale has been discretized into a series of colors. To use the imagePlot function to create a cloropleth graphic involves an extra step of first recoding the image matrix into a set of integers that correspond to the colors in the color table. With this new matrix as the image plot use the legend.args list to place labels for each of the colors beside the color strip. For example, if one has used \(N\) colors in col then the locations of the color strip run from 1 to N and one could place the N color labels at the positions ( \(1: \mathrm{N}\) ) along the axis. Note that this two step technique could also one adpated if one had a nonlinear color scale and wanted to identify the values.
Relationship of \(\mathbf{x}, \mathbf{y}\) and \(\mathbf{z}\) : If the z component is a matrix then the user should be aware that this function locates the matrix element \(\mathrm{z}[\mathrm{i}, \mathrm{j}]\) at the grid locations ( \(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}]\) ) this is very different than simply listing out the matrix in the usual row column tabular form. See the example below for details on the difference in formatting. What does one do if you do not really have the " z " values on a regular grid? See the functions quilt.plot.Rd and as.image to discretise irregular observations to a grid. If the values makes sense as points on a smooth surface see Tps and fastTps for surface interpolation.
Adding separate color to indicate the grid box boundaries. Sometimes you want to show to the grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way to do this as an option in image. But if your image is formatted in the "poly image" style where x and \(y\) are also matrices you can use the polyimage (see the border argument above) option to draw in boundaries.
Grids with unequally spacing - quadrialteral pixels: If \(x\) and \(y\) are matrices that are a smooth transformation of a regular grid then \(\mathrm{z}[\mathrm{i}, \mathrm{j}]\) can be interperted as representing the average value in a quadrilateral that is centered at \(x[i, j]\) and \(y[i, j]\) (midpoint TRUE). The details of how this cell is found are buried in poly. image but it it essentially found using midpoints between the centers. If midpoint is FALSE then \(x\) and \(y\) are interpreted as the corners of the quadrilateral cells. But what about \(z\) ? The four values of \(z\) are now averaged to represent a value at the midpoint of the cell and this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded output of geophysical models where the regular grid is defined according to one map projection but the image plotting is required in another projection. Typically the regular grid becomes distorted in a smooth way when this happens. See the regional climate example for a illustration of this application. One can add border colors in this case easily because these choices are just passed onto the polygon function.
Adding the pixel grid for rectangular images: For adding the grid of pixel borders to a rectangular image try this example after calling imagePlot.
```

dx <- x[2] - x[1]
dy <- y[2] - y[1]
xtemp<- seq(min(x)- dx/2, max(x)+ dx/2,

```
```

 length.out = length(x) +1)
 ytemp<- seq(min(y)- dy/2, max(y)+ dy/2,
length.out = length(y) +1)
xline(xtemp, col="grey", lwd=2)
yline(ytemp, col="grey", lwd=2)

```

Here x and y here are the x and y grid values from the image list.
Fine tuning color scales: This function gives some flexibility in tuning the color scale to fit the rendering of z values. This can either be specially designed color scale with specific colors ( see help on designer. colors), positioning the colors at specific points on the [ 0,1\(]\) scale, or mapping distinct colors to intervals of z . The examples below show how to do each of these. In addition, by supplying lab.break strings or axis parameters one can annotate the legend axis in an informative matter.
Adding just a legend strip/ color bar: Note that to add just the legend strip all the numerical information one needs is the zlim argument and the color table! See examples for tricks in positioning.
About color tables: We like tim. colors(the default) as default color scales and so if this what you use this can be omitted. Unfortunately this is not the default for the image function. Another important color scale is viridis() from the viridis package. It seems that by and large everyone seems to react positively to viridis - guess that is the point!
The topographic color scale (topo.colors) is also a close second and also see snow.colors showing our geophysical bias. Users may find larry.colors useful for coding distinct regions in the style of a cloropleith map. See also terrain.colors for a subset of the topo ones and designer. colors to "roll your own" color table. One nice option in this last function is to fix color transitions at particular quantiles of the data rather than at equally spaced intervals. For color choices see how the nlevels argument figures into the legend and main plot number of colors. Also see the colors function for a listing of all the colors that come with the R base environment.
The details of placing the legend and dividing up the plotting real estate: It is surprising how hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in device coordinates. The plot region is assumed to be \([0,1] \mathrm{X}[0,1]\) and plotting regions are defined as rectangles within this square. We found these easier to work with than user coordinates.
legend.width and legend.mar are in units of character spaces. These units are helpful in thinking about axis labels that will be put into these areas. To add more or less space between the legend and the image plot alter the mar parameters. The default mar settings ( \(5.1,5.1,5.1,2.1\) ) leaves 2.1 spaces for vertical legends and 5.1 spaces for horizontal legends.

There are always problems with default solutions to placing information on graphs but the choices made here may be useful for most cases. The most annoying thing is that after using imagePlot and adding information the next plot that is made may have the slightly smaller plotting region set by the image plotting. The user should set reset.graphics=TRUE to avoid the plotting size from changing. The disadvantage, however, of resetting the graphics is that one can no longer add additional graphics elements to the image plot. Note that filled.contour always resets the graphics but provides another mechanism to pass through plotting commands. Apparently filled.contour, while very pretty, does not work for multiple plots.

About setup and add legend functions These came about to create a scatterplot in Base R Graphics where the points are colored with a color scale and the scale can be plotted as part of the figure See bubblePlot for a version of this kind of figure. The function setupLegend should be used first to create enough space to add a color scale later. After plotting then addLegend will add the color
scale. Note that if the color scale has been created by the color. scale function the last call to this function will use the color scale and limits created in color. scale.
In summary here is an example of using these functions with the colors in mind:
```

info<- setupLegend()
colTab<- rainbow(10)
plot(1:10, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(1,10))

```

Here is one where four colors are mapped to specific values (ala image).
```

info<-setupLegend()
colTab= color.scale(201:210, rainbow(4))
plot(1:10, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(201,210))

```

More complete graphics languages, such as that in ggplot, do not need such functions because the entire graphics segment is parsed to create the complete figure. In this way room for a color scale can be created automatically. The functions proposed here are a simple work around to create these figures using base R graphics.

Other packages levelplot that is part of the lattice package has a very similar function to imagePlot and a formula syntax in the call. The geom_raster for setting up a graphics object within ggplot is another alternative for image plots with legends. See the last example to compare the steps in creating an image plot using imagePlot that is close to the ggplot version. Mostly this involves resetting base graphics parameters using the par function but gives an appreciate of the complexity built in the ggplot default graphic choices.
Multiple images single color bar: By keeping the zlim argument the same across images one can generate the same color scale. (See the image help file.) One useful technique for a panel of images is to just draw the images with good old image and then use imagePlot to add a legend to the last plot. (See example below for messing with the outer margins to also make this work.) Moreover, a square plot ( \(p t y=" s "\) ) done in a rectangular plot region will have room for the legend stuck to the right side without any other adjustments. See the examples below for more complicated arrangements of multiple image plots and a summary color bar. The reader is also referred to the package autoimage as a set of functions in base to help with drawing multiple images and also more support for geographic coordinates.

\section*{Side Effects}

After exiting, the plotting region may be changed to make it possible to add more features to the plot. To be explicit, par () \(\backslash \$ p l t\) may be changed to reflect a smaller plotting region that has accommodated room for the legend subplot.
If \(x \lim\) and \(y l i m\) are specified the pixels may overplot the axis lines. Just use the box function to redraw them.

\section*{See Also}
image, poly.image, filled.contour, quilt.plot, plot.surface, add.image, colorbar.plot, tim.colors, designer.colors

\section*{Examples}
```

 x<- 1:10
 y<- 1:15
 z<- outer(x,y,"+")
 imagePlot(x,y,z)

to view z in the usual matrix indexing:

 plotMatrix(z)

or

 obj<- list(x=x,y=y,z=z)
 imagePlot(obj, legend.lab="Sverdrups")

to test add some points on diagonal using standard plot function

(with some clipping beyond 10 anticipated)

 points(5:12, 5:12, pch="X", cex=3)

in general imagePlot will reset the plot window so you

can add any feature that normally works in base R

e.g. lines, text, contour, boxplots,

\#

the next sequence of examples explain how to quickly

adapt this basic plot to include more features

\#

adding explicit breaks and distinct colors for intervals of z

 brk<- quantile(c(z), c(0, .1,.25, .5, .75, .9, 1.0))
 imagePlot(x,y,z, breaks=brk, col=topo.colors(6))

last bins are depicted as end triangles on the color bar.

 imagePlot(x,y,z, breaks=brk, col=topo.colors(6),
 lowerTriangle=TRUE, upperTriangle=TRUE)

NOTE: the image function does not use -Inf and Inf for the breaks argument

and so if one wants the triangles at ends to indicate values beyond the

range of the color bar one has to create the breaks "by hand" when the

two outer bins will define the values for the triangles.

annotate legend strip with the break point values and add a label

 imagePlot(x,y,z, breaks=brk, col=rainbow(6),
 lab.breaks=names(brk))

compare to default color scale and special labels on color bar

 zp <-quantile(c(z), c(.05, .1,.25, .5,.75, .9,.95))
 imagePlot(x,y,z,
 axis.args=list(at=zp, labels=names(zp)))
    ```
\# a log scaling for the colors
```

 ticks<- c(1, 2,4,8,16,32)
 imagePlot(x,y,log(z), axis.args=list(at=log(ticks), labels=ticks))

see help(designer.colors) to generate a color scale that adapts to

quantiles of z.

Add some color scales together here is an example of5 blues to white to 5 reds

with white being a specific size.

colorTable<- designer.colors(11, c("blue","white", "red"))

breaks with a gap of 10 to 17 assigned the white color

 brks<- c(seq(1, 10, 6), seq(17, 25,,6))
 imagePlot(x,y,z,breaks=brks, col=colorTable)

\#fat (5 characters wide) and short (50% of figure) color bar on the bottom
imagePlot(x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE)

adding a label and all kinds of additional arguments to color bar

use side=4 for vertical legend and side= 1 for horizontal legend

to be parallel to axes. See help(mtext).

imagePlot(x,y,z,
legend.args=list(text="unknown units",
col="magenta", cex=1.5, side=4, line=2))

and finally add some grid lines

 dx <- x[2] - x[1]
 dy <- y[2] - y[1]
 xtemp<- seq(min(x)- dx/2, max(x)+ dx/2,
 length.out = length(x) +1)
 ytemp<- seq(min(y)- dy/2, max(y)+ dy/2,
 length.out = length(y) +1)
 xline(xtemp, col="grey", lwd=2)
yline(ytemp, col="grey", lwd=2)
\#

example using an irregular quadrilateral grid

\#
data(RCMexample)
imagePlot(RCMexample$x, RCMexample$y, RCMexample$z[,,1])
ind<- 50:75 # make a smaller image to show bordering lines
imagePlot(RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1],
border="grey50", lwd=2)
\#

multiple images with a common legend

\#
set.panel()
\# Here is quick but quirky way to add a common legend to several plots.

```
```


The idea is leave some room in the margin and then at the end

overplot the legend in this margin

par(oma=c(0,0,0,4)) \# margin of 4 spaces width at right hand side
set.panel(2,2) \# 2X2 matrix of plots

now draw all your plots using usual image command

for (k in 1:4){
data<- matrix(rnorm(150), 10,15)
image(data, zlim=c(-4,4), col=tim.colors())

and just for fun add a contour plot

 contour(data, add=TRUE)
 }
par(oma=c(0,0,0,1))\# reset margin to be much smaller.
imagePlot(legend.only=TRUE, zlim=c(-4,4))

imagePlot tricked into plotting in margin of old setting

set.panel() \# reset plotting device

Here is a more learned strategy to add a common legend to a panel of

plots. Consult the split.screen help file for more explanations.

For this example we draw two

images top and bottom and add a single legend color bar on the right side

first divide screen into the figure region (left) and legend region (right)

 split.screen(rbind(c(0, .8,0,1), c(.8,1,0,1)))

now subdivide up the figure region into two parts

 split.screen(c(2,1), screen=1)-> ind
 zr<- range(2,35)

first image

 screen(ind[1])
 image(x,y,z, col=tim.colors(), zlim=zr)

second image

 screen(ind[2])
 image(x,y,z+10, col=tim.colors(), zlim =zr)

move to skinny region on right and draw the legend strip

 screen(2)
 imagePlot(zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7),
 col=tim.colors())
 close.screen(all=TRUE)

you can always add a legend arbitrarily to any plot;

note that here the plot by default is too big for the vertical strip

or horizontal strip.

just increase the margin size to accomodate

```
```


this fix will be graphics device dependent so I recommend

using the pdf function and saving to a pdf file to get consistent results

plot(1:10, 1:10)
imagePlot(zlim=c(0,25), legend.only=TRUE)
imagePlot(zlim=c(0,25), legend.only=TRUE, horizontal =TRUE)
par(mar=c(10,5,2,2))
plot(1:10, 1:10)
imagePlot(zlim=c(0,25), legend.only=TRUE, horizontal = TRUE)

Not run:

drawing and saving the plot to a pdf file.

pdf("test.pdf", width=6, height=4)
par(mar=c(10,5,2,2)) \# you may have to adjust these.
plot(1:10, 1:10)
imagePlot(zlim=c(0,25), legend.only=TRUE, horizontal = TRUE)
dev.off()

End(Not run)

combining the usual image function and adding a legend

first change margin for some more room

Not run:

par(mar=c(10,5,5,5))
image(x,y,z, col=topo.colors(64))
imagePlot(zlim=c(0,25), nlevel=64,legend.only=TRUE,
horizontal=TRUE,
col=topo.colors(64))

End(Not run)

adding a legend by automatically making room.

and coloring points

 info<- setupLegend()
 colTab<- rainbow(10)
 plot(201:210, 201:210, col=colTab, pch=16)
 addLegend(info, col=colTab, zlim = c(201,210))

\#

Comparison to ggplot

\#

The following example was created as way avoid doing more important

things

Note how close base graphics can get to reproducing the ggplot style.

and how a first cut imagePlot(x,y,z, col = viridis(128)) is probably

acceptable in most cases for fast EDA

Surprisingly the hardest feature is to add the grey gird lines behind

the image. I (DWN) don't know how to do it!

Not run:

```
```

library(viridis)
library(ggplot2)
x<- 1:20
y<- 1:24
z<- outer(x, y, "+")

ggplot version

 mesh<- expand.grid(x= x, y=y)
 mesh$z <- c(z)
 ggplot(data=mesh, aes(x=x, y=y, fill=z)) +
 geom_raster(interpolate= FALSE) +
 scale_fill_continuous(type = "viridis") +
 theme_bw()

reset to a single plot

 set.panel()

inflate range to give a margin around image

 xr<- range(x) + c(-.08, .08)* diff(range(x))
 yr<- range(y) + c(-.08, .08)* diff(range(y))

changing these graphics parameters tends to push

text closer to the axes.

 par(mgp=c(1.5,.5,0), mar=c(2.5,2.5,.5,1), cex=.8)
 imagePlot(x,y,z,
 col = viridis(128),
 legend.shrink = .27,
 xlim = xr,
 ylim = yr,
 legend.width = 1.5,
 legend.mar = 3,
 legend.args = list(text = "z",
 cex = .8,
 side = 3,
 line = .5)
)

End(Not run)

```
    interp.surface
        Fast bilinear interpolator from a grid.

\section*{Description}

Uses bilinear weights to interpolate values on a rectangular grid to arbitrary locations or to another grid.

\section*{Usage}
interp.surface(obj, loc)
interp.surface.grid(obj, grid.list)
interp.surface. FFT(obj, M)
fillGrid( gridList, M)

\section*{Arguments}
obj A list with components \(\mathrm{x}, \mathrm{y}\), and z in the same style as used by contour, persp, image etc. \(x\) and \(y\) are the \(X\) and \(Y\) grid values and \(z\) is a matrix with the corresponding values of the surface. For the FFT method there must be an odd number of grid points.
loc A matrix of (irregular) locations to interpolate. First column of loc isthe X coordinates and second is the Y's.
grid.list A list with components x and y describing the grid to interpolate. The grids do not need to be equally spaced.
gridList Just a newer name for a grid list object.
M
A muliple of the source grid to interpolate to create the target grid. E.g. if \(\mathrm{M}=5\) then a 10 X 20 source grid in obj will give an interpolated grid of \((10 * 5) \mathrm{X}(20 * 5)\). See the fillGrid function that creates the larger grid.

\section*{Details}
interp.surface Here is a brief explanation of the interpolation: Suppose that the location, (locx, locy) lies in between the first two grid points in both x an y . That is locx is between x 1 and x 2 and locy is between y 1 and y 2 . Let \(\mathrm{ex}=(11-\mathrm{x} 1) /(\mathrm{x} 2-\mathrm{x} 1)\) ey \(=(12-\mathrm{y} 1) /(\mathrm{y} 2-\mathrm{y} 1)\). The interpolant is
\((1-e x)(1-e y) * z 11+(1-e x)(e y) * z 12+(e x)(1-e y) * z 21+(e x)(e y) * z 22\)
Where the z's are the corresponding elements of the Z matrix.
Note that bilinear interpolation can produce some artifacts related to the grid and not reproduce higher behavior in the surface. For, example the extrema of the interpolated surface will always be at the parent grid locations. There is nothing special about about interpolating to another grid, this function just includes a for loop over one dimension and a call to the function for irregular locations. It was included in fields for convenience. since the grid format is so common.
See also the akima package for fast interpolation from irrgeular locations. Many thanks to JeanOlivier Irisson for making this code more efficient and concise.
interp.surface.FFT This version does the interpolation via the usual sin /cosine basis and the FFT. This method only makes sense for interpolating to a target grid that is a refinement of the source grid. E.g. if \(\mathrm{M}=5\) then a 10 X 20 source grid in obj will give an interpolated grid of \((10 * 5) \mathrm{X}(20 * 5)\) \(=50 \mathrm{X} 200\). endpoints of this grid match the endpoints of the source.
Note the FFT interpolation is "C infinity " accurate which means in practice that this method will do well for smooth fields. Sharp changes will induce the usual Gibbs oscillations around large the changes. The interpolation is also peridic in both dimensions ( a torus) and so might give strange results for non-periodic fields. Pad the edges to mitigate this artifact.
The algorithm in brief is 1) FFT of the source image/matrix. 2) Stuff this into corners of a larger matrix of zeroes and of the size of the refined grid. 3) Inverse FFT of stuffed matrix.

\section*{Value}
interp.surface An vector of interpolated values. NA are returned for regions of the z matrix that are NA and also for locations outside of the range of the parent grid.
interp.surface.grid Interpolated values using bilinear interpolation in the list/image format with comonents: \(x, y, z\).
interp.surface.FFT Interpolated values using the FFT method in an image format with the grid refined by the factor \(M\).

\section*{See Also}
image.smooth, as.surface, as.image, imagePlot, image.plot fastTps

\section*{Examples}
```


evaluate an image object at a finer grid

data(lennon)

create an example in the right list format like image or contour or persp.

obj<- list(x= 1:21, y=1:21, z= lennon[201:221, 201:221])
set.seed(123)

lots of random points

N<- 500
loc<- cbind(runif(N)*20, runif(N)*20)
z.new<- interp.surface(obj, loc)

compare the image with bilinear interpolation at scattered points

set.panel(2,2)
image.plot(obj)
quilt.plot(loc, z.new)

sample at 100X100 equally spaced points on a grid

grid.list<- list(x= seq(1,20,,100), y= seq(1,20,,100))
interp.surface.grid(obj, grid.list)-> look

this will give an error in the FFT version because

there are an even number of grid points for x.

objTest<- list(x= 1:20, y=1:21, z= lennon[201:220, 201:221])

look2<- interp.surface.FFT(objTest, M=10)

look2<- interp.surface.FFT(obj, M=20)-> look2

take a look

set.panel(2,2)
image.plot(obj)
image.plot(look)
image.plot(look2)

```
Krig Kriging surface estimate

\section*{Description}

Fits a surface to irregularly spaced data. The Kriging model assumes that the unknown function is a realization of a Gaussian random spatial processes. The assumed model is additive \(\mathrm{Y}=\mathrm{P}(\mathrm{x})+\) \(Z(X)+e\), where \(P\) is a low order polynomial and \(Z\) is a mean zero, Gaussian stochastic process with a covariance that is unknown up to a scale constant. The main advantages of this function are the flexibility in specifying the covariance as an R language function and also the supporting functions plot, predict, predictSE, surface for subsequent analysis. Krig also supports a correlation model where the mean and marginal variances are supplied.

\section*{Usage}
```

Krig(x, Y, cov.function = "stationary.cov", lambda = NA, df
= NA, GCV = FALSE, Z = NULL, cost = 1, weights = NULL,
m = 2, nstep.cv = 200, scale.type = "user", x.center =
rep(0, ncol(x)), x.scale = rep(1, ncol(x)), sigma =
NA, tau2 = NA, method = "REML", verbose = FALSE,
null.function = "Krig.null.function", wght.function =
NULL, offset = 0, na.rm = TRUE, cov.args = NULL,
chol.args = NULL, null.args = NULL, wght.args = NULL,
W = NULL, give.warnings = TRUE, mean.obj = NA, sd.obj
= NA, ...)
\#\# S3 method for class 'Krig'
fitted(object,...)
\#\# S3 method for class 'Krig'
coef(object,...)
resid.Krig(object,...)

```

\section*{Arguments}
chol.args Arguments to be passed to the cholesky decomposition in Krig.engine.fixed. The default if NULL, assigned at the top level of this function, is list( pivot=FALSE). This argument is useful when working with the sparse matrix package.
cov.args A list with the arguments to call the covariance function. (in addition to the locations)
cov.function Covariance function for data in the form of an R function (see Exp.simple.cov as an example). Default assumes that correlation is an exponential function of distance. See also stationary.cov for more general choice of covariance shapes. exponential. cov will be faster if only the exponential covariance form is needed.
\begin{tabular}{ll} 
cost & \begin{tabular}{l} 
Cost value used in GCV criterion. Corresponds to a penalty for increased num- \\
ber of parameters. The default is 1.0 and corresponds to the usual GCV function. \\
The effective number of parameters for the fitted surface. Conversely, N- df, \\
where N is the total number of observations is the degrees of freedom associated \\
with the residuals. This is an alternative to specifying lambda and much more \\
interpretable. NOTE: GCV argument defaults to TRUE if this argument is used. \\
If TRUE matrix decompositions are done to allow estimating lambda by GCV or \\
REML and specifying smoothness by the effective degrees of freedom. So the \\
GCV switch does more than just supply a GCV estimate. Also if lambda or df \\
GCV \\
are passed the estimate will be evaluated at those values, not at the GCV/REML \\
estimates of lambda. If FALSE Kriging estimate is found under a fixed lambda \\
model.
\end{tabular} \\
give.warnings & \begin{tabular}{l} 
If TRUE warnings are given in gcv grid search limits. If FALSE warnings are \\
not given. Best to leave this TRUE! This argument is set ot FALSE if warn is
\end{tabular} \\
less than zero in the top level, R options function. See options()\$warn
\end{tabular}
\begin{tabular}{ll} 
sigma & \begin{tabular}{l} 
Scale factor for covariance. \\
scale.type \\
This is a character string among: "range", "unit.sd", "user", "unscaled". The \\
independent variables and knots are scaled to the specified scale.type. By default \\
no scaling is done. This usuall makes sense for spatial locations. Scale type of \\
"range" scales the data to the interval (0,1) by forming (x-min(x))/range(x) for \\
each x. Scale type of "unit.sd" Scale type of "user" allows specification of an \\
x.center and x.scale by the user. The default for "user" is mean 0 and standard \\
deviation 1. Scale type of "unscaled" does not scale the data. \\
Object to predict the marginal standard deviation of the spatial process. \\
Variance of the errors, often called the nugget variance. If weights are specified \\
then the error variance is tau2 divided by weights. Note that lambda is defined \\
as the ratio tau2/sigma.
\end{tabular} \\
sd.obj & \begin{tabular}{l} 
If true will print out all kinds of intermediate stuff. Default is false, of course as \\
this is used mainly for debugging.
\end{tabular} \\
tau2 & \begin{tabular}{l} 
Weights are proportional to the reciprocal variance of the measurement error. \\
The default is equal weighting i.e. vector of unit weights.
\end{tabular} \\
verbose & \begin{tabular}{l} 
An R function that creates a weights matrix to the observations. This is only \\
needed if the weight matirx has off diagonal elements. The default is NULL \\
indicating that the weight matrix is a diagonal, based on the weights argument. \\
(See details)
\end{tabular} \\
wght.function \\
The observation weight matrix.
\end{tabular}

\section*{Details}

This function produces a object of class Krig. With this object it is easy to subsequently predict with this fitted surface, find standard errors, alter the \(y\) data ( but not \(x\) ), etc.
The Kriging model is: \(\mathrm{Y} . \mathrm{k}=\mathrm{f}(\mathrm{x} . \mathrm{k})=\mathrm{P}(\mathrm{x} . \mathrm{k})+\mathrm{Z}(\mathrm{x} . \mathrm{k})+\mathrm{e} . \mathrm{k}\)
where ".k" means subscripted by \(\mathrm{k}, \mathrm{Y}\) is the dependent variable observed at location \(\mathrm{x} . \mathrm{k}, \mathrm{P}\) is a low order polynomial, Z is a mean zero, Gaussian field with covariance function K and e is assumed to
be independent normal errors. The estimated surface is the best linear unbiased estimate (BLUE) of \(f(x)=P(x)+Z(x)\) given the observed data. For this estimate \(K\), is taken to be sigma*cov.function and the errors have variance tau \({ }^{* *} 2\). In more conventional geostatistical terms sigma is the "sill" if the covariance function is actually a correlation function and tau**2 is the nugget variance or measure error variance (the two are confounded in this model.) If the weights are given then the variance of e.k is tau**2/ weights.k. In the case that the weights are specified as a matrix, W , using the wght.function option then the assumed covariance matrix for the errors is tau**2 Wi, where Wi is the inverse of W. It is straightforward to show that the estimate of f only depends on tau and sigma through the ratio lambda \(=\) tau \(* * 2 /\) sigma. This parameter, termed the smoothing parameter plays a central role in the statistical computations within Krig. See also the help for thin plate splines, (Tps) to get another perspective on the smoothing parameter.
This function also supports a modest extension of the Generalized Kriging model to include other covariates as fixed regression type components. In matrix form \(\mathrm{Y}=\mathrm{Zb}+\mathrm{F}+\mathrm{E}\) where Z is a matrix of covariates and b a fixed parameter vector, F the vector of function values at the observations and E a vector of errors. The The Z argument in the function is the way to specify this additional component.
If the parameters sigma and tau 2 are omitted in the call, then they are estimated in the following way. If lambda is given, then tau 2 is estimated from the residual sum of squares divided by the degrees of freedom associated with the residuals. Rho is found as the difference between the sums of squares of the predicted values having subtracted off the polynomial part and tau2. These estimates are the MLE's under Gaussian assumptions on the process and errors. If lambda is also omitted is it estimated from the data using a variety of approaches and then the values for tau and sigma are found in the same way from the estimated lambda.

A useful extension of a stationary correlation to a nonstationary covariance is what we term a correlation model. If mean and marginal standard deviation objects are included in the call. Then the observed data is standardized based on these functions. The spatial process is then estimated with respect to the standardized scale. However for predictions and standard errors the mean and standard deviation surfaces are used to produce results in the original scale of the observations.
The GCV function has several alternative definitions when replicate observations are present or if one uses a reduced set knots. Here are the choices based on the method argument:

GCV: leave-one-out GCV. But if there are replicates it is leave one group out. (Wendy and Doug prefer this one.)
GCV.one: Really leave-one-out GCV even if there are replicate points. This what the old tps function used in FUNFITS.
rmse: Match the estimate of tau**2 to a external value (called rmse)
pure error: Match the estimate of tau**2 to the estimate based on replicated data (pure error estimate in ANOVA language).

GCV.model: Only considers the residual sums of squares explained by the basis functions.
REML: The process and errors are assumed to the Gaussian and the likelihood is concentrated (or profiled) with respect to lambda. The MLE of lambda is found from this criterion. Restricted means that the likelihood is formed from a linear transformation of the observations that is orthogonal to the column space of \(\mathrm{P}(\mathrm{x})\).

WARNING: The covariance functions often have a nonlinear parameter(s) that often control the strength of the correlations as a function of separation, usually referred to as the range parameter. This parameter must be specified in the call to Krig and will not be estimated.

\section*{Value}

A object of class Krig. This includes the predicted values in fitted.values and the residuals in residuals. The results of the grid search to minimize the generalized cross validation function are returned in gcv.grid.
The coef.Krig function only returns the coefficients, "d", associated with the fixed part of the model (also known as the null space or spatial drift).
call Call to the function
\(y \quad\) Vector of dependent variables.
\(x \quad\) Matrix of independent variables.
weights Vector of weights.
knots Locations used to define the basis functions.
transform List of components used in centering and scaling data.
np Total number of parameters in the model.
nt Number of parameters in the null space.
matrices List of matrices from the decompositions (D, G, u, X, qr.T).
gcv.grid Matrix of values from the GCV grid search. The first column is the grid of lambda values used in the search, the second column is the trace of the A matrix, the third column is the GCV values and the fourth column is the estimated value of tau conditional on the vlaue of lambda.
lambda.est A table of estimated smoothing parameters with corresponding degrees of freedom and estimates of tau found by different methods.
cost Cost value used in GCV criterion.
\(m \quad\) Order of the polynomial space: highest degree polynomial is (m-1). This is a fixed part of the surface often referred to as the drift or spatial trend.
eff.df Effective degrees of freedom of the model.
fitted.values Predicted values from the fit.
residuals Residuals from the fit.
lambda Value of the smoothing parameter used in the fit. Lambda is defined as tau**2/sigma. See discussion in details.
yname Name of the response.
cov.function Covariance function of the model.
beta Estimated coefficients in the ridge regression format
d Estimated coefficients for the polynomial basis functions that span the null space
fitted.values.null
Fitted values for just the polynomial part of the estimate
trace Effective number of parameters in model.
c Estimated coefficients for the basis functions derived from the covariance.
coefficients Same as the beta vector.
just.solve Logical describing if the data has been interpolated using the basis functions.
\begin{tabular}{ll} 
tauHat & Estimated standard deviation of the measurement error (nugget effect). \\
tau2 & Estimated variance of the measurement error (tauHat**2). \\
sigma & \begin{tabular}{l} 
Scale factor for covariance. \(\operatorname{COV}(\mathrm{h}(\mathrm{x}), \mathrm{h}(\mathrm{x}))=\) sigma*cov. function ( \(\mathrm{x}, \mathrm{x})\) If \\
the covariance is actually a correlation function then sigma is also the "sill".
\end{tabular} \\
mean.var & \begin{tabular}{l} 
Normalization of the covariance function used to find sigma. \\
best.model
\end{tabular} \begin{tabular}{l} 
Vector containing the value of lambda, the estimated variance of the measure- \\
ment error and the scale factor for covariance used in the fit.
\end{tabular}
\end{tabular}

\section*{References}

See "Additive Models" by Hastie and Tibshirani, "Spatial Statistics" by Cressie and the FIELDS manual.

\section*{See Also}
summary.Krig, predict.Krig, predictSE.Krig, predictSurfaceSE, predictSurface, plot.Krig, surface.Krig

\section*{Examples}
```


a 2-d example

fitting a surface to ozone

measurements. Exponential covariance, range parameter is 20 (in miles)

fit <- Krig(Chicago03$x, Chicago03$y, aRange=20)
summary(fit) \# summary of fit
set.panel(2,2)
plot(fit) \# four diagnostic plots of fit
set.panel()
surface(fit, type="C") \# look at the surface

predict at data

predict(fit)

predict using 7.5 effective degrees of freedom:

predict(fit, df=7.5)

predict on a grid (grid chosen here by defaults)

 out<- predictSurface(fit)
 surface(out, type="C") # option "C" our favorite

predict at arbitrary points (10,-10) and (20, 15)

 xnew<- rbind(c(10, -10), c(20, 15))
 predict(fit, xnew)

standard errors of prediction based on covariance model.

 predictSE(fit, xnew)

surface of standard errors on a default grid

 predictSurfaceSE(fit)-> out.p # this takes some time!
    ```
```

 surface(out.p, type="C")
 points(fit$x)

Not run:

Using another stationary covariance.

smoothness is the shape parameter for the Matern.

fit <- Krig(Chicago03$x, Chicago03$y,
Covariance="Matern", aRange=10, smoothness=1.0)
summary(fit)

Roll your own: creating very simple user defined Gaussian covariance

test.cov <- function(x1,x2,aRange,marginal=FALSE,C=NA){
\# return marginal variance
if(marginal) { return(rep(1, nrow(x1)))}
\# find cross covariance matrix
temp<- exp(-(rdist(x1,x2)/aRange)**2)
if(is.na(C[1])){
return(temp)}
else{
return(temp%*%C)}
}

use this and put in quadratic polynomial fixed function

 fit.flame<- Krig(flame$x, flame$y, cov.function="test.cov", m=3, aRange=.5)

note how range parameter is passed to Krig.

BTW: GCV indicates an interpolating model (nugget variance is zero)

This is the content of the warning message.

take a look...

 surface(fit.flame, type="I")

End(Not run)

Thin plate spline fit to ozone data using the radial

basis function as a generalized covariance function

p=2 is the power in the radial basis function (with a log term added for

even dimensions)

If m is the degree of derivative in penalty then p=2m-d

where d is the dimension of x. p must be greater than 0.

In the example below p = 2*2 - 2 = 2


```
```

out<- Krig(Chicago03$x, Chicago03$y,cov.function="Rad.cov",
m=2,p=2,scale.type="range")

See also the Fields function Tps

out should be identical to Tps(Chicago03$x, Chicago03$y)

Not run:

explore some different values for the range and lambda using GCV

 data(ozone2)
 aRange <- seq(200,600, ,40)
 GCV<- matrix(NA, 40,80)

the loop

 for(k in 1:40){

call to Krig with different ranges

also turn off warnings for GCV search

to avoid lots of messages. (not recommended in general!)

 obj<-Krig(ozone2$lon.lat,ozone2$y[16,],
 cov.function="stationary.cov",
 aRange=aRange[k],
 Covariance="Matern",smoothness=1.0,
 Distance="rdist.earth", nstep.cv=80,
 give.warnings=FALSE, na.rm=TRUE)
 GCV[k,]<-obj$gcv.grid[,3]
 }

get lambda grid from looping

 k<- 1
 lam<- Krig(ozone2$lon.lat,ozone2$y[16,],
 cov.function="stationary.cov",
 aRange=aRange[k],
 Covariance="Matern",smoothness=.5,
 Distance="rdist.earth", nstep.cv=80,
 give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,1]
 matplot(log10(lam), t(GCV),type="l",lty=1)

End(Not run)

```
Krig.Amatrix

Smoother (or "hat") matrix relating predicted values to the dependent \((Y)\) values.

\section*{Description}

For a fixed value of the smoothing parameter or the covariance function some nonparametric curve estimates are linear functions of the observed data. This is a intermediate level function that computes the linear weights to be applied to the observations to estimate the curve at a particular point.

For example the predicted values can be represented as Ay where A is an N X N matrix of coefficients and Y is the vector of observed dependent variables. For linear smoothers the matrix A may depend on the smoothing parameter ( or covariance function and the independent variables (X) but NOT on Y.

\section*{Usage}

Krig.Amatrix(object, x0 = object\$x, lambda=NULL, eval.correlation.model = FALSE,...)

\section*{Arguments}

Output object from fitting a data set using a FIELD regression method. Currently this is supported only for Krig ( and Tps) functions.
\begin{tabular}{ll}
\begin{tabular}{l} 
object \\
x0
\end{tabular} & \begin{tabular}{l} 
A Krig object produced by the Krig ( or Tps) function. \\
lambda \\
eval.correlation.model
\end{tabular} \\
Locations for prediction default is the observation locations. \\
Value of the smoothing parameter.
\end{tabular}

\section*{Details}

The main use of this function is in finding prediction standard errors.
For the Krig ( and Tps) functions the A matrix is constructed based on the representation of the estimate as a generalized ridge regression. The matrix expressions are explained in the references from the FIELDS manual. For linear regression the matrix that gives predicted values is often referred to as the "hat" matrix and is useful for regression diagnostics. For smoothing problems the effective number of parameters in the fit is usually taken to be the trace of the A matrix. Note that while the A matrix is usually constructed to predict the estimated curve at the data points Amatrix.Krig does not have such restrictions. This is possible because any value of the estimated curve will be a linear function of Y.
The actual calculation in this function is simple. It invovles loop through the unit vectors at each observation and computation of the prediction for each of these delta functions. This approach makes it easy to handle different options such as including covariates.

\section*{Value}

A matrix where the number of rows is equal to the number of predicted points and the number of columns is equal to the length of the Y vector.

\section*{References}

Nychka (2000) "Spatial process estimates as smoothers."

\section*{See Also}

Krig, Tps, predict.Krig

\section*{Examples}
```


Compute the A matrix or "hat" matrix for a thin plate spline

check that this gives the same predicted values

tps.out<-Tps(Chicago03$x, Chicago03$y)
A<-Krig.Amatrix(tps.out, Chicago03$x)
test<- A%*%Chicago03$y

now compare this to predict(tps.out) or tps.out\$fitted.values

they should be the same

stats(test- tps.out\$fitted.values)

```

Krig.null.function Default function to create fixed matrix part of spatial process model.

\section*{Description}

Constructs a matrix of terms representing a low order polynomial and binds additional columns due to covariates ( the Z matrix)

\section*{Usage}

Krig.null.function(x, \(Z=N U L L, ~ d r o p . Z=F A L S E, ~ m)\)

\section*{Arguments}
\(x \quad\) Spatial locations
Z Other covariates to be associated with each location.
drop. Z If TRUE only the low order polynomial part is created.
\(m \quad\) The polynomial order is (m-1).

\section*{Details}

This function can be modified to produce a different fixed part of the spatial model. The arguments \(\mathrm{x}, \mathrm{Z}\) and drop. Z are required but other arguments can be passed as part of a list in null.args in the call to Krig.

\section*{Value}

A matrix where the first columns are the polynomial terms and the following columns are from Z .

\section*{Author(s)}

Doug Nychka

\section*{See Also}

Krig

Krig.replicates Collapse repeated spatial locations into unique locations

\section*{Description}

In case that several observations are available for a single spatial location find the group means and replicate variability

\section*{Usage}

Krig.replicates(out \(=\) NULL, \(x, y, Z=N U L L\), weights \(=\operatorname{rep}(1\), length(y)), digits \(=8\), verbose \(=\) FALSE)

\section*{Arguments}
out A list with components \(x, y\), weights, and possibily \(Z\).
\(x\) Spatial locations.
y Spatial observations
Z Spatial covariates.
weights Weights proportional to reciprocal varainces of observations.
digits Number of significant digits to consider in determing a replicate location.
verbose If TRUE print out details for debugging.

\section*{Details}

This function figures out which locations are the same and within the function fast.1way use tapply to find replicate group means and standard deviations. NOTE: it is assumed the Z covariates are unique at the locations. Currently these functions can not handle a model with common spatial locations but different values for the Z covariates.

\section*{Value}

A list with components:
\begin{tabular}{ll}
yM & \begin{tabular}{l} 
Data at unique locations and where more than one observation is available this \\
is the mean of the replicates.
\end{tabular} \\
xM & \begin{tabular}{l} 
Unique spatial locations. \\
weightsM
\end{tabular} \\
\begin{tabular}{l} 
Weights matching the unique lcoations proportional to reciprocal variances This \\
is found as a combination of the original weights at each location.
\end{tabular} \\
ZM & \begin{tabular}{l} 
Values of the covariates at the unique lcoations.
\end{tabular} \\
uniquerows & Index for unique rows of x.
\end{tabular}
tauHat.rep, tauHat. pure.error
Standard deviation of pure error estimate based on replicate groups (and adjusting for possibly different weights.)
rep.info Integer tags indicating replicate groups.

\section*{Author(s)}

Douglas Nychka

\section*{Examples}
```

\#create some spatial replicates
set.seed(123)
x0<- matrix(runif(10*2), 10,2)
x<- x0[c(rep (1,3), 2:8, rep (9,5),10) ,]
y<- rnorm(16)
out<- Krig.replicates(x=x, y=y)

compare

out\$yM[1] ; mean(y[1:3])

out\$yM[9] ; mean(y[11:15])

mean(y[out\$rep.info==9])

``` for splines and Kriging.

\section*{Description}

This is a secondary function that will use the computed Krig object and find various estimates of the smoothing parameter lambda. These are several different flavors of cross-validation, a moment matching strategy and the profile likelihood. This function can also be used independently with different data sets (the y's) if the covariates (the x's) are the same and thus reduce the computation.

\section*{Usage}

KrigFindLambda(
out, lambda.grid \(=\) NA, cost \(=1\), nstep.cv \(=200\), rmse
\[
\begin{aligned}
& =\text { NA, verbose }=\text { FALSE, tol }=1 \mathrm{e}-05 \text {, offset }=0, \mathrm{y}= \\
& \text { NULL, give.warnings }=\text { TRUE })
\end{aligned}
\]
gcv.sreg (
out, lambda.grid \(=\) NA, cost \(=1\), nstep.cv \(=80\), rmse \(=\)
NA, offset \(=0\), trmin \(=\) NA, trmax \(=\) NA, verbose \(=\)
FALSE, tol \(=1 \mathrm{e}-05\), give.warnings = TRUE)

\section*{Arguments}
\begin{tabular}{ll} 
out & A Krig or sreg object. \\
lambda.grid & \begin{tabular}{l} 
Grid of lambdas for coarse search. The default is equally spaced on effective \\
degree of freedom scale.
\end{tabular} \\
cost & \begin{tabular}{l} 
Cost used in GCV denominator
\end{tabular} \\
nstep.cv & \begin{tabular}{l} 
Number of grid points in coarse search. \\
rmse \\
verbose
\end{tabular} \\
\begin{tabular}{l} 
Target root mean squared error to match with the estimate of tau**2 \\
tol
\end{tabular} & \begin{tabular}{l} 
If true prints intermediate results.
\end{tabular} \\
offset & \begin{tabular}{l} 
Tolerance in delcaring convergence of golden section search or bisection search.
\end{tabular} \\
y & \begin{tabular}{l} 
A new data vector to be used in place of the one associated with the Krig object \\
(obj)
\end{tabular} \\
give.warnings & \begin{tabular}{l} 
If FALSE will suppress warnings about grid search being out of range for vari- \\
ous estimates based on GCV and REML.
\end{tabular} \\
trmin & \begin{tabular}{l} 
Minimum value of lambda for grid search specified in terms of effective degrees \\
of freedom.
\end{tabular} \\
trmax & \begin{tabular}{l} 
Maximum value for grid search.
\end{tabular}
\end{tabular}

\section*{Details}

This function finds several estimates of the smoothing parameter using first a coarse grid search followed by a refinement using a minimization (in the case of GCV or maximum likelihood) or bisection in the case of mathcing the rmse. Details of the estimators can be found in the help file for the Krig function.
The Krig object passed to this function has some matrix decompostions that facilitate rapid computation of the GCV and ML functions and do not depend on the independent variable. This makes it possible to compute the Krig object once and to reuse the decompostions for multiple data sets. (But keep in mind if the \(x\) values change then the object must be recalculated.) The example below show show this can be used for a simulation study on the variability for estimating the smoothing parameter.

\section*{Value}

A list giving a summary of estimates and diagonostic details with the following components:
\[
\begin{array}{ll}
\text { gcv.grid } & \begin{array}{l}
\text { A matrix describing results of the coarse search rows are values of lambda and } \\
\text { the columns are lambda= value of smoothing parameter, trA=effective degrees } \\
\text { of freedom, GCV=Usual GCV criterion, GCV.one=GCV criterion leave-one- } \\
\text { out, GCV.model }=G C V ~ b a s e d ~ o n ~ a v e r a g e ~ r e s p o n s e ~ i n ~ t h e ~ c a s e ~ o f ~ r e p l i c a t e s, ~ \\
\text { tauHat = Implied estimate of tau, -Log Profile= negative log of profiel likelihood }
\end{array} \\
\text { for the lambda. } \\
\text { lambda.est } & \begin{array}{l}
\text { Summary table of all estimates Rows index different types of estimates: GCV, } \\
\text { GCV.model, GCV.one, RMSE, pure error, -Log Profile and the columns are the }
\end{array} \\
\text { estimated values for lambda, trA, GCV, tauHat. }
\end{array}
\]

\section*{Author(s)}

Doug Nychka

\section*{See Also}

Krig, Tps, predict.Krig

\section*{Examples}
```


Tps(Chicago03$x, Chicago03$y)-> obj \# default is to find lambda by GCV
summary(obj)
KrigFindLambda(obj)-> out
print(out$lambda.est) # results agree with Tps summary
sreg(rat.diet$t, rat.diet\$trt)-> out
gcv.sreg(out, tol=1e-10) \# higher tolerance search for minimum

Not run:

a simulation example

x<- seq(0,1, ,150)
f<- x**2*(1-x)
f<- f/sqrt(var(f))
set.seed(123) \# let's all use the same seed
tau<- . }
y<- f + rnorm(150)*tau
Tps(x,y)-> obj \# create Krig object
hold<- hold2<- matrix(NA, ncol=6, nrow=200)
for(k in 1:200){

look at GCV estimates of lambda

new data simulated

 y<- f + rnorm(150)*tau

save GCV estimates

lambdaTable<- KrigFindLambda(obj, y=y, give.warnings=FALSE)\$lambda.est
hold[k,]<- lambdaTable[1,]
hold2[k,]<- lambdaTable[6,]
}
matplot(cbind(hold[,2], hold2[,2]),cbind(hold[,4],hold2[,4]),
xlab="estimated eff. df", ylab="tau hat", pch=16, col=c("orange3", "green2"), type="p")
yline(tau, col="grey", lwd=2)

End(Not run)

```
lennon Gray image of John Lennon.

\section*{Description}

A 256X256 image of John Lennon. Try:
image(lennon, col=grey (seq(0,1, , 256)))
```

minitri Mini triathlon results

```

\section*{Description}

Results from a mini triathlon sponsored by Bud Lite, held in Cary, NC, June 1990. Times are in minutes for the male 30-34 group. Man was it hot and humid! (DN)

The events in order were swim: ( \(1 / 2\) mile) bike: ( 15 miles) run: ( 4 miles)
<s-section name= "DATA DESCRIPTION"> This is a dataframe. Row names are the place within this age group based on total time.

\section*{Arguments}
\begin{tabular}{ll} 
swim & swim times \\
bike & bike times \\
run & run times
\end{tabular}
```

mKrig "micro Krig" Spatial process estimate of a curve or surface, "kriging" with a known covariance function.

```

\section*{Description}

This is a simple version of the Krig function that is optimized for large data sets, sparse linear algebra, and a clear exposition of the computations. Lambda, the smoothing parameter must be fixed. This function is called higher level functions for maximum likelihood estimates of covariance paramters.

\section*{Usage}
```

mKrig(x, y, weights = rep(1, nrow(x)), Z = NULL, ZCommon =
NULL, cov.function = "stationary.cov", cov.args =
NULL, lambda = NA, m = 2, chol.args = NULL, find.trA =
TRUE, NtrA = 20, iseed = NA, na.rm = FALSE,
collapseFixedEffect = TRUE, tau = NA, sigma2 = NA,
verbose = FALSE, ...)

S3 method for class 'mKrig'

predict(object, xnew=NULL,ynew=NULL, grid.list = NULL,
derivative=0,
Z=NULL,drop.Z=FALSE,just.fixed=FALSE,
collapseFixedEffect = object\$collapseFixedEffect, ...)

S3 method for class 'mKrig'

summary(object, ...)

S3 method for class 'mKrig'

print(x, digits=4,...)

S3 method for class 'mKrigSummary'

print(x, digits=4,...)
mKrig.coef(object, y, collapseFixedEffect=TRUE)
mKrig.trace(object, iseed, NtrA)
mKrigCheckXY(x, y, weights, Z, ZCommon, na.rm)

```

\section*{Arguments}
collapseFixedEffect
If replicated fields are given to mKrig (i.e. y has more than one column) there is the choice of estimating the fixed effect coefficients ( \(d\) in the returned object) separately for each replicate or pooling across replicates and deriving a single estimate. If collapseFixedEffect is TRUE (default) the estimates are pooled.
chol.args A list of optional arguments (pivot, nnzR) that will be used with the call to the cholesky decomposition. Pivoting is done by default to make use of sparse matrices when they are generated. This argument is useful in some cases for sparse covariance functions to reset the memory parameter nnzR. (See example below.)
cov.args A list of optional arguments that will be used in calls to the covariance function.
cov.function The name, a text string of the covariance function.
derivative If zero the surface will be evaluated. If not zero the matrix of partial derivatives will be computed.
digits Number of significant digits used in printed output.
drop. \(Z \quad\) If true the fixed part will only be evaluated at the polynomial part of the fixed model. The contribution from the other covariates will be omitted.
\begin{tabular}{|c|c|}
\hline find.trA & If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method. This will add to the computational burden by approximately NtrA solutions of the linear system but the cholesky decomposition is reused. \\
\hline grid.list & A grid.list to evaluate the surface in place of specifying arbitrary locations. \\
\hline iseed & Random seed ( using set. seed (iseed)) used to generate iid normals for Monte Carlo estimate of the trace. Set this to an integer to insure the same random draws are used to compute the approximate trace and be consistent across different values of the covariance parameters. \\
\hline just.fixed & If TRUE only the predictions for the fixed part of the model will be evaluted. \\
\hline lambda & Smoothing parameter or equivalently the ratio between the nugget and process varainces. \\
\hline m & The degree of the polynomial used in the fixed part. This is follows the thin plate spline convention that the degree is \(\mathrm{m}-1\). Default is \(\mathrm{m}=2\) for a linear function, \(\mathrm{m}=1\) a constant and, as an quick logical switch, \(\mathrm{m}=0\) will result in no fixed part in the spatial model. \\
\hline na.rm & If TRUE NAs in y are omitted along with corresonding rows of x . \\
\hline NtrA & Number of Monte Carlo samples for the trace. But if NtrA is greater than or equal to the number of observations the trace is computed exactly. \\
\hline object & Object returned by mKrig. (Same as "x" in the print function.) \\
\hline sigma2 & Value of the process variance. \\
\hline tau & Value of the measurment error (aka nugget) standard deviation. \\
\hline verbose & If TRUE prints out intermediate values of objsects for debugging. \\
\hline weights & Precision ( \(1 /\) variance) of each observation \\
\hline X & Matrix of unique spatial locations (or in print or surface the returned mKrig object.) \\
\hline xnew & Locations for predictions. \\
\hline y & Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If \(y\) is a matrix the columns are assumed to be independent replicates of the spatial field. I.e. observation vectors generated from the same covariance and measurment error model but independent from each other. \\
\hline ynew & New observation vector. mKrig will reuse matrix decompositions and find the new fit to these data. \\
\hline Z & Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \(x\). (NOTE the order of the polynomial determined by m) \\
\hline ZCommon & Linear covariates to be included in fixed part of the model. This option is only relevant for independent realizations of the fields (i.e. y is a matrix). The number of rows of ZCommon should be equal to the number of observations times the number of realizations. \\
\hline & In mKrig and predict additional arguments that will be passed to the covariance function. \\
\hline
\end{tabular}

\section*{Details}

This function is an abridged version of Krig and uses a more direct computation for the linear algebra that faciliates compactly supported covariance functions. The m stand for micro and done for a fixed lambda parameter and other covariance parameters (e.g. aRange) and for unique spatial locations. This is also the basic computational element of the top level spatialProcess function for finding MLEs. See the source code for a commented version that described the computation. These restrictions simplify the code for reading. Note that also little checking is done and the spatial locations are not transformed before the estimation.

Repeated locations To keep the coding simple \(x\) must be a set of unique locations. When there are multiple observations at a location - also known as replicated locations - one strategy is to use the average spatial value for this location in place of mulitple observations. One can also adjust the weights accordingly for this location if that makes sense. To do this use the function Krig.replicates. For example
```

out<- Krig.replicates(x=x, y=y)

```
and out\$xM, out\$yM, out\$weightsM will be the unique locations with averaged values and the number of observations.
```

out<- Krig.replicates(x=x, y=y, weights= weights)

```
will also combine the weight vector based on the replications and be returned as out\$weightsM.
Multiple fields Because most of the operations are linear algebra this code has been written to handle multiple data sets. Specifically, if the spatial model is the same except for different observed values (the y's), one can pass \(y\) as a matrix and the computations are done efficiently for each set. The likelihood across all replicates is combined and denoted with FULL at the end. Also note the collapseFixedEffects switch to determine if the regression part is found seperately for each replicate or combined into a single model. Note that this is not a multivariate spatial model - just an efficient computation over several data vectors without explicit looping. A big difference in the computations is that an exact expression for the trace of the smoothing matrix is (trace \(\mathrm{A}(l a m b d a)\) ) is computationally expensive and a Monte Carlo approximation is supplied instead.

\section*{Supporting functions}

See predictSE.mKrig for prediction standard errors and sim.mKrig.approx to quantify the uncertainty in the estimated function using conditional simulation.
predict.mKrig will evaluate the derivatives of the estimated function if derivatives are supported in the covariance function. For example the wendland.cov function supports derivatives.
summary.mKrig creates a list of class mKrigSummary along with a table of standard errors for the fixed linear parameters.
print.mKrigSummary prints the mKrigSummary object and adds some more explanation about the model and results
print.mKrig prints a summary for the mKrig object that the combines the summary and print methods.
mKrig. coef finds "beta" " and "c" coefficients representing the solution using the previous cholesky decomposition but for a new data vector. This is used in computing the prediction standard error in predictSE.mKrig and can also be used to evalute the estimate efficiently at new vectors of observations provided the locations, fixed part, and the covariance matrix all remain the same .

Sparse covariance functions Sparse matrix methods are handled through overloading the usual linear algebra functions with sparse versions. But to take advantage of some additional options in the sparse methods the list argument chol.args is a device for changing some default values. The most important of these is nnzR, the number of nonzero elements anticipated in the Cholesky factorization of the postive definite linear system used to solve for the basis coefficients. The sparse of this system is essentially the same as the covariance matrix evalauted at the observed locations. As an example of resetting nzR to 450000 one would use the following argument for chol.args in mKrig:
```

chol.args=list(pivot=TRUE,memory=list(nnzR=450000))

```

Approximation trace estimate mKrig. trace This is an internal function called by mKrig to estimate the effective degrees of freedom. The Kriging surface estimate at the data locations is a linear function of the data and can be represented as \(\mathrm{A}(\) lambda) y . The trace of A is one useful measure of the effective degrees of freedom used in the surface representation. In particular this figures into the GCV estimate of the smoothing parameter. It is computationally intensive to find the trace explicitly but there is a simple Monte Carlo estimate that is often very useful. If E is a vector of iid \(\mathrm{N}(0,1)\) random variables then the trace of \(A\) is the expected value of \(t(E) A E\). Note that \(A E\) is simply predicting a surface at the data location using the synthetic observation vector E . This is done for NtrA independent \(\mathrm{N}(0,1)\) vectors and the mean and standard deviation are reported in the mKrig summary. Typically as the number of observations is increased this estimate becomse more accurate. If NtrA is as large as the number of observations ( \(n p\) ) then the algorithm switches to finding the trace exactly based on applying A to np unit vectors.

\section*{Value}
\begin{tabular}{|c|c|}
\hline summary & A named array with the values of covariance parameters and log likelihoods. \\
\hline beta & Coefficients of the polynomial fixed part and if present the covariates (Z).To determine which is which the logical vector ind.drift also part of this object is TRUE for the polynomial part. \\
\hline c. coef & Coefficients of the nonparametric part. \\
\hline nt & Dimension of fixed part. \\
\hline np & Dimension of c.coef. \\
\hline nZ & Number of columns of Z covariate matrix (can be zero). \\
\hline ind.drift & Logical vector that indicates polynomial coefficients in the d coefficients vector. This is helpful to distguish between polynomial part and the extra covariates coefficients associated with Z. \\
\hline lambda.fixed & The fixed lambda value \\
\hline x & Spatial locations used for fitting. \\
\hline knots & The same as x \\
\hline \multicolumn{2}{|l|}{cov.function. name} \\
\hline & Name of covariance function used. \\
\hline args & A list with all the covariance arguments that were specified in the call. \\
\hline m & Order of fixed part polynomial. \\
\hline chol.args & A list with all the cholesky arguments that were specified in the call. \\
\hline call & A copy of the call to mKrig. \\
\hline
\end{tabular}
non.zero.entries
Number of nonzero entries in the covariance matrix for the process at the obser-
vation locations.
LnDetCov
Log determinant of the covariance matrix for the observations having factored
out sigma.
GLS covariance for the estimated parameters in the fixed part of the model (d
coefficients0.

\section*{Author(s)}

Doug Nychka, Reinhard Furrer, John Paige

\section*{References}
https://github.com/dnychka/fieldsRPackage

\section*{See Also}

Krig, surface.mKrig, Tps, fastTps, predictSurface, predictSE.mKrig, sim.mKrig.approx, mKrig.grid

\section*{Examples}
```


Midwest ozone data 'day 16' stripped of missings

 data(ozone2)
 y<- ozone2$y[16,]
 good<- !is.na(y)
 y<-y[good]
 x<- ozone2$lon.lat[good,]

nearly interpolate using defaults (Exponential covariance range = 2.0)

see also mKrigMLEGrid to choose lambda by maxmimum likelihood

 out<- mKrig(x,y, aRange = 2.0, lambda=.01)
 out.p<- predictSurface(out)
 surface(out.p)

 # NOTE this should be identical to

Krig(x,y, aRange=2.0, lambda=.01)

```
```

\#

an example using a "Z" covariate and the Matern family

again see mKrigMLEGrid to choose parameters by MLE.

data(COmonthlyMet)
yCO<- CO.tmin.MAM.climate
good<- !is.na(yCO)
yCO<-yCO[good]
xCO<- CO.loc[good,]
Z<- CO.elev[good]
out<- mKrig(xCO,yCO, Z=Z, cov.function="stationary.cov", Covariance="Matern",
aRange=4.0, smoothness=1.0, lambda=.1)
set.panel(2,1)

quilt.plot with elevations

quilt.plot(xCO, predict(out))

Smooth surface without elevation linear term included

surface(out)
set.panel()
\#

here is a series of examples with bigger datasets

using a compactly supported covariance directly

set.seed(334)
N<- 1000
x<- matrix(2*(runif(2*N)-.5),ncol=2)
y<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(1000)*.1
look2<-mKrig(x,y, cov.function="wendland.cov",k=2, aRange=.2,
lambda=.1)

take a look at fitted surface

predictSurface(look2)-> out.p
surface(out.p)

this works because the number of nonzero elements within distance aRange

are less than the default maximum allocated size of the

sparse covariance matrix.

see options() for the default values. The names follow the convention

spam.arg where arg is the name of the spam component

e.g. spam.nearestdistnnz

The following will give a warning for aRange=. }9\mathrm{ because

allocation for the covariance matirx storage is too small.

Here aRange controls the support of the covariance and so

indirectly the number of nonzero elements in the sparse matrix

Not run:

 look2<- mKrig(x,y, cov.function="wendland.cov",k=2, aRange=.9, lambda=.1)

End(Not run)

The warning resets the memory allocation for the covariance matrix

```
mKrig
```


according the to values options(spam.nearestdistnnz=c(416052,400))'

this is inefficient becuase the preliminary pass failed.

the following call completes the computation in "one pass"

without a warning and without having to reallocate more memory.

options(spam.nearestdistnnz=c(416052,400))
look2<- mKrig(x,y, cov.function="wendland.cov",k=2,
aRange=.9, lambda=1e-2)

as a check notice that

print(look2)

reports the number of nonzero elements consistent with the specifc allocation

increase in spam.options

new data set of 1500 locations

 set.seed(234)
 N<- 1500
 x<- matrix(2*(runif(2*N)-.5),ncol=2)
 y<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01

Not run:

the following is an example of where the allocation (for nnzR)

for the cholesky factor is too small. A warning is issued and

the allocation is increased by 25

 look2<- mKrig(x,y,
 cov.function="wendland.cov",k=2, aRange=.1, lambda=1e2)

End(Not run)

to avoid the warning

 look2<-mKrig(x,y,
 cov.function="wendland.cov", k=2, aRange=.1,
 lambda=1e2, chol.args=list(pivot=TRUE, memory=list(nnzR= 450000)))
 \#

fiting multiple data sets

\#\dontrun{
y1<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
y2<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
Y<- cbind(y1,y2)
look3<- mKrig(x,Y,cov.function="wendland.cov",k=2, aRange=.1,
lambda=1e2)

note slight difference in summary because two data sets have been fit.

 print(look3)
 \#}

Not run:

\#

finding a good choice for aRange as a taper

Suppose the target is a spatial prediction using roughly 50 nearest neighbors

```
```


(tapering covariances is effective for roughly 20 or more in the situation of

interpolation) see Furrer, Genton and Nychka (2006).

take a look at a random set of }100\mathrm{ points to get idea of scale

and saving computation time by not looking at the complete set

of points

NOTE: This could also be done directly using the FNN package for finding nearest

neighbors

 set.seed(223)
 ind<- sample(1:N,100)
 hold<- rdist(x[ind,], x)
 dd<- apply(hold, 1, quantile, p= 50/N)
 dguess<- max(dd)

dguess is now a reasonable guess at finding cutoff distance for

50 or so neighbors

full distance matrix excluding distances greater than dguess

 hold2<- nearest.dist(x, x, delta= dguess)

here is trick to find the number of nonsero rows for a matrix in spam format.

 hold3<- diff(hold2@rowpointers)

min(hold3) = 43 which we declare close enough. This also counts the diagonal

So there are a minimum of 42 nearest neighbors (median is 136)

see table(hold3) for the distribution

now the following will use no less than 43-1 nearest neighbors

due to the tapering.

 mKrig(x,y, cov.function="wendland.cov",k=2, aRange=dguess,
 lambda=1e2) -> look2

End(Not run)

\#

use precomputed distance matrix

Not run:

 y1<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
 y2<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
 Y<- cbind(y1,y2)
 #precompute distance matrix in compact form
 distMat = rdist(x, compact=TRUE)
 look3<- mKrig(x,Y,cov.function="stationary.cov", aRange=.1,
 lambda=1e2, distMat=distMat)
 #precompute distance matrix in standard form
 distMat = rdist(x)
 look3<- mKrig(x,Y,cov.function="stationary.cov", aRange=.1,
 lambda=1e2, distMat=distMat)

End(Not run)

```
mKrigMLE

Maximizes likelihood for the process marginal variance (sigma) and nugget standard deviation (tau) parameters (e.g. lambda) over a many covariance models or covariance parameter values.

\section*{Description}

These function are designed to explore the likelihood surface for different covariance parameters with the option of maximizing over tau and sigma. They used the mKrig base are designed for computational efficiency.

\section*{Usage}
```

mKrigMLEGrid(x, y, weights $=\operatorname{rep}(1, \operatorname{nrow}(x)), Z=$ NULL, ZCommon=NULL,
mKrig.args $=$ NULL,
cov.function = "stationary.cov",
cov.args = NULL,
na. $\mathrm{rm}=$ TRUE,
par.grid $=$ NULL,
reltol = 1e-06,
REML = FALSE,
GCV = FALSE,
optim.args = NULL,
cov.params.start = NULL,
verbose $=$ FALSE,
iseed $=$ NA)
mKrigMLEJoint(x, y, weights $=r e p(1, \operatorname{nrow}(x)), Z=N U L L, Z C o m m o n=N U L L$,
mKrig.args = NULL,
na.rm = TRUE, cov.function = "stationary.cov",
cov.args $=$ NULL, cov.params.start $=$ NULL, optim.args $=$
NULL, reltol = 1e-06, parTransform = NULL, REML =
FALSE, GCV = FALSE, hessian = FALSE, iseed = 303,
verbose $=$ FALSE)
profileCI(obj, parName, CIlevel $=0.95$, REML $=$ FALSE $)$
mKrigJointTemp.fn(parameters, mKrig.args, cov.args, parTransform,
parNames, REML = FALSE, GCV = FALSE, verbose =
verbose, capture.env)

```

\section*{Arguments}
capture.env For the ML objective function the frame to save the results of the evaluation. This should be the environment of the function calling optim.

CIlevel Confidence level.
cov.function The name, a text string, of the covariance function.
cov.args The arguments that would also be included in calls to the covariance function to specify the fixed part of the covariance model. This is the form of a list E.g.cov.args= list (aRange \(=3.5\) )
\begin{tabular}{|c|c|}
\hline & A list of initial starts for covariance parameters to perform likelihood maximization. The list contains the names of the parameters as well as the values. It usually makes sense to optimize over the important lambda parameter (tau^2/ sigma^2) is most spatial applications and so if lambda is omitted then the component lambda \(=.5\) is added to this list. \\
\hline hessian & If TRUE return the BFGS approximation to the hessian matrix at convergence. \\
\hline iseed & Sets the random seed in finding the approximate Monte Carlo based GCV function and the effective degrees of freedom. This will not effect random number generation outside these functions. \\
\hline mKrig.args & \begin{tabular}{l}
A list of additional parameters to supply to the mKrig function. E.g. mKrig.args= list ( \(m=1\) ) to set the regression function to be a constant function. \\
\(m K r i g\) function that are distinct from the covariance model. For example mKrig.args= list ( \(\mathrm{m}=1\) ) will set the polynomial to be just a constant term (degree \(=\mathrm{m}-1\) \(=0\) ). Use mKrig.args \(=\operatorname{list}(m=0)\) to omit a fixed model and assume the observations have an expectation of zero.
\end{tabular} \\
\hline na.rm & Remove NAs from data. \\
\hline optim.args & Additional arguments that would also be included in calls to the optim function in joint likelihood maximization. If NULL, this will be set to use the "BFGS" optimization method. See optim for more details. The default value is: optim.args \(=\) list \((\operatorname{method}=\) "BFGS", control=list (fnscale \(=-1\), ndeps = \(\operatorname{rep}(\log (1.1)\), length(cov.params.start) +1 ), abstol=1e-04, maxit=20)) Note that the first parameter is lambda and the others are the covariance parameters in the order they are given in cov. params.start. Also note that the optimization is performed on a transformed scale (based on the function parTransform ), and this should be taken into consideration when passing arguments to optim. \\
\hline parameters & The parameter values for evaluate the likelihood. \\
\hline par.grid & A list or data frame with components being parameters for different covariance models. A typical component is "aRange" comprising a vector of scale parameters to try. If par.grid is "NULL" then the covariance model is fixed at values that are given in .... \\
\hline obj & List returnerd from mKrigMLEGrid \\
\hline parName & Name of parameter to find confidence interval. \\
\hline parNames & Names of the parameters to optimize over. \\
\hline parTransform & A function that maps the parameters to a scale for optimization or effects the inverse map from the transformed scale into the original values. See below for more details. \\
\hline reltol & Optim BFGS comvergence criterion. \\
\hline REML & If TRUE use REML instead of the full log likelihood. \\
\hline GCV & NOT IMPLEMENTED YET! A placeholder to implement optimization using an approximate cross-validation criterion. \\
\hline verbose & If TRUE print out interesting intermediate results. \\
\hline weights & Precision ( \(1 /\) variance) of each observation \\
\hline
\end{tabular}
\(x \quad\) Matrix of unique spatial locations (or in print or surface the returned mKrig object.)
y Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If \(y\) is a matrix the columns are assumed to be independent observations vectors generated from the same covariance and measurment error model.

Z
Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \(x\)

ZCommon Linear covariates to be included in fixed part of the model where a common parameter is estimated across all realizations. This option only makes sense for multiple realizations ( y is a matrix).

\section*{Details}

The observational model follows the same as that described in the Krig function and thus the two primary covariance parameters for a stationary model are the nugget standard deviation (tau) and the marginal variance of the process (sigma). It is useful to reparametrize as sigma and lambda \(=t a u^{\wedge} 2 /\) sigma. The likelihood can be maximized analytically over sigma and the parameters in the fixed part of the model, this estimate of sigma can be substituted back into the likelihood to give a expression that is just a function of lambda and the remaining covariance parameters. This operation is called concentrating the likelhood by maximizing over a subset of parameters
For these kind of computations there has to be some device to identify parameters that are fixed and those that are optimized. For mKrigMLEGrid and mKrigMLEJoint the list cov.args should have the fixed parameters. For example this is how to fix a lambda value in the model. The list cov. params.start should be list with all parameters to optimize. The values for each component are use as the starting values. This is how the optim function works.

These functions may compute the effective degrees of freedomn ( see mKrig.trace) using the random tace method and so need to generate some random normals. The iseed arguement can be used to set the seed for this with the default being the seed 303 . Note that the random number generation internal to these functions is coded so that it does not effect the random number stream outside these function calls.

For mKrigMLEJoint the default transformation of the parameters is set up for a log/exp transformation:
```

parTransform <- function(ptemp, inv = FALSE) {
if (!inv) {
log(ptemp)
}
else {
exp(ptemp)
}
}

```

\section*{Value}
mKrigMLEGrid returns a list with the components:
\begin{tabular}{|c|c|}
\hline summary & A matrix with each row giving the results of evaluating the likelihood for each covariance model. \\
\hline par.grid & The par.grid argument used. A matrix where rows are the combination of parameters considered. \\
\hline call & The calling arguments to this function. \\
\hline \multicolumn{2}{|l|}{mKrigMLEJoint returns a list with components:} \\
\hline summary & A vector giving the MLEs and the log likelihood at the maximum \\
\hline lnLike.eval & A table containing information on all likelihood evaluations performed in the maximization process. \\
\hline optimResults & The list returned from the optim function. Note that the parameters may be transformed values. \\
\hline par.MLE & The maximum likelihood estimates. \\
\hline parTransform & The transformation of the parameters used in the optimziation. \\
\hline
\end{tabular}

\section*{Author(s)}

Douglas W. Nychka, John Paige

\section*{References}
https://github.com/dnychka/fieldsRPackage

\section*{See Also}
```

mKrig Krig stationary.cov optim

```

\section*{Examples}
```


Not run:

\#perform joint likelihood maximization over lambda and aRange.

NOTE: optim can get a bad answer with poor initial starts.

 data(ozone2)
 s<- ozone2$lon.lat
 z<- ozone2$y[16,]
 gridList<- list(aRange = seq(.4,1.0,length.out=20),
 lambda = 10**seq(-1.5,0,length.out=20)
)
 par.grid<- make.surface.grid(gridList)
 out<- mKrigMLEGrid(s,z, par.grid=par.grid,
 cov.args= list(smoothness=1.0,
 Covariance="Matern")
)
 outP<- as.surface(par.grid, out$summary[,"lnProfileLike.FULL"])
 image.plot(outP$x, log10(outP$y),outP$z,
 xlab="aRange", ylab="log10 lambda")

End(Not run)

```
```


Not run:

 N<- 50
 set.seed(123)
 x<- matrix(runif(2*N), N,2)
 aRange<- . }
 Sigma<- Matern(rdist(x,x)/aRange , smoothness=1.0)
 Sigma.5<- chol(Sigma)
 tau<- . }
 # 250 independent spatial data sets but a common covariance function
 # -- there is little overhead in
 # MLE across independent realizations and a good test of code validity.
 M<-250
 F.true<- t(Sigma.5) %*% matrix(rnorm(N*M), N,M)
 Y<- F.true + tau* matrix(rnorm(N*M), N,M)

find MLE for lambda with grid of ranges

and smoothness fixed in Matern

 par.grid<- list(aRange= seq(. 1,.35,,8))
 obj1b<- mKrigMLEGrid(x,Y,
 cov.args = list(Covariance="Matern", smoothness=1.0),
 cov.params.start=list(lambda = .5),
 par.grid = par.grid
)
 obj1b$summary # take a look

profile over aRange

 plot(par.grid$aRange, obj1b$summary[,"lnProfileLike.FULL"],
 type="b", log="x")

End(Not run)

 ## Not run:

m=0 is a simple switch to indicate _no_ fixed spatial drift

(the default and highly recommended is linear drift, m=2).

However, m=0 results in MLEs that are less biased, being the correct model

-- in fact it nails it !

 obj1a<- mKrigMLEJoint(x,Y,
 cov.args=list(Covariance="Matern", smoothness=1.0),
 cov.params.start=list(aRange =.5, lambda = .5),
 mKrig.args= list(m=0))
 test.for.zero(obj1a$summary["tau"], tau, tol=.007)
test.for.zero(obj1a$summary["aRange"], aRange, tol=.015)

End(Not run)

\#

A bootstrap example

Here is a example of a more efficient (but less robust) bootstrap using

mKrigMLEJoint and tuned starting values

\#

```
```


Not run:

data(ozone2)
obj<- spatialProcess(ozone2$lon.lat,ozone2$y[16,])
\#\#\#\#\#\#\#\#\# boot strap
set.seed(123)
M<- 25

create M indepedent copies of the observation vector

 ySynthetic<- simSpatialData(obj, M)
 bootSummary<- NULL
 aRangeMLE<- obj$summary["aRange"]
 lambdaMLE<- obj$summary["lambda"]
 for(k in 1:M){
 cat(k, " ")

here the MLEs are found using the easy top level level wrapper

see mKrigMLEJoint for a more efficient strategy

 out <- mKrigMLEJoint(obj$x, ySynthetic[,k],
 weights = obj$weights,
 mKrig.args = obj$mKrig.args,
 cov.function = obj$cov.function.name,
 cov.args = obj$cov.args,
 cov.params.start = list(aRange = aRangeMLE,
 lambda = lambdaMLE)
)
 newSummary<- out$summary
 bootSummary<- rbind(bootSummary, newSummary)
 }
 cat(" ", fill=TRUE)
 obj$summary
 stats(bootSummary)

End(Not run)

Not run:

\#perform joint likelihood maximization over lambda, aRange, and smoothness.
\#note: finding smoothness is not a robust optimiztion

can get a bad answer with poor initial guesses.

obj2<- mKrigMLEJoint(x,Y,
cov.args=list(Covariance="Matern"),
cov.params.start=list(aRange = .18,
smoothness = 1.1,
lambda = .08),
)
\#look at lnLikelihood evaluations
obj2\$summary
\#compare to REML
obj3<- mKrigMLEJoint(x,Y,
cov.args=list(Covariance="Matern"),

```
```

cov.params.start=list(aRange = .18,
smoothness = 1.1,
lambda = .08),
, REML=TRUE)
obj3\$summary

End(Not run)

Not run:

\#look at lnLikelihood evaluations

check convergence of MLE to true fit with no fixed part

obj4<- mKrigMLEJoint(x, Y,
mKrig.args= list(m=0),
cov.args=list(Covariance="Matern", smoothness=1),
cov.params.start=list(aRange=.2, lambda=.1),
REML=TRUE)
\#look at lnLikelihood evaluations
obj4\$summary

nails it!

End(Not run)

```

NorthAmericanRainfall Observed North American summer precipitation from the historical climate network.

\section*{Description}

Average rainfall in tenths of millimeters for the months of June, July and August (JJA) for the period 1950-2010 (old version, 1700+ locations) or 1971-2023 (new version, 4800+ locations) and for North America. The old version uses monthly data from the Global Historical Climate Network (GHCN) version 2 and the new version uses Version 4.

\section*{Format}

For both versions the format is a list with components: "longitude" "latitude" "precip" "elevation" "precipSE" "trend" "trendSE" "type" "x.s" "sProjection" with elevation in meters, longitude as (180,180 ), latitude as \((-90,90)\) and precipitaion in \(1 / 10 \mathrm{~mm}\) ( precip/254 converts to inches of rainfall). Note that the usual convention is to report a total amount of rainfall over the season. Divide by 3 to get the mean.
precip is the intercept for 1980.5 (1997 for new version) when a straight line least squares regression is fit to each station's record. SE is the companion standard error from the least squares fit. If the station is complete, then precip and precipSE will just be the mean and standard deviation adjusted for a linear trend. The estimated trend trend and and its standard error trendSE are also included.

Also due to the centering, for complete data the intercept and trend estimate will be uncorrelated. The component type indicates whether the station has been "adjusted" (see below) or is still in "unadjusted" form.
\(x . s\) is a useful transformation of locations into stereographic coordinates that reduces the inflation of North Canada due to the usual lon/lat coordinates. Specifically it is found by:
```

library(mapproj)
xStereo<- mapproject(NorthAmericanRainfall$lon,NorthAmericanRainfall$lat, projection="stereographi
NorthAmericanRainfall$x.s<- cbind(xStereo$x, xStereo$y)
hold<- .Last.projection()
 NorthAmericanRainfall$orientation<- hold$orientation
 NorthAmericanRainfall$projection <- hold\$projection

```

\section*{Source}

The monthly data used to construct NorthAmericanRainfall this summary was generously provided by Xuebin Zhang, however, the orignal source is freely available as the Global Historical Climate Network Version 2 Precipitation quality controlled, curated and served by the US National Center for Environmental Information. The adjusted data from this archive has been modified from its raw form to make the record more homogenous. Heterogenities can come from a variety of sources such as a moving the station a short distance or changes in instruments. See the National Centers for Envrionmental Information then Access Data and then GHCN.

The new version NorthAmericanRainfall2 uses the GHCN "Version 4" data product. There are substantially more stations reported in this data set. To reduce the size the stations for this R data set stations were selected if they had more than 80 percent of the months reported over the period 1971-2023. This subset amounts to 4893 locations. A simple linear regression was fit to each station record and the OLS trend, trend SE, trend line at 1997 is evaluated to get a "mean" rainfall estimate for this location.
See the fields github repository for the source code and source data to create this data set.

\section*{Examples}
```

data(NorthAmericanRainfall)
x<- cbind(NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude)
y<- NorthAmericanRainfall$precip
quilt.plot(x,y)
world(add=TRUE)
Zstat<- NorthAmericanRainfall$trend / NorthAmericanRainfall\$trendSE
quilt.plot(x, Zstat)

Not run:

with a better projection

library(maps)
library(mapproj)
bubblePlot(NorthAmericanRainfall$x.s,
NorthAmericanRainfall$precip,
size=.3, col=rev(tim.colors()))
map("world",
projection=NorthAmericanRainfall$projection,
orientation= NorthAmericanRainfall$orientation,
add=TRUE, col="grey30")

```
```


End(Not run)

note station sparsity outside CONUS and lower CA.

comparing older and newer versions

data(NorthAmericanRainfall)
bubblePlot(NorthAmericanRainfall$lon, NorthAmericanRainfall$lat,
NorthAmericanRainfall$precip,
size=.3, col=rev(tim.colors()))
world(add=TRUE, col="grey30")
data(NorthAmericanRainfall2)
bubblePlot(NorthAmericanRainfall2$lon,NorthAmericanRainfall2$lat,
NorthAmericanRainfall2$precip,
size=.3, col=rev(tim.colors()), xlim= c(-130,-50))
world(add=TRUE, col="grey30")

```
```

offGridWeights Utilities for fast spatial prediction.

```

\section*{Description}

Based on a stationary Gaussian process model these functions support fast prediction onto a grid using a sparse matrix approximation. They also allow for fast prediction to off-grid values (aka interpoltation) from an equally spaced rectangular grid and using a spatial model. The sparsity comes about because only a fixed number of neighboring grid points (NNSize) are used in the prediction. The prediction variance for off-grid location is also give in the returned object. These function are used as the basis for approximate conditional simulation for large spatial datasets asnd also for fast spatial prediction from irregular locations onto a grid.

\section*{Usage}
offGridWeights(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL, covArgs \(=\) NULL, aRange \(=\) NULL, sigma2 \(=\) NULL, giveWarnings \(=\) TRUE, debug=FALSE)
offGridWeights1D(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL,
covArgs = NULL, aRange = NULL, sigma2 = NULL, giveWarnings = TRUE, debug=FALSE )
offGridWeights2D(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL,
    covArgs = NULL, aRange = NULL, sigma2 = NULL, giveWarnings = TRUE,
    debug = FALSE,findCov = TRUE)
addMarginsGridList( xObs, gridList, NNSize)
```

findGridBox(s, gridList)
mKrigFastPredictSetup(mKrigObject,
gridList,
NNSize,
giveWarnings = TRUE)

```

\section*{Arguments}
\begin{tabular}{ll} 
aRange & The range parameter. \\
covArgs & \begin{tabular}{l} 
If mKrigObject is not specified a list giving any additional arguments for the \\
covariance function.
\end{tabular} \\
Covariance & \begin{tabular}{l} 
The stationary covariance function (taking pairwise distances as its first argu- \\
ment.) \\
If TRUE returns intermediate calculations and structures for debugging and \\
checking.
\end{tabular} \\
debug & \begin{tabular}{l} 
If TRUE the prediction variances (via the Kriging model and assumed covari- \\
ance function) for the offgrid locations are found. If FALSE just the prediction \\
weights are returned. This option is a bit faster. This switch only is implemented \\
for the 2 D case since the extra computational demands for 1 D are modest.
\end{tabular} \\
findCov & \begin{tabular}{l} 
If TRUE will warn if two or more observations are in the same grid box. See \\
details below.
\end{tabular} \\
griveWarnings & \begin{tabular}{l} 
A list as the gridList format ( x and y components) that describes the rectagular \\
grid. The grid must have at least np extra grid points beyond the range of the \\
points in s. See grid.list.
\end{tabular} \\
mKrigObject & \begin{tabular}{l} 
The output object (Aka list with some specfic components.) from either mKrig \\
or spatialProcess. This has the information about the covariance function used \\
to do the Kriging. The following items are coded in place of not supplying this \\
object. See the example below for more details.
\end{tabular} \\
np & \begin{tabular}{l} 
Number of nearest neighbor grid points to use for prediction. np = 1 will use the \\
4 grid points that bound the off grid point. np = 2 will be a 4X4 subgrid with the \\
middle grid box containing the off grid point. In general there will be (2*np)^2
\end{tabular} \\
neighboring points uses.
\end{tabular}

\section*{Details}
offGridWeights This function creates the interpolation weights taking advantage of some efficiency in the covariance function being stationary, use of a fixed configuration of nearest neighbors, and Kriging predictions from a rectangular grid.

The returned matrix is in spam sparse matrix format. See example below for the "one-liner" to make the prediction once the weights are computed. Although created primarily for (approximate) conditional simulation of a spatial process this function is also useful for interpolating to off grid locations from a rectangular field. It is also used for fast, but approximate prediction for Kriging with a stationary covariance.
The function offGridWeights is a simple wrapper to call either the 1D or 2D functions
In most cases one would not use these approximations for a 1 D problem. However, the 1 D algorithm is included as a separate function for testing and also because this is easier to read and understand the conversion between the Kriging weights for each point and the sparse matrix encoding of them.
The interpolation errors are also computed based on the nearest neighbor predictions. This is returned as a sparse matrix in the component SE. If all observations are in different grid boxes then SE is diagonal and agrees with the square root of the component predctionVariance but if multiple observations are in the same grid box then SE has blocks of upper triangular matrices that can be used to simulate the prediction error dependence among observations in the same grid box. Explicitly if obj is the output object and there are nObs observations then
error <- obj\$SE\%*\% rnorm( nObs)
will simulate a prediction error that includes the dependence. Note that in the case that there all observations are in separate grid boxes this code line is the same as
error <- sqrt(obj\$predictionVariance)*rnorm( nObs)

It is always true that the prediction variance is given by diag( obj\$SE\%*\% t (obj\$SE)).
The user is also referred to the testing scripts offGridWeights.test.R and offGridWeights. testNEW.Rin tests where the Kriging predictions and standard errors are computed explicitly and tested against the sparse matrix computation. This is helpful in defining exactly what is being computed.

Returned value below pertains to the offGridWeights function.
addMarginsGridList This is a supporting function that adds extra grid points for a gridList so that every irregular point has a complete number of nearest neighbors.
findGridBoxThis is a handy function that finds the indices of the lower left grid box that contains the points in s. If the point is not contained within the range of the grid and NA is returned fo the index. This function assumes that the grid points are equally spaced.

\section*{Value}

B A sparse matrix that is of dimension mXn with m the number of locations (rows) in \(s\) and \(n\) being the total number of grid points. \(n=\) length(gridList\$x)*length(gridList\$y)
predictionVariance
A vector of length as the rows of \(s\) with the Kriging prediction variance based on the nearest neighbor prediction and the specified covariance function.

SE
A sparse matrix that can be used to simulate dependence among prediction errors for observations in the same grid box. (See explanation above.)

\section*{Author(s)}

Douglas Nychka and Maggie Bailey

\section*{References}

Bailey, Maggie D., Soutir Bandyopadhyay, and Douglas Nychka. "Adapting conditional simulation using circulant embedding for irregularly spaced spatial data." Stat 11.1 (2022): e446.

\section*{See Also}
interp.surface, mKrigFastPredict

\section*{Examples}
```


an M by M grid

M<- 400
xGrid<- seq(-1, 1, length.out=M)
gridList<- list(x= xGrid,
y= xGrid
)
np<- 3
n<- 100

sample n locations but avoid margins

set.seed(123)
s<- matrix(runif(n*2, xGrid[(np+1)],xGrid[(M-np)]),
n, 2)
obj<- offGridWeights(s, gridList, np=3,
Covariance="Matern",
aRange = . 1, sigma2= 1.0,
covArgs= list(smoothness=1.0)
)

make the predictions by obj\$B%*%c(y)

where y is the matrix of values on the grid

try it out on a simulated Matern field

CEobj<- circulantEmbeddingSetup(gridList,
cov.args=list(
Covariance="Matern",
aRange = .1,
smoothness=1.0)
)

```
    set.seed (333)
Z<- circulantEmbedding(CEobj)
\#
\# Note that grid values are "unrolled" as a vector
\# for multiplication
\# predOffGrid<- obj\$B\%*\% c( Z)
predOffGrid<- obj\$B\%*\% c( Z)
```

set.panel(1,2)
zr<- range(c(Z))
image.plot(gridList$x, gridList$y, Z, zlim=zr)
bubblePlot(s[,1],s[,2], z= predOffGrid , size=.5,
highlight=FALSE, zlim=zr)
set.panel()

```
    ozone2 Daily 8-hour ozone averages for sites in the Midwest

\section*{Description}

The response is 8 -hour average (surface) ozone ( from 9AM-4PM) measured in parts per billion (PPB) for 153 sites in the midwestern US over the period June 3,1987 through August 31, 1987, 89 days. This season of high ozone corresponds with a large modeling experiment using the EPA Regional Oxidant Model.

\section*{Usage}
data(ozone2)

\section*{Format}

The data list has components: <s-args> <s-arg name="y"> a 89X153 matrix of ozone values. Rows are days and columns are the sites. </s-arg> </s-arg name="lon.lat" \(>\) Site locations in longitude and latitude as a 153 X 2 table \(</ \mathrm{s}-\arg ><\mathrm{s}\)-arg name="chicago.subset" \(>\) Logical vector indicating stations that form teh smaller Chicagoland subset. (see FIELDS ozone data set) </s-arg> </s-args> <s-section name="Reference"> Nychka, D., Cox, L., Piegorsch, W. (1998) Case Studies in Environmental Statistics Lecture Notes in Statistics, Springer Verlag, New York

\section*{Examples}
```

data(ozone2)

pairwise correlation among all stations

(See cover.design to continue this example)

cor.mat<- cor(ozone2$y, use="pairwise")
#raw data image for day number 16
good<- !is.na(ozone2$y[16,])
out<- as.image(ozone2$y[16,good], x=ozone2$lon.lat[good,])
image.plot(out)

```
```

plot.Krig

```

Diagnostic and summary plots of a Kriging, spatialProcess or spline object.

\section*{Description}

Plots a series of four diagnostic plots that summarize the fit.

\section*{Usage}
\#\# S3 method for class 'Krig'
plot( \(x\), digits=4, which= \(1: 4, \ldots\) )
\#\# S3 method for class 'sreg'
plot(x, digits \(=4\), which \(=1: 4, \ldots\) )

\section*{Arguments}
x
A Krig or an sreg object
digits
which A vector specifying by number which of the four plots to draw. 1:4 plots all four.
... Optional graphics arguments to pass to each plot.

\section*{Details}

This function creates four summary plots of the Krig or sreg object. The default is to put these on separate pages. However if the screen is already divided in some other fashion the plots will just be added according to that scheme. This option is useful to compare to compare several different model fits.
The first is a scatterplot of predicted value against observed.
The second plot is "standardized" residuals against predicted value. Here we mean that the residuals are divided by the GCV estimate for tau and multiplied by the square root of any weights that have been specified. In the case of a "correlation model" the residuals are also divided by the marginal standard deviation from this model.

The third plot are the values of the GCV function against the effective degrees of freedom. When there are replicate points several versions of the GCV function may be plotted. GCV function is with respect to the standardized data if a correlation model is specified. A vertical line indicates the minimium found.
For Krig and sreg objects the fourth plot is a histogram of the standardized residuals. For sreg if multiple lambdas are given plotted are boxplots of the residuals for each fit.
For spatialProcess object the fourth plot is the profile likelihood for the aRange parameter. Points are the actual evaluated log likelihoods and the dashed line is just a spline interpolation to help with visualization.

\section*{See Also}

Krig, spatialProcess, summary.Krig, Tps, set.panel

\section*{Examples}
```

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
fit1<-Krig(x,y, aRange=200)

fitting a surface to ozone

measurements

set.panel(2,2)
plot(fit1)

fit rat data

fit3<-sreg(rat.diet$t,rat.diet$con)
set.panel(2,2)
plot(fit3)
set.panel(1,1) \# reset graphics window.

```
```

plot.surface

```

Plots a surface

\section*{Description}

Plots a surface object in several different ways to give 3-d information e.g. a contour plots, perspective plots.

\section*{Usage}
\#\# S3 method for class 'surface'
plot ( \(x\), main \(=\) NULL, type \(=" C ", ~ z l a b=N U L L, ~ x l a b=N U L L\),
ylab \(=\) NULL, levels \(=\) NULL, zlim \(=\) NULL, graphics.reset \(=\) NULL, labcex \(=0.6\), add.legend=TRUE, ...)

\section*{Arguments}

X
main
type

A surface object. At the minimum a list with components \(\mathrm{x}, \mathrm{y}\) and z in the same form as the input list for the standard contour, persp or image functions. This can also be an object from predictSurface.
Title for plot.
type="p" for a perspective/drape plot (see drape.plot), type="I" for an image plot with a legend strip (see image.plot), type="c" draws a contour plot, type="C" is the "I" option but with contours lines added. type=" b " gives both " p " and " C " as a 2 X 1 panel
\begin{tabular}{|c|c|}
\hline zlab & z-axes label \\
\hline xlab & x -axes label \\
\hline ylab & \(y\)-axes labels \\
\hline levels & Vector of levels to be passed to contour function. \\
\hline graphics.reset & Reset to original graphics parameters after function plotting. Default is to reset if type ="b" but not for the single plot options. \\
\hline zlim & Sets z limits on perspective plot. \\
\hline labcex & Label sizes for axis labeling etc. \\
\hline add.legend & If TRUE adds a legend to the draped perspective plot \\
\hline & Other graphical parameters that are passed along to either drape.persp or image.plot \\
\hline
\end{tabular}

\section*{See Also}
surface, predictSurface, as.surface, drape.plot, image.plot

\section*{Examples}
```

x<- seq(-2,2,,80)
y<- seq(-2,2,,80)

a lazy way to create some test image

z<- outer(x,y, "+")

create basic image/surface object

obj<- list(x=x, y=y,z=z)

basic contour plot

note how graphical parameters appropriate to contour are passed

plot.surface(obj, type="c", col="red")

using a fields function to fit a surface and evaluate as surface object.

fit<- Tps(BD[,1:4], BD\$lnya) \# fit surface to data

surface of variables 2 and 3 holding 1 and 4 fixed at their median levels

 out.p<-predictSurface(fit, xy=c(2,3))
 plot.surface(out.p) # surface plot
    ```
poly.image Image plot for cells that are irregular quadrilaterals.

\section*{Description}

Creates an image using polygon filling based on a grid of irregular quadrilaterals. This function is useful for a regular grid that has been transformed to another nonlinear or rotated coordinate system. This situation comes up in lon-lat grids created under different map projections. Unlike the usual image format this function requires the grid to be specified as two matrices x and y that given the grid x and y coordinates explicitly for every grid point.

\section*{Usage}
```

poly.image(x, y, z, col = tim.colors(64), breaks,
transparent.color = "white", midpoint = FALSE, zlim =
range(z, na.rm = TRUE), xlim = range(x), ylim =
range (y), add $=$ FALSE, border $=$ NA, lwd.poly = 1, asp
= NA, ...)
poly.image.regrid(x)

```

\section*{Arguments}
\(x \quad\) A matrix of the \(x\) locations of the grid.
\(y \quad\) A matrix of the \(y\) locations of the grid.
z Values for each grid cell. Can either be the value at the grid points or interpreted as the midpoint of the grid cell.
col Color scale for plotting.
breaks Numerical breaks to match to the colors. If missing breaks are equally spaced on the range zlim.
transparent.color
Color to plot cells that are outside the range specified in the function call.
midpoint Only relevant if the dimensions of \(\mathrm{x}, \mathrm{y}\), and z are the same. If TRUE the z values will be averaged and then used as the cell midpoints. If FALSE the \(x / y\) grid will be expanded and shifted to represent grid cells corners. (See poly.image.regrid.)
zlim Plotting limits for z .
\(x \lim \quad\) Plotting limits for x .
ylim Plotting limits for y .
add If TRUE will add image onto current plot.
border Color of the edges of the quadrilaterals, the default is no color.
lwd.poly Line width for the mesh surface. i.e. the outlines of the quadrilateral facets. This might have to be set smaller than one if rounded corners on the facets are visible.
asp The plot aspect with similar function to that in the plot function.
If add is FALSE, additional graphical arguments that will be supplied to the plot function.

\section*{Details}

This function is straightforward except in the case when the dimensions of \(\mathrm{x}, \mathrm{y}\), and z are equal. In this case the relationship of the values to the grid cells is ambigious and the switch midpoint gives two possible solutions. The \(z\) values at 4 neighboring grid cells can be averaged to estimate a new value interpreted to be at the center of the grid. This is done when midpoint is TRUE. Alternatively the full set of \(z\) values can be retained by redefining the grid. This is accomplisehd by finding the midpoints of x and y grid points and adding two outside rows and cols to complete the grid. The new result is a new grid that is is \((\mathrm{M}+1) \mathrm{X}(\mathrm{N}+1)\) if z is MXN . These new grid points define cells
that contain each of the original grid points as their midpoints. Of course the advantage of this alternative is that the values of z are preserved in the image plot; a feature that may be important for some uses.
The function image.plot uses this function internally when image information is passed in this format and can add a legend. In most cases just use image.plot.
The function poly.image. regrid does a simple averaging and extrapolation of the grid locations to shift from midpoints to corners. In the interior grid corners are found by the average of the 4 closest midpoints. For the edges the corners are just extrapolated based on the separation of nieghboring grid cells.

\section*{Author(s)}

\section*{Doug Nychka}

\section*{See Also}
image.plot

\section*{Examples}
```

data(RCMexample)
set.panel(1,2)
par(pty="s")

plot with grid modified

poly.image(RCMexample$x, RCMexample$y, RCMexample\$z[,,1])

use midpoints of z

poly.image(RCMexample$x, RCMexample$y, RCMexample\$z[,,1],midpoint=TRUE)
set.panel()

an example with quantile breaks

 brk<- quantile(RCMexample$z[,,1], c(0, .9,.95,.99,1.0))
 poly.image(RCMexample$x, RCMexample$y, RCMexample$z[,,1], breaks=brk, col=
 rainbow(4))

images are very similar.

 set.panel()

Regridding of }x\mathrm{ and }

 l1<- poly.image.regrid(RCMexample$x)
 l2<- poly.image.regrid(RCMexample$y)

test that this works

 i<- 1:10
 plot(l1[i,i], l2[i,i])
 points(RCMexample$x[i,i], RCMexample$y[i,i],col="red")
    ```

\section*{Description}

Provides predictions from the Krig spatial process estimate at arbitrary points, new data (Y) or other values of the smoothing parameter (lambda) including a GCV estimate.

\section*{Usage}
```


S3 method for class 'Krig'

predict(
object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed
= FALSE, lambda = NA, df = NA, model = NA,
eval.correlation.model = TRUE, y = NULL, yM = NULL,
verbose = FALSE, ...)
predictDerivative.Krig(object, x = NULL, verbose = FALSE,...)

S3 method for class 'Tps'

predict(object, ...)

S3 method for class 'fastTps'

predict(object, xnew = NULL, grid.list = NULL, ynew = NULL,
derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed =
FALSE, xy = c(1, 2), ...)

```

\section*{Arguments}
derivative The degree of the derivative to be evauated. Default is 0 (evaluate the function itself), 1 is supported by some covariance functions, Higher derivatives are not supported in this version and for mKrig.
df Effective degrees of freedom for the predicted surface. This can be used in place of lambda ( see the function Krig.df.to.lambda)
eval.correlation.model
If true ( the default) will multiply the predicted function by marginal sd's and add the mean function. This usually what one wants. If false will return predicted surface in the standardized scale. The main use of this option is a call from Krig to find MLE's of sigma and tau2
grid.list A grid.list specfiying a grid of locations to evaluate the fitted surface.
just.fixed Only fixed part of model is evaluated
lambda Smoothing parameter. If omitted, the value in the lambda of the object will be used. (See also df and gcv arguments)
model Generic argument that may be used to pass a different lambda.
object Fit object from the Krig, Tps, mKrig, or fastTps functions.
verbose
xy \begin{tabular}{l} 
Print out all kinds of intermediate stuff for debugging \\
The column positions that locate the x and y variables for evaluating on a grid. \\
This is mainly useful if the surface has more than 2 dimensions. \\
Evaluate the estimate using the new data vector y (in the same order as the old \\
data). This is equivalent to recomputing the Krig object with this new data but \\
is more efficient because many pieces can be reused. Note that the x values are \\
assumed to be the same. \\
Matrix of x values on which to evaluate the kriging surface. If omitted, the data \\
x values will be used.
\end{tabular}

\section*{Details}

The main goal in this function is to reuse the Krig object to rapidly evaluate different estimates. Thus there is flexibility in changing the value of lambda and also the independent data without having to recompute the matrices associated with the Krig object. The reason this is possible is that most on the calculations depend on the observed locations not on lambda or the observed data. Note the version for evaluating partial derivatives does not provide the same flexibility as predict. Krig and makes some assumptions about the null model (as a low order polynomial) and can not handle the correlation model form.

\section*{Value}

Vector of predicted responses or a matrix of the partial derivatives.

\section*{See Also}

Krig, predictSurface gcv.Krig

\section*{Examples}
```

 Krig(Chicago03$x,Chicago03$y, aRange=50) ->fit
 predict(fit) # gives predicted values at data points should agree with fitted.values
 # in fit object

predict at the coordinate (-5,10)

```
```

 x0<- cbind(-5,10) # has to be a 1X2 matrix
 predict(fit,x= x0)
 # redoing predictions at data locations:
 predict(fit, x=Chicago03$x)
 # only the fixed part of the model
 predict(fit, just.fixed=TRUE)
 # evaluating estimate at a grid of points
 grid<- make.surface.grid(list(seq(-40,40,,15), seq(-40,40,,15)))
 look<- predict(fit,grid) # evaluate on a grid of points
 # some useful graphing functions for these gridded predicted values
 out.p<- as.surface(grid, look) # reformat into $x $y $z image-type object
 contour(out.p)

see also the functions predictSurface and surface

for functions that combine these steps

 # refit with 10 degrees of freedom in surface
 look<- predict(fit,grid, df=15)

refit with random data

 look<- predict(fit, grid, y= rnorm(20))
 # finding partial derivatives of the estimate

 # find the partial derivatives at observation locations
 # returned object is a two column matrix.
 # this does not make sense for the exponential covariance
 # but can illustrate this with a thin plate spline with
 # a high enough order (i.e. need m=3 or greater)

 data(ozone2)
 # the 16th day of this ozone spatial dataset
 fit0<- Tps(ozone2$lon.lat, ozone2$y[16,], m=3)
 look1<- predictDerivative.Krig(fit0)

for extra credit compare this to

 look2<- predictDerivative.Krig(fit0, x=ozone2$lon.lat)

(why are there more values in look2)

```

\section*{Description}

Finds the standard error ( or covariance) of prediction based on a linear combination of the observed data. The linear combination is usually the "Best Linear Unbiased Estimate" (BLUE) found from the Kriging equations. This statistical computation is done under the assumption that the covariance function is known.

\section*{Usage}
```

predictSE(object, ...)

S3 method for class 'Krig'

predictSE(object, x = NULL, cov = FALSE, verbose = FALSE,...)

S3 method for class 'mKrig'

predictSE(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z
= FALSE, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
drop. \(Z\) & \begin{tabular}{l} 
If FALSE find standard error without including the additional spatial covariates \\
described by Z. If TRUE find full standard error with spatial covariates if they \\
are part of the model.
\end{tabular} \\
object & \begin{tabular}{l} 
A fitted object that can be used to find prediction standard errors. This is usually \\
from fitting a spatial model to data. e.g. a Krig or mKrig object. \\
Points to compute the predict standard error or the prediction cross covariance \\
matrix.
\end{tabular} \\
x & \begin{tabular}{l} 
Same as xnew - points to compute the predict standard error or the prediction \\
cross covariance matrix.
\end{tabular} \\
cov & \begin{tabular}{l} 
If TRUE the full covariance matrix for the predicted values is returned. Make \\
sure this will not be big if this option is used. ( e.g. 50X50 grid will return a \\
matrix that is 2500X2500!) If FALSE just the marginal standard deviations of \\
the predicted values are returned. Default is FALSE - of course.
\end{tabular} \\
verbose & \begin{tabular}{l} 
If TRUE will print out various information for debugging.
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l} 
These additional arguments passed to the predictSE function.
\end{tabular} \\
Z Additional matrix of spatial covariates used for prediction. These are used to \\
determine the additional covariance contributed in teh fixed part of the model.
\end{tabular}

\section*{Details}

The predictions are represented as a linear combination of the dependent variable, Y. Call this LY. Based on this representation the conditional variance is the same as the expected value of \((P(x)+\) \(\mathrm{Z}(\mathrm{X})-\mathrm{LY})^{* *}\) 2. where \(\mathrm{P}(\mathrm{x})+\mathrm{Z}(\mathrm{x})\) is the value of the surface at x and LY is the linear combination that estimates this point. Finding this expected value is straight forward given the unbiasedness of LY for \(\mathrm{P}(\mathrm{x})\) and the covariance for Z and Y .

In these calculations it is assumed that the covariance parameters are fixed. This is an approximation since in most cases they have been estimated from the data. It should also be noted that if one assumes a Gaussian field and known parameters in the covariance, the usual Kriging estimate is the
conditional mean of the field given the data. This function finds the conditional standard deviations (or full covariance matrix) of the fields given the data.
There are two useful extensions supported by this function. Adding the variance to the estimate of the spatial mean if this is a correlation model. (See help file for Krig) and calculating the variances under covariance misspecification. The function predictSE.KrigA uses the smoother matrix ( A(lambda) ) to find the standard errors or covariances directly from the linear combination of the spatial predictor. Currently this is also the calculation in predictSE.Krig although a shortcut is used predictSE. mKrig for mKrig objects.

\section*{Value}

A vector of standard errors for the predicted values of the Kriging fit.

\section*{See Also}

Krig, predict.Krig, predictSurfaceSE

\section*{Examples}
```


Note: in these examples predictSE will default to predictSE.Krig using

a Krig object

 fit<- Krig(Chicago03$x,Chicago03$y,cov.function="Exp.cov", aRange=10) # Krig fit
 predictSE.Krig(fit) # std errors of predictions at obs.

make a grid of X's

 xg<-make.surface.grid(
 list(East.West=seq(-27, 34, ,20),North.South=seq(-20, 35, , 20)))
 out<- predictSE(fit,xg) # std errors of predictions
 \#at the grid points out is a vector of length 400
\#reshape the grid points into a 20X20 matrix etc.
out.p<-as.surface(xg, out)
surface(out.p, type="C")

this is equivalent to the single step function

(but default is not to extrapolation beyond data

out<- predictSurfaceSE(fit)

image.plot(out)

```

\section*{Description}

Evaluates a a fitted model or the prediction error on a 2-D grid keeping any other variables constant. The resulting object is suitable for use with functions for viewing 3-d surfaces such as image, imagePlot and contour.

\section*{Usage}
\#\# Default S3 method:
predictSurface(object, grid.list = NULL, extrap \(=\) FALSE, chull.mask \(=\) NA, \(n x=80\), ny \(=80\), \(x y=c(1,2), \quad v e r b o s e=F A L S E, \ldots)\)
\#\# S3 method for class 'fastTps' predictSurface(object, gridList = NULL, extrap \(=\) FALSE, chull.mask \(=\) NA, \(n x=80\), ny \(=80\), \(x y=c(1,2)\), verbose \(=\) FALSE, \(\ldots\) )
\#\# S3 method for class 'Krig'
predictSurface(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, \(n x=80, n y=80, x y=c(1,2)\), verbose \(=\) FALSE, ZGrid \(=\) NULL, drop. \(Z=\) FALSE, just.fixed=FALSE, ...)
\#\# S3 method for class 'mKrig'
predictSurface(object, gridList = NULL, grid.list = NULL, ynew =
NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, \(x y=c(1,2)\), verbose \(=\) FALSE, ZGrid \(=\) NULL, drop. \(Z=\) FALSE, just.fixed \(=\) FALSE, fast \(=\) FALSE, NNSize = 4, giveWarnings = FALSE, derivative = 0, ...)
mKrigFastPredict(object, gridList, ynew = NULL, derivative = 0, Z = NULL, drop. Z = FALSE, NNSize \(=5\), setupObject \(=\) NULL, giveWarnings = TRUE)
\#\# Default S3 method:
predictSurfaceSE(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, \(n x=80\), ny \(=80, x y=c(1,2)\), verbose \(=\) FALSE, ZGrid = NULL, just.fixed = FALSE, ...)

\section*{Arguments}
object An object from fitting a function to data. In fields this is usually a Krig, mKrig, or fastTps object.
gridList A list with as many components as variables describing the surface. All components should have a single value except the two that give the grid points for evaluation. If the matrix or data frame has column names, these must appear in the grid list. See the grid.list help file for more details. If this is omitted and the
fit just depends on two variables the grid will be made from the ranges of the observed variables. (See the function fields.x.to.grid.)
\begin{tabular}{|c|c|}
\hline grid.list & Alternative to the gridList argument. \\
\hline giveWarnings & If TRUE will warn when more than one observation is in a grid box. \\
\hline extrap & Extrapolation beyond the range of the data. If FALSE (the default) the predictions will be restricted to the convex hull of the observed data or the convex hull defined from the points from the argument chull.mask. This function may be slightly faster if this logical is set to TRUE to avoid checking the grid points for membership in the convex hull. For more complicated masking a low level creation of a bounding polygon and testing for membership with in. poly may be useful. \\
\hline chull.mask & Whether to restrict the fitted surface to be on a convex hull, NA's are assigned to values outside the convex hull. chull.mask should be a sequence of points defining a convex hull. Default is to form the convex hull from the observations if this argument is missing (and extrap is false). \\
\hline nx & Number of grid points in X axis. \\
\hline ny & Number of grid points in Y axis. \\
\hline xy & A two element vector giving the positions for the " X " and " Y " variables for the surface. The positions refer to the columns of the \(x\) matrix used to define the multidimensional surface. This argument is provided in lieu of generating the grid list. If a 4 dimensional surface is fit to data then \(x y=c(2,4)\) will evaluate a surface using the second and fourth variables with variables 1 and 3 fixed at their median values. NOTE: this argument is ignored if a grid.list argument is passed. \\
\hline drop.Z & If TRUE the fixed part of model depending on covariates is omitted. \\
\hline just.fixed & If TRUE the nonparametric surface is omitted. \\
\hline fast & If TRUE approximate predictions for stationary models are made using the FFT. For large grids( e.g. nx, ny >200) this can be substantially faster and still accurate to several decimal places. \\
\hline NNSize & Order of nearest neighborhood used for fast prediction. The default,NSize \(=5\), means an 11X11=121 set of grid points/covariance kernels are used to approximate the off-grid covariance kernel. \\
\hline setupObject & The object created explicitly using mKrigFastPredictSetup. Useful for predicting multple surfaces with the same observation locations. \\
\hline derivative & Predict the estimated derivatives of order derivative. \\
\hline ynew & New data to use to refit the spatial model. Locations must be the same but if so this is efficient because the matrix decompositions are reused. \\
\hline & \begin{tabular}{l}
Any other arguments to pass to the predict function associated with the fit object. Some of the usual arguments for several of the fields fitted objects include: \\
ynew New values of y used to reestimate the surface. \\
\(\mathbf{Z}\) A matrix of covariates for the fixed part of model.
\end{tabular} \\
\hline ZGrid & An array or list form of covariates to use for prediction. This must match the same dimensions from the grid.list / gridList argument. \\
\hline
\end{tabular}

If ZGrid is an array then the first two indices are the x and y locations in the grid. The third index, if present, indexes the covariates. e.g. For evaluation on a 10 X 15 grid and with 2 covariates. dim( ZGrid) \(==c(10,15,2)\). If ZGrid is a list then the components x and y shold match those of grid list and the z component follows the shape described above for the no list case.
Z
The covariates for the grid unrolled as a matrix. Columns index the variables and rows index the grid locations. E.g. For evaluation on a 10X15 grid and with 2 covariates. \(\operatorname{dim}(Z G r i d)==c(10,15,2)\). and \(\operatorname{so} \operatorname{dim}(Z)=c(150,2)\) and Z[,1]<-c(ZGrid[, ,1])
verbose If TRUE prints out some imtermediate results for debugging.

\section*{Details}

These function evaluate the spatial process or thin plate spline estimates on a regualr grid of points The grid can be specified using the grid.list/ gridList information or just the sizes.
For the standard Krig and mKrig versions the steps are to create a matrix of locations the represent the grid, call the predict function for the object with these points and also adding any extra arguments passed in the ... section, and then reform the results as a surface object (as.surface). To determine the what parts of the prediction grid are in the convex hull of the data the function in. poly is used. The argument inflation in this function is used to include a small margin around the outside of the polygon so that point on convex hull are included. This potentially confusing modification is to prevent excluding grid points that fall exactly on the ranges of the data. Also note that as written there is no computational savings for evaluting only the convex subset compared to the full grid.
For the "fast" option a stationary covariance function and resulting surface estimate is approximated by the covariance kernel restricted to the grid locations. In this way the approximate problem becomes a \(2-\mathrm{d}\) convolution. The evaluation of the approximate prediction surface uses a fast Fourier transform to compute the predicted values at the grid locations.
The nearest neighbor argument NNSize controls the number of covariance kernels only evalauted at grid location used to approximate a covariance function at an off-grid location. We have found good results with NNSize=5.
predictSurface. fastTps is a specific version ( \(\mathrm{m}=2\), and \(\mathrm{k}=2\) ) of Kriging with a compact covariance kernel (Wendland). that can be much more efficient because it takes advantage of a low level FORTRAN call to evaluate the covariance function. Use predictSurface or predict for other choices of \(m\) and \(k\).
predictSurface. Krig is designed to also include covariates for the fixed in terms of grids.
predictSurface.mKrig Similar in function to the Krig prediction function but it more efficient using the mKrig fit object.
mKrigFastpredict Although this function might be called at the top is it easier to use through the wrapper, predictSurface.mKrig and fast=TRUE.
NOTE: predict. surface has been depreciated and just prints out a warning when called.

\section*{Value}

The usual list components for making image, contour, and perspective plots ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) along with labels for the x and y variables. For predictSurface. derivative the component z is a three dimensional array with values( \(n x, n y, 2\) )

\section*{See Also}

Tps, Krig, predict, grid.list, make.surface.grid, as.surface, surface, in.poly

\section*{Examples}
```

data(ozone2)
x<- ozone2$lon.lat
 y<- ozone2$y[16,]
obj<- Tps(x,y)
\# or try the alternative model:
\# obj<- spatialProcess(x,y)
fit<- predictSurface(obj, nx=40, ny=40)
imagePlot(fit)

predicting a 2d surface holding other variables fixed.

fit<- Tps(BD[,1:4], BD\$lnya) \# fit surface to data

evaluate fitted surface for first two

variables holding other two fixed at median values

out.p<- predictSurface(fit)
surface(out.p, type="C")

plot surface for second and fourth variables

on specific grid.

glist<- list(KCL=29.77, MgCl2= seq(3,7,,25), KPO4=32.13,
dNTP=seq(250,1500,,25))
out.p<- predictSurface(fit, glist)
surface(out.p, type="C")
out.p<- predictSurfaceSE(fit, glist)
surface(out.p, type="C")

a test of the fast prediction algorithm for use with

mKrig/spatialProcess objects.

Not run:

data(NorthAmericanRainfall)
x<- cbind(NorthAmericanRainfall$longitude,
 NorthAmericanRainfall$latitude)
y<- log10(NorthAmericanRainfall\$precip)
mKrigObject<- mKrig(x,log10(y),

```
```

 lambda=.024,
 cov.args= list(aRange= 5.87,
 Covariance="Matern",
 smoothness=1.0),
 sigma2=. }15
)
 gridList<- list(x = seq(-134, -51, length.out = 100),
 y = seq(23, 57, length.out = 100))
 # exact prediction
 system.time(
 gHat<- predictSurface(mKrig0bject, gridList)
)
 # aproximate
 system.time(
 gHat1<- predictSurface(mKrigObject, gridList,
 fast = TRUE)
)
 # don't worry about the warning ...
 # just indicates some observation locations are located
 # in the same grid box.
 # approximation error omitting the NAs from outside the convex hull
 stats(log10(abs(c(gHat$z - gHat1$z))))
 image.plot(gHat$x, gHat$y, (gHat$z - gHat1$z))
 points(x, pch=".", cex=.5)
 world(add=TRUE)
 ## End(Not run)
    ```
    print.Krig Print kriging fit results.

\section*{Description}

Prints the results from a fitting a spatial process estimate (Krig)

\section*{Usage}
\#\# S3 method for class 'Krig'
print(x,digits=4,...)

\section*{Arguments}
x Object from Krig function.
digits \(\quad\) Number of significant digits in printed output. Default is 4.
... Other arguments to print.

\section*{Value}

Selected summary results from Krig.

\section*{See Also}
print, summary.Krig, Krig

\section*{Examples}
```

fit<- Krig(Chicago03$x,Chicago03$y, aRange=100)
print(fit) \# print the summary
fit \# this will work too

```
pushpin Adds a "push pin" to an existing 3-d plot

\section*{Description}

Adds to an existing 3-d perspective plot a push pin to locate a specific point.

\section*{Usage}
pushpin( \(x, y, z, p . o u t\), height=. 05, col="black", text=NULL, adj=-.1, cex=1.0,...)

\section*{Arguments}
x
\(y \quad y\) location
z z location
p.out Projection information returned by persp
height Height of pin in device coordinates (default is about 5\% of the vertical distance ).
col Color of pin head.
text Optional text to go next to pin head.
adj Position of text relative to pin head.
cex Character size for pin head and/or text
... Additional graphics arguments that are passed to the text function.

\section*{Details}

See the help(text) for the conventions on the adj argument and other options for placing text.

\section*{Author(s)}

Doug Nychka

\section*{See Also}
drape.plot,persp

\section*{Examples}
```


Dr. R's favorite New Zealand Volcano!

 data(volcano)
 M<- nrow(volcano)
 N<- ncol(volcano)
 x<- seq(0,1,,M)
 y<- seq(0,1,,N)
 drape.plot(x,y,volcano, col=terrain.colors(128))-> pm
 max(volcano)-> zsummit
 xsummit<- x[row(volcano)[volcano==zsummit]]
 ysummit<- y[col(volcano)[volcano==zsummit]]
 pushpin(xsummit,ysummit,zsummit,pm, text="Summit")

```
qsreg
Quantile or Robust spline regression

\section*{Description}

Uses a penalized likelihood approach to estimate the conditional quantile function for regression data. This method is only implemented for univariate data. For the pairs ( \(\mathrm{X}, \mathrm{Y}\) ) the conditional quantile, \(\mathrm{f}(\mathrm{x})\), is \(\mathrm{P}(\mathrm{Y}<\mathrm{f}(\mathrm{x}) \mid \mathrm{X}=\mathrm{x})=\) alpha. This estimate is useful for determining the envelope of a scatterplot or assessing departures from a constant variance with respect to the independent variable.

\section*{Usage}
\[
\begin{aligned}
\operatorname{qsreg}(x, y, \operatorname{lam}= & N A, \operatorname{maxit}=50, \text { maxit.cv}=10, \text { tol }= \\
& 1 \mathrm{e}-07, \operatorname{offset}=0, \mathrm{sc}=\operatorname{sqrt}(\operatorname{var}(\mathrm{y})) * 1 \mathrm{e}-05, \text { alpha }= \\
& 0.5, \text { wt }=\operatorname{rep}(1, \text { length }(x)), \operatorname{cost}=1, \text { nstep.cv }=80, \\
& \text { hmin }=N A, \operatorname{hmax}=N A, \operatorname{trmin}=2 * 1.05, \text { trmax }=0.95 \\
& * \text { length }(\operatorname{unique}(x)))
\end{aligned}
\]

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline x & Vector of the independent variable in \(\mathrm{y}=\mathrm{f}(\mathrm{x})+\mathrm{e}\) \\
\hline y & Vector of the dependent variable \\
\hline lam & Values of the smoothing parameter. If omitted is found by GCV based on the the quantile criterion \\
\hline maxit & Maximum number of iterations used to estimate each quantile spline. \\
\hline maxit.cv & Maximum number of iterations to find GCV minimum. \\
\hline tol & Tolerance for convergence when computing quantile spline. \\
\hline cost & Cost value used in the GCV criterion. Cost=1 is the usual GCV denominator. \\
\hline offset & Constant added to the effective degrees of freedom in the GCV function. \\
\hline SC & Scale factor for rounding out the absolute value function at zero to a quadratic. Default is a small scale to produce something more like quantiles. Scales on the order of the residuals will result is a robust regression fit using the Huber weight function. The default is \(1 \mathrm{e}-5\) of the variance of the Y's. The larger this value the better behaved the problem is numerically and requires fewer iterations for convergence at each new value of lambda. \\
\hline alpha & Quantile to be estimated. Default is find the median. \\
\hline wt & Weight vector default is constant values. Passing nonconstant weights is a pretty strange thing to do. \\
\hline nstep.cv & Number of points used in CV grid search \\
\hline hmin & Minimum value of \(\log\) ( lambda) used for GCV grid search. \\
\hline hmax & Maximum value of \(\log\) ( lambda) used for GCV grid search. \\
\hline trmin & Minimum value of effective degrees of freedom in model used for specifying the range of lambda in the GCV grid search. \\
\hline trmax & Maximum value of effective degrees of freedom in model used for specifying the range of lambda in the GCV grid search. \\
\hline
\end{tabular}

\section*{Details}

This is an experimental function to find the smoothing parameter for a quantile or robust spline using a more appropriate criterion than mean squared error prediction. The quantile spline is found by an iterative algorithm using weighted least squares cubic splines. At convergence the estimate will also be a weighted natural cubic spline but the weights will depend on the estimate. Alternatively at convergence the estimate will be a least squares spline applied to the empirical psuedo data. The user is referred to the paper by Oh and Nychka ( 2002) for the details and properties of the robust cross-validation using empirical psuedo data. Of course these weights are crafted so that the resulting spline is an estimate of the alpha quantile instead of the mean. CV as function of lambda can be strange so it should be plotted.

Value
trmin trmax
Define the minimum and maximum values for the CV grid search in terms of the effective number of parameters. (see hmin, hmax) Object of class qsreg with many arguments similar to a sreg object. One difference is that cv .grid has five columns the last being the number of iterations for convergence at each value of lambda.

\section*{See Also}
sreg and QTps

\section*{Examples}
```


Not run:

 # fit a CV quantile spline
 fit50<- qsreg(rat.diet$t,rat.diet$con)
 # (default is . }5\mathrm{ so this is an estimate of the conditional median)
 # control group of rats.
 plot(fit50)
 predict(fit50)
 # predicted values at data points
 xg<- seq(0,110,,50)
 plot(fit50$x, fit50$y)
 lines(xg, predict(fit50, xg))
 # A robust fit to rat diet data
 #
 SC<- .5* median(abs((rat.diet$con- median(rat.diet$con))))
 fit.robust<- qsreg(rat.diet$t,rat.diet$con, sc= SC)
 plot(fit.robust)
 # The global GCV function suggests little smoothing so
 # try the local
 # minima with largest lambda instead of this default value.
 # one should should consider redoing the three quantile fits in this
 # example after looking at the cv functions and choosing a good value for
 #lambda
 # for example
 lam<- fit50$cv.grid[,1]
 tr<- fit50$cv.grid[,2]
 # lambda close to df=6
 lambda.good<- max(lam[tr>=6])
 fit50.subjective<-qsreg(rat.diet$t,rat.diet$con, lam= lambda.good)
 fit10<-qsreg(rat.diet$t,rat.diet$con, alpha=.1, nstep.cv=200)
 fit90<-qsreg(rat.diet$t,rat.diet$con, alpha=.9, nstep.cv=200)
 # spline fits at 50 equally spaced points
 sm<- cbind(
 predict(fit10, xg),
 predict(fit50.subjective, xg),predict(fit50, xg),
 predict(fit90, xg))
 # and now zee data ...
 plot(fit50$x, fit50$y)
 # and now zee quantile splines at 10
 #
 matlines(xg, sm, col=c(3,3,2,3), lty=1) # the spline

End(Not run)

```

\section*{Description}

This function uses the standard thin plate spline function Tps and a algorithm based on psuedo data to compute robust smoothers based on the Huber weight function. By modifying the symmetry of the Huber function and changing the scale one can also approximate a quantile smoother. This function is experimental in that is not clear how efficient the psuedo-data algorithm is acheiving convergence to a solution.

\section*{Usage}

QTps(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha \(=0.5\), Niterations \(=100\), tolerance \(=0.001\), verbose \(=\) FALSE)
QSreg(x, Y, lambda = NA, f.start = NULL, psi.scale \(=\) NULL, \(C=1\), alpha \(=0.5\), Niterations \(=100\), tolerance \(=0.001\), verbose = FALSE)

\section*{Arguments}
x
Y
lambda Value of the smoothing parameter. If NA found by an approximate corss-validation criterion.
\begin{tabular}{ll}
\(\ldots\) & \begin{tabular}{l} 
Any other arguments to pass to the Tps function, which are then passed to the \\
Krig function. give.warnings =FALSE can be used to turn off pesky warnings \\
when not important (see example below).
\end{tabular} \\
C & \begin{tabular}{l} 
Scaling for huber robust weighting function. (See below.) Usually it is better to \\
leave this at 1 and just modify the scale psi. scale according to the size of the \\
residuals.
\end{tabular} \\
f.start & \begin{tabular}{l} 
The initial value for the estimated function. If NULL then the constant function \\
at the median of Y will be used. NOTE: This may not be a very good starting \\
vector and a more robust method would be to use a local robust smoother.
\end{tabular} \\
psi.scale & \begin{tabular}{l} 
The scale value for the Huber function. When C=1, this is the point where the
\end{tabular} \\
Huber weight function will change from quadratic to linear. Default is to use the \\
scale .05*mad(Y) and C=1. Very small scales relative to the size of the residuals \\
will cause the estimate to approximate a quantile spline. Very large scales will \\
yield the ordinary least squares spline.
\end{tabular}
\begin{tabular}{ll} 
tolerance & \begin{tabular}{l} 
Convergence criterion based on the relative change in the predicted values of the \\
function estimate. Specifically if the criterion mean \((a b s(f . h a t . n e w-f . h a t)) / m e a n(a b s(f . h a t)) ~\)
\end{tabular} \\
is less than tolerance the iterations re stopped. \\
verbose & If TRUE intermediate results are printed out.
\end{tabular}

\section*{Details}

These are experimental functions that use the psuedo-value algorithm to compute a class of robust and quantile problems. QTps use the Tps function as its least squares base smoother while QSreg uses the efficient sreg for 1-D cubic smoothing spline models. Currently for the 1-d spline problem we recommend using the (or at least comparing to ) the old qsreg function. QSreg was created to produce a more readable version of the 1-d method that follows the thin plate spline format.
The Thin Plate Spline/ Kriging model through fields is: \(Y . k=f(x . k)=P(x . k)+Z(x . k)+e . k\) with the goal of estimating the smooth function: \(f(x)=P(x)+Z(x)\)

The extension in this function is that e.k can be heavy tailed or have outliers and one would still like a robust estimate of \(f(x)\). In the quantile approximation (very small scale parameter) \(f(x)\) is an estimate of the alpha quantile of the conditional distribution of Y given x .
The algorithm is iterative and involves at each step tapering the residuals in a nonlinear way. Let psi.wght be this tapering function then given an initial estimate of \(f\), f.hat the new data for smoothing is
Y.psuedo<- f.hat + psi.scale*psi.wght ( Y - f.hat, psi.scale=psi.scale, alpha=alpha) A thin plate spline is now estimated for these data and a new prediction for \(f\) is found. This new vector is used to define new psuedo values. Convergence is achieved when the the subsequent estimates of f.hat do not change between interations. The advantage of this algorithm is at every step a standard "least squares" thin plate spline is fit to the psuedo data. Because only the observation vector is changing at each iteration Some matrix decompositions need only be found once and the computations at each subsequent iteration are efficient. At convergence there is some asymptotic theory to suggest that the psuedo data can be fit using the least squares spline and the standard smoothing techinques are valid. For example one can consider looking at the cross-validation function for the psuedo-data as a robust version to select a smoothing parameter. This approach is different from the weighted least squared algorithm used in the qsreg function. Also qsreg is only designed to work with 1-d cubic smoothing splines.

The "sigma" function indicating the departure from a pure quadratic loss function has the definition
```

qsreg.sigma<-function(r, alpha = 0.5, C = 1)
temp<- ifelse(r< 0, ((1 - alpha) * r^2)/C , (alpha * r^2)/C)
temp<- ifelse(r >C, 2 * alpha * r - alpha * C, temp)
temp<- ifelse(r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp)
temp

```

The derivative of this function " psi " is
```

qsreg.psi<- function(r, alpha = 0.5, C = 1)
temp <- ifelse(r < 0, 2*(1-alpha)* r/C, 2*alpha * r/C)
temp <- ifelse(temp > 2*alpha, 2*alpha, temp)
temp <- ifelse(temp < -2*(1-alpha), -2*(1-alpha), temp)
temp

```

Note that if C is very small and if alpha \(=.5\) then psi will essentially be 1 for \(\mathrm{r}>0\) and -1 for \(\mathrm{r}<\) 0 . The key feature here is that outside a ceratin range the residual is truncated to a constant value. This is similar to the Windsorizing operation in classical robust statistics.
Another advantage of the psuedo data algotrithm is that at convergence one can just apply all the usual generic functions from Tps to the psuedo data fit. For example, predict, surface, print, etc. Some additional components are added to the Krig/Tps object, however, for information about the iterations and original data. Note that currently these are not reported in the summaries and printing of the output object.

\section*{Value}

A Krig object with additional components:
yraw Original Y values
conv.info A vector giving the convergence criterion at each iteration.
conv.flag If TRUE then convergence criterion was less than the tolerance value.
psi.scale Scaling factor used for the psi.wght function.
value Value of alpha.

\section*{Author(s)}

Doug Nychka

\section*{References}

Oh, Hee-Seok, Thomas CM Lee, and Douglas W. Nychka. "Fast nonparametric quantile regression with arbitrary smoothing methods." Journal of Computational and Graphical Statistics 20.2 (2011): 510-526.

\section*{See Also}
qsreg

\section*{Examples}
```

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]

```
```


Smoothing fixed at 50 df

```
# Smoothing fixed at 50 df
    look1<- QTps( x,y, psi.scale= 15, df= 50)
    look1<- QTps( x,y, psi.scale= 15, df= 50)
## Not run:
## Not run:
# Least squares spline (because scale is so large)
# Least squares spline (because scale is so large)
        look2<- QTps( x,y, psi.scale= 100, df= 50)
        look2<- QTps( x,y, psi.scale= 100, df= 50)
#
#
    y.outlier<- y
```

 y.outlier<- y
    ```
```


add in a huge outlier.

 y.outlier[58]<- 1e5
 look.outlier1<- QTps(x,y.outlier, psi.scale= 15, df= 50,
 give.warnings= FALSE)

least squares spline.

 look.outlier2<- QTps(x,y.outlier, psi.scale=100 , df= 50,
 give.warnings= FALSE)

 set.panel(2,2)
 surface(look1)
 title("robust spline")
 surface(look2)
 title("least squares spline")
 surface(look.outlier1, zlim=c(0,250))
 title("robust spline w/outlier")
 points(rbind(x[58,]), pch="+")
 surface(look.outlier2, zlim=c(0,250))
 title("least squares spline w/outlier")
 points(rbind(x[58,]), pch="+")
 set.panel()

End(Not run)

some quantiles

look50 <- QTps(x,y, psi.scale=.5,)
look75 <- QTps(x,y,f.start= look50\$fitted.values, alpha=.75)

a simulated example that finds some different quantiles.

Not run:

set.seed(123)
N<- 400
x<- matrix(runif(N), ncol=1)
true.g<- x *(1-x)*2
true.g<- true.g/ mean(abs(true.g))
y<- true.g + .2*rnorm(N)
look0 <- QTps(x,y, psi.scale=10, df= 15)
look50 <- QTps(x,y, df=15)
look75 <- QTps(x,y,f.start= look50\$fitted.values, df=15, alpha=.75)

End(Not run)

Not run:

this example tests the quantile estimate by Monte Carlo

by creating many replicate points to increase the sample size.

Replicate points are used because the computations for the

spline are dominated by the number of unique locations not the

total number of points.

set.seed(123)
N<- 80
M<- 200
x<- matrix(sort(runif(N)), ncol=1)
x<- matrix(rep(x[,1],M), ncol=1)

```
```

true.g<- x *(1-x)*2
true.g<- true.g/ mean(abs(true.g))
errors<- . 2*(rexp(N*M) -1)
y<- c(matrix(true.g, ncol=M, nrow=N) + .2 * matrix(errors, ncol=M, nrow=N))
look0 <- QTps(x,y, psi.scale=10, df= 15)
look50 <- QTps(x,y, df=15)
look75 <- QTps(x,y, df=15, alpha=.75)
bplot.xy(x,y, N=25)
xg<- seq(0,1,,200)
lines(xg, predict(look0, x=xg), col="red")
lines(xg, predict(look50, x=xg), col="blue")
lines(xg, predict(look75, x=xg), col="green")

End(Not run)

Not run:

A comparison with qsreg

 qsreg.fit50<- qsreg(rat.diet$t,rat.diet$con, sc=.5)
 lam<- qsreg.fit50$cv.grid[,1]
 df<- qsreg.fit50$cv.grid[,2]
 M<- length(lam)
 CV<-rep(NA, M)
 M<- length(df)
 fhat.old<- NULL
 for (k in M:1){
 temp.obj<- QTps(rat.diet$t,rat.diet$con, f.start=fhat.old, psi.scale=.5, tolerance=1e-6,
 verbose=FALSE, df= df[k],
 give.warnings=FALSE)
 # avoids warnings from Krig search on lambda
 cat(k, " ")
 CV[k] <- temp.obj$Qinfo$CV.psuedo
 fhat.old<- temp.obj$fitted.values
 }
 plot(df, CV, type="l", lwd=2)

psuedo data estimate

 points(qsreg.fit50$cv.grid[,c(5,6)], col="blue")

alternative CV estimate via reweighted LS

 points(qsreg.fit50$cv.grid[,c(2,3)], col="red")

End(Not run)

```

\section*{Description}

Given a vector of z values associated with 2-d locations this function produces an image-like plot where the locations are discretized to a grid and the z values are coded as a color level from a color scale.

\section*{Usage}
```

quilt.plot(x, y, z, nx = 64, ny = 64, grid = NULL,
add.legend=TRUE,add=FALSE, nlevel=64,
col = tim.colors(nlevel),
nrow=NULL, ncol=NULL,FUN =
NULL, plot=TRUE, na.rm=FALSE,
boundary.grid = FALSE, ...)
bubblePlot(
x, y, z, col = viridisLite::viridis(256), zlim = NULL,
horizontal = FALSE, legend.cex = 1, legend.lab = NULL,
legend.line = 2, legend.shrink = 0.9, legend.width =
1.2, legend.mar = ifelse(horizontal, 3.1, 5.1),
axis.args = NULL, legend.args = NULL, size = 1, add =
FALSE, legendLayout = NULL, highlight = FALSE,
highlight.color = "grey30", bubbleType = "circle",
...)

```

\section*{Arguments}

X
\(y \quad\) A vector of the \(y\) coordinates -or- if the locations are passed in \(x\) the \(z\) vector
z
nlevel Number of color levels.
\(\mathrm{nx} \quad\) Number of grid boxes in x if a grid is not specified.
ny Number of grid boxes in \(y\).
nrow Depreciated, same as nx.
ncol Depreciated same as ny.
grid A grid in the form of a grid list.
add.legend If TRUE a legend color strip is added
add If FALSE add to existing plot.
col Color function or the color scale for the image, the default is the tim.colors function - a pleasing spectrum for quilt.plot and the modern and versitle viridis for bubblePlot
boundary.grid If FALSE the passed grid is considered to be the midpoints of the grid cells. If TRUE then these are assumed to define corners and the number of boxes is one less in each dimension.
\begin{tabular}{|c|c|}
\hline plot & If FALSE just returns the image object instead of plotting it. \\
\hline FUN & The function to apply to values that are common to a grid box. The default is to find the mean. (see as.image). \\
\hline na.rm & If FALSE NAs are not removed from zand so a grid box even one of these values may be an NA. (See details below.) \\
\hline size & Size of bubble dots in cex units. Can be a vector to procduce different size points in the scatterplot. \\
\hline zlim & Numerical range to determine the colorscale. If omitted the range of \(z\) is used. \\
\hline & for quilt.plot arguments to be passed to the image. plot function. For bubblePlot arguments to be passed to the plot function if add=FALSE, the default and to the points function if add=TRUE. \\
\hline horizontal & If false (default) legend will be a vertical strip on the right side. If true the legend strip will be along the bottom. \\
\hline bubbleType & Symbol for the bubble as a text string. Either "circle" (default) or "square". \\
\hline highlight & If TRUE will add an outline color around the "bubble" with the color highlight. color. This is useful when the bubbles are distinct. \\
\hline \multicolumn{2}{|l|}{highlight.color} \\
\hline & Color of circle, default is a darker grey. \\
\hline legend.cex & Character expansion to change size of the legend label. \\
\hline legend.lab & Label for the axis of the color legend. Default is no label as this is usual evident from the plot title. \\
\hline legend.line & Distance in units of character height (same as in mtext) of the legend label from the color bar. Make this larger if the label collides with the color axis labels. \\
\hline legend.mar & Width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend. \\
\hline legend.shrink & Amount to shrink the size of legend relative to the full height or width of the plot. \\
\hline legend.width & Width in characters of the legend strip. Default is 1.2 , a little bigger that the width of a character. \\
\hline axis.args & A list giving additional arguments for the axis function used to create the legend axis. (See examples in image.plot.) \\
\hline legend. args & The nuclear option: arguments for a complete specification of the legend label, e.g. if you need to the rotate text or other details. This is in the form of a list and is just passed to the mtext function and you will need to give both the side and line arguments for positioning. This usually will not be needed. (See examples in image.plot.) \\
\hline legendLayout & The list returned by setupLegend that has the legend information about positioning. \\
\hline
\end{tabular}

\section*{Details}
quilt.plot This function combines the discretization to an image by the function as.image and is then graphed by image.plot. By default, locations that fall into the same grid box will have their
z values averaged. This also means that observations that are NA will result in the grid box average also being NA and can produce unexpected results because the NA patterns can dominate the figure. If you are unsure of the effect try na.rm = TRUE for a comparison.
A similar function exists in the lattice package and produces spiffy looking plots. The advantage of this fields version is that it uses the standard R graphics functions and is written in R code. Also, the aggregation to average values for z values in the same grid box allows for different choices of grids. If two locations are very close, separating them could result in very small boxes.

Legend placement is never completely automatic. Place the legend independently for more control, perhaps using image.plot in tandem with split.screen or enlarging the plot margin See help(image.plot) for examples of this function and these strategies.
bubblePlot Why was this function was written for fields? Certainly ggplot has many options for this kind of figure. To quote Tim Hoar a gifted data scientist and software engineer at NCAR: "because we could". It is a crisp implementation of this type of plot using lower level fields functions. The user may choose simply to use the source code as the basis for a more detailed function. However, this is also a quick plot to introduce in teaching.
This function is experimental in the sense it explores setting out a plotting region in advance of the actual plotting using R base graphics. See the functions setupLegend and addLegend for more details. Other graphics approaches in R such as ggplot determine the plotting regions and layout based on having the entire figure specification at hand. Although this a comprehensive solution it also seems overkill to just add a lone color bar to annotate a plot. Moreover, and the graphics lower level functions to add the color bar legend are already available from the image.plot functio.

\section*{Author(s)}
D.Nychka

\section*{See Also}
as.image, discretize.image, image.plot, lattice, persp, drape.plot,

\section*{Examples}
```

data(ozone2)

plot 16 day of ozone data set

quilt.plot(ozone2$lon.lat, ozone2$y[16,])
US(add=TRUE, col="grey", lwd=2)
bubblePlot(ozone2$lon.lat, ozone2$y[16,])
US(add=TRUE, col="magenta", lwd=2)

colors based on a factor or character vector

03Levels<- cut(ozone2$y[16,], c(0,40,60,80,Inf),
labels=c("low","bckgrd","med", "high"))
table(O3Levels)
bubblePlot(ozone2$lon.lat, O3Levels)
US(add=TRUE, col="magenta", lwd=2)

adding a common legend strip "by hand"

```
```


to a panel of plots

and a custom color table

coltab<- two.colors(256, middle="grey50")
par(oma=c(0,0,0,5)) \# save some room for the legend
set.panel(2,2)
zr<- range(ozone2$y, na.rm=TRUE)
for(k in 1:4){
quilt.plot(ozone2$lon.lat, ozone2\$y[15+k,], add.legend=FALSE,
zlim=zr, col=coltab, nx=40, ny=40)
US(add=TRUE)
}
par(oma=c(0,0,0,1))
image.plot(zlim=zr,legend.only=TRUE, col=coltab)

may have to adjust number of spaces in oma to make this work.

adding some grid lines and using the boundary.grid option

note that in this case grid boxes drawn to match lon/lats

data(ozone2)
lon<- ozone2$lon.lat[,1]
lat<- ozone2$lon.lat[,2]
z<- ozone2\$y[16,]
gridList<- list(x=-94 :-81,
y= 36:45)
quilt.plot(lon, lat, z, grid= gridList, boundary.grid = TRUE,
col=viridis(256))

add some gird lines

xline(gridList$x , col="grey", lwd=1, lty=1)
yline(gridList$y, col="grey", lwd=1, lty=2)

```
rat. diet Experiment studying an appetite supressant in rats.

\section*{Description}

The 'rat.diet' data frame has 39 rows and 3 columns. These are data from a study of an appetite supressant given to young rats. The suppressant was removed from the treatment group at around 60 days. The responses are the median food intake and each group had approximately 10 animals.

\section*{Usage}
data(rat.diet)

\section*{Format}

This data frame contains the following columns:
t Time in days
con Median food intake of the control group
trt Median food intake of the treatment group
RCMexample 3-hour precipitation fields from a regional climate model

\section*{Description}

These are few model output fields from the North American Regional Climate Change and Assessment Program (NARCCAP). The images are transformed surface precipitation fields simulated by the WRFP regional climate model (RCM) over North Amreica forced by observation data. The fields are 3 hour precipitation for 8 time periods in January 1, 1979. The grid is unequally spaced in longitude and latitude appropriate projection centered on the model domain. The grid points are nearly equally spaced in great circle distance due to this projection. Precipitation is in a log 10 scale where values smaller than \(4.39 \mathrm{e}-5\) ( the .87 quantile) have been been set to this value. Longitudes have been shifted from the original coordinates \((0-360)\) to the range \((-180-180)\) that is assumed by the R map function.

\section*{Usage}
data(RCMexample)

\section*{Format}

The format is a list of three arrays:
- \(\mathrm{x}: 123 \mathrm{X} 101\) matrix of the longitude locations
- \(\mathrm{y}: 123 \mathrm{X} 101\) matrix of the latitude locations
- z: 123X101X8 transformed matrix of precipitation

Spatial units are degrees with longitude being \(-180,180\) with the prime meridian at 0 . Precipitation is \(\log 10\) of \(\mathrm{cm} / 3\) hour period.

\section*{Details}

This is primarily an example of a regular grid that is not equally spaced and is due to transforming an equally spaced grid from one map projection into longitude latitude coordinates. This model is one small part of an extension series of numerical experiments the North American Regional Climate Change and Assessment Program (NARCCAP). NARCCAP has used 4 global climate models and observational data to supply the atmospheric boundery conditions for 6 different regional climate models. In the current data the forcing is the observations derived from the NCEP reanalysis data and is for Janurary 1, 1979. The full simulation runs for 20 years from this starting date. See the NARCCAP web page for more information about these data.
To facilatate a better representation of these fields the raw precipitation values have been transformed to the log scale with all values below \(4.39 \mathrm{E}-5 \mathrm{~cm} / 3\) hours set to this lower bound.

\section*{Examples}
```

data(RCMexample)

second time period

image.plot(RCMexample$x, RCMexample$y, RCMexample\$z[, , 2])
world(add=TRUE, lwd=2, col="grey")

```
```

rdist Euclidean distance matrix or vector

```

\section*{Description}

Given two sets of locations rdist and fields.rdist. near computes the full Euclidean distance matrix among all pairings or a sparse version for points within a fixed threshhold distance. rdist.vec computes a vector of pairwise distances between corresponding elements of the input locations and is used in empirical variogram calculations.

\section*{Usage}
rdist(x1, \(x 2=\) NULL, compact \(=\) FALSE \()\)
fields.rdist.near(x1,x2, delta, max.points= NULL, mean.neighbor = 50)
rdist.vec(x1, x2)

\section*{Arguments}
\(x 1 \quad\) Matrix of first set of locations where each row gives the coordinates of a particular point.
x2 Matrix of second set of locations where each row gives the coordinates of a particular point. If this is not passed or given as NULL x1 is used.
compact Whether or not to return a distance matrix in compact form inheriting class "dist" (as returned by the dist function in base R). Only values for one triangle of the symmetric distance matrix are returned. This saves time evaluating the returned matrix and the covariance. Note that this option is ignored when \(x 2\) is not NULL.
delta Threshhold distance. All pairs of points that separated by more than delta in distance are ignored.
max.points Size of the expected number of pairs less than or equal to delta. The default is set to the nrow(x1)*mean.neighbor.
mean. neighbor Sets the temp space for max.points

\section*{Details}

More about fields.rdist.near:
The sparse version is designed to work with the sparse covariance functions in fields and anticipates that the full matrix, D is too large to store. The argument max.points is set as a default to nrow( \(\mathrm{x} 1)^{*} 100\) and allocates the space to hold the sparse elements. In case that there are more points that are within delta the function stops with an error but lists the offending rows. Just rerun the function with a larger choice for max. points

It possible that for certain x 1 points there are no x 2 points within a distance delta. This situation will cause an error if the list is converted to spam format.

\section*{Returned values}

Let D be the mXn distance matrix, with \(\mathrm{m}=\mathrm{nrow}(\mathrm{x} 1)\) and \(\mathrm{n}=\mathrm{nrow}(\mathrm{x} 2)\). The elements are the Euclidean distances between the all locations \(\mathrm{x} 1[\mathrm{i}\),\(] and \mathrm{x} 2[\mathrm{j}\),\(] . That is,\)
D.ij \(=\operatorname{sqrt}(\operatorname{sum} . \mathrm{k}((\mathrm{x} 1[\mathrm{i}, \mathrm{k}]-\mathrm{x} 2[\mathrm{j}, \mathrm{k}]) * * 2)\).
rdist The distance matrix D is returned.
fields.rdist. near The elements of \(D\) that are less than or equal to delta are returned in the form of a list.

List components:
ind Row and column indices of elements
ra (Distances (D.ij)
da Dimensions of full distance matrix.
This is a simple sparse format that can be manipulated by several fields functions. E.g. ind2spam will convert this list to the format used by the spam sparse matrix package. ind2full will convert this to an ordinary matrix with zeroes.

\section*{Author(s)}

Doug Nychka, John Paige

\section*{See Also}
stationary.cov, Exp.cov, rdist.earth, dist, ind2spam, ind2full

\section*{Examples}
```

out<- rdist(Chicago03\$x)

out is a 20X20 matrix.

out2<- rdist(Chicago03$x[1:5,], Chicago03$x[11:20,])
\#out2 is a 5X10 matrix
set.seed(123)
x1<- matrix(runif(20*2), 20,2)
x2<- matrix(runif(15*2), 15,2)

```
```

out3<- fields.rdist.near(x1,x2, delta=.5)

out3 is a sparse structure in list format

or to "save" work space decrease size of temp array

 out3<- fields.rdist.near(x1,x2, delta=.5,max.points=20*15)

explicitly reforming as a full matrix

temp<- matrix(NA, nrow=out3$da[1], ncol= out3$da[2])
temp[out3$ind] <- out3$ra

or justuse

 temp<- spind2full(out3)
 image(temp)

this is identical to

 temp2<- rdist(x1,x2)
 temp2[temp2<= .5] <- NA
 \#compute pairwise distance vector
x1 = 1:10
x2 = seq(from=10, to=1)
rdist.vec(x1, x2)
\#calculate output matrix in compact form:
distOut = rdist(1:10, compact=TRUE)
distOut
as.vector(distOut)

```
rdist.earth Great circle distance matrix or vector

\section*{Description}

Given two sets of longitude/latitude locations, rdist. earth computes the Great circle (geographic) distance matrix among all pairings and rdist. earth. vec computes a vector of pairwise great circle distances between corresponding elements of the input locations using the Haversine method and is used in empirical variogram calculations.

\section*{Usage}
rdist.earth(x1, x2, miles = TRUE, R = NULL)
RdistEarth (x1, x2=NULL, miles=TRUE, R=NULL)
rdist.earth.vec (x1, x2, miles \(=\) TRUE, \(R=\) NULL)

\section*{Arguments}
x 1
Matrix of first set of lon/lat coordinates first column is the longitudes and second is the latitudes.
\begin{tabular}{ll} 
x2 & \begin{tabular}{l} 
Matrix of second set of lon/lat coordinates first column is the longitudes and \\
second is the latitudes. If missing or NULL x1 is used.
\end{tabular} \\
miles & \begin{tabular}{l} 
If true distances are in statute miles if false distances in kilometers.
\end{tabular} \\
R & \begin{tabular}{l} 
Radius to use for sphere to find spherical distances. If NULL the radius is either \\
in miles or kilometers depending on the values of the miles argument. If \(\mathrm{R}=1\) \\
then distances are of course in radians.
\end{tabular}
\end{tabular}

\section*{Details}

Surprisingly the distance matrix is computed efficiently in R by dot products of the direction cosines. This is the calculation in rdist. earth. Thanks to Qing Yang for pointing this out a long time ago. A more efficient version has been implemented in C with the R function RdistEarth by Florian Gerber who has also experimented with parallel versions of fields functions. The main advantage of RdistEarth is the largely reduce memory usage. The speed seems simillar to rdist.earth. As Florian writes:
"The current fields::rdist.earth() is surprisingly fast. In the case where only the argument ' x 1 ' is specified, the new C implementation is faster. In the case where 'x1' and 'x2' are given, fields::rdist.earth() is a bit faster. This might be because fields::rdist.earth() does not check its input arguments and uses a less complicated (probably numerically less stable) formula."

\section*{Value}

The great circle distance matrix if \(\operatorname{nrow}(\mathrm{x} 1)=\mathrm{m}\) and \(\operatorname{nrow}(\mathrm{x} 2)=\mathrm{n}\) then the returned matrix will be mXn .

\section*{Author(s)}

\author{
Doug Nychka, John Paige, Florian Gerber
}

\section*{See Also}
rdist, stationary.cov, fields.rdist.near

\section*{Examples}
```

data(ozone2)
out<- rdist.earth (ozone2$lon.lat)
#out is a 153X153 distance matrix
out2<- RdistEarth (ozone2$lon.lat)
all.equal(out, out2)
upper<- col(out)> row(out)

histogram of all pairwise distances.

hist(out[upper])
\#get pairwise distances between first 10 and second 10 lon/lat points
x1 = ozone2$lon.lat[1:10,]
x2 = ozone2$lon.lat[11:20,]
dists = rdist.earth.vec(x1, x2)

```
```

print(dists)

```
registeringCode Information objects that register \(C\) and FORTRAN functions.

\section*{Description}

These are objects of class CallRoutine or FortranRoutine and also NativeSymbolInfo They provide information for compiledfunctions called with . Call, or .Fortran. Ordinarily one would not need to consult these and they are used to make the search among dynamically loaded libraries ( in particular the fields library) have less ambiguity and also be faster. These are created when the package/library is loaded are have their definitions from the compliation of init.c in the package source (src) directory.

\section*{Format}

The format is a list with components:
name The (registration?) name of the C function.
address See NativeSymbolInfo.
dll Dynamically linked library information.
numParameters Number of calling arguments in function.

\section*{Details}
addToDiagC adds diagonal elements to a matrix. See mKrig.
ExponentialUpperC Fills in upper triangle of a matrix with the exponential covariance function. See ExponentialUpper
compactToMatC Converts compact format to full matrix format. See compactToMat.
multebC Mulitplies a vector/matrix with an exponential covariance function. See exp.cov
multwendlandg This has been mysteriously included but it is not a function!
mltdrb Evaluates the derivatives of thin plate sline radial basis functions. See rad.cov.
RdistC Euclidean distance function between sets of coordinates. See rdist.
distMatHaversin Used in RdistEarth.
distMatHaversin2 Used in RdistEarth.
See package_native_routine_registration_skeleton for the utility used to create these data objects.
It is not clear why these routines have been flagged as needing documentation while other routines have not.

\section*{References}

For background on registering C, C++ and Fortran functions see 5.4 of Writing R Extensions. For this package refer to the C code in src/intit. c as an example.

\section*{Examples}
print(addToDiagC)
ribbon.plot
Adds to an existing plot, a ribbon of color, based on values from a color scale, along a sequence of line segments.

\section*{Description}

Given a series of 2-d points and values at these segments, the function colors the segments according to a color scale and the segment values. This is essentially an image plot restricted to line segments.

\section*{Usage}
ribbon.plot( \(x, y, z, z l i m=N U L L, ~ c o l=t i m . c o l o r s(256)\), transparent.color="white", ...)

\section*{Arguments}
\(x \quad x\) locations of line segments
\(y \quad y\) locations of line segments
z Values associated with each segment.
zlim Range for z values to determine color scale.
col Color table used for strip. Default is our favorite tim.colors being a scale from a dark blue to dark red.
transparent.color
Color used for missing values. Default is that missing values make the ribbon transparent.
... Optional graphical arguments that are passed to the segment plotting function. A favorite is lwd to make a broad ribbon.

\section*{Details}

Besides possible 2-d applications, this function is useful to annotate a curve on a surface using colors. The values mapped to acolor scheme could indicate a feature other than the height of the surface. For example, this function could indicate the slope of the surface.

\section*{Author(s)}

Doug Nychka

\section*{See Also}
image.plot, arrow.plot, add.image, colorbar.plot

\section*{Examples}
```

plot(c(-1.5,1.5),c(-1.5,1.5), type="n")
temp<- list(x= seq(-1,1,,40), y= seq(-1,1,,40))
temp$z <- outer(temp$x, temp$y, "+")
contour(temp, add=TRUE)
t<- seq(0,.5,,50)
y<- sin(2*pi*t)
x<- cos(pi*t)
z<- x + y
ribbon.plot(x,y,z, lwd=10)
persp(temp, phi=15, shade=.8, col="grey")-> pm
trans3d(x,y,z,pm)-> uv
ribbon.plot(uv$x, uv\$y, z**2,lwd=5)

```

RMprecip Monthly total precipitation (mm) for August 1997 in the Rocky Mountain Region and some gridded 4 km elevation data sets ( \(m\) ).

\section*{Description}

RMprecip is a useful spatial data set of moderate size consisting of 806 locations. PRISMelevation and RMelevation are gridded elevations for the continental US and Rocky Mountain region at 4 km resolution. Note that the gridded elevations from the PRISM data product are different than the exact station elevations. (See example below.)

\section*{Format}

The data set RMprecip is a list containing the following components:
\(\mathbf{x}\) Longitude-latitude position of monitoring stations. Rows names are station id codes consistent with the US Cooperative observer network. The ranges for these coordinates are [-111, -99] for longitude and \([35,45]\) for latitude.
elev Station elevation in meters.
y Monthly total precipitation in millimeters. for August, 1997
The data sets PRISMelevation and RMelevation are lists in the usual R grid format for images and contouring
They have the following components:
\(\mathbf{x}\) Longitude grid at approximately 4 km resolution
y Latitude grid at approximately 4 km resolution
\(\mathbf{z}\) Average elevation for grid cell in meters

These elevations and the companion grid formed the basis for the 103-Year High-Resolution Precipitation Climate Data Set for the Conterminous United States ( see https://prism.oregonstate. edu/documents/PRISM_downloads_FTP.pdf and also archived at the National Climate Data Center. This work is authored by Chris Daly https://prism. oregonstate. edu and his PRISM group but had some contribution from the Geophysical Statistics Project at NCAR and is an interpolation of the observational data to a 4 km grid that takes into account topography such as elevation and aspect.

\section*{Details}

Contact Doug Nychka for the binary file RData.USmonthlyMet. bin and information on its source.
```


explicit source code to create the RMprecip data

dir <- "" \# include path to data file
load(paste(dir, "RData.USmonthlyMet.bin", sep="/")
\#year.id<- 1963-1895
year.id<- 103
\#pptAUG63<- USppt[year.id,8,]
loc<- cbind(USpinfo$lon, USpinfo$lat)
xr<- c(-111, -99)
yr<- c(35, 45)
station.subset<- (loc[,1]>= xr[1]) \& (loc[,1]<= xr[2]) \& (loc[,2]>= yr[1]) \& (loc[,2]<= yr[2])
ydata<- USppt[year.id,8,station.subset]
ydata <- ydata*10 \# cm -> mm conversion
xdata<- loc[station.subset,]
dimnames(xdata)<- list(USpinfo$station.id[station.subset], c("lon", "lat"))
xdata<- data.frame(xdata)
good<- !is.na(ydata)
ydata<- ydata[good]
xdata<- xdata[good,]
test.for.zero.flag<- 1
test.for.zero(unlist(RMprecip$x), unlist(xdata), tag="locations")
test.for.zero(ydata, RMprecip\$y, "values")

```

\section*{Examples}
```


this data set was created the

historical data taken from

Observed monthly precipitation, min and max temperatures for the coterminous US

1895-1997

NCAR_pinfill

see the Geophysical Statistics Project datasets page for the supporting functions

and details.

plot

quilt.plot(RMprecip$x, RMprecip$y)
US(add=TRUE, col=2, lty=2)

comparison of station elevations with PRISM gridded values

```
```

data(RMelevation)
interp.surface(RMelevation, RMprecip$x)-> test.elev
plot(RMprecip$elev, test.elev, xlab="Station elevation",
ylab="Interpolation from PRISM grid")
abline(0,1,col="blue")

some differences with high elevations probably due to complex

topography!

view of Rockies looking from theSoutheast

save.par<- par(no.readonly=TRUE)
par(mar=c(0,0,0,0))

fancy use of persp with shading and lighting.

persp(RMelevation, theta=75, phi= 15,
box=FALSE, axes=FALSE, xlab="", ylab="",
border=NA,
shade=.95, lphi= 10, ltheta=80,
col= "wheat4",
scale=FALSE, expand=.00025)

reset graphics parameters and a more conventional image plot.

par(save.par)
image.plot(RMelevation, col=topo.colors(256))
US(add=TRUE, col="grey", lwd=2)
title("PRISM elevations (m)")

```
set. panel Specify a panel of plots

\section*{Description}

Divides up the graphics window into a matrix of plots.

\section*{Usage}
```

set.panel(m=1, n=1, relax=FALSE)

```

\section*{Arguments}
\begin{tabular}{ll}
m & Number of rows in the panel of plots \\
n & Number of columns in the panel. \\
relax & \begin{tabular}{l} 
If true and the par command is already set for multiple plots, then the set.panel \\
command is ignored. The default is relax set to false.
\end{tabular}
\end{tabular}

\section*{Details}

After set.panel is called, the graphics screen is reset to put plots according to a m x n table. Plotting starts in the upper left hand corner and proceeds row by row. After \(m \times n\) plots have been drawn, the next plot will erase the window and start in the 1,1 position again. This function is just a repackaging for specifying the mfrow argument to par. Setting up a panel of plots is a quick way to change the aspect ratio of the graph (ratio of height to width) or the size. For example, plotting 2 plots to a page produces a useful size graph for including in a report. You can print out the graphs at any stage without having to fill up the entire window with plots. This function, except for the "relax" option is equivalent to the \(S\) sequence: \(\operatorname{par}(m f r o w=c(m, n))\).

\section*{Side Effects}

The function will echo your choice of m and n to the terminal.

\section*{See Also}
par

\section*{Examples}
```

set.panel(5,2) \#divide screen to hold 10 plots where there are 5 rows
\#and 2 columns
plot(1:10)
plot(2:8)
set.panel() \#reset screen to one plot per screen

```

\section*{Description}

Generates exact (or approximate) random draws from the unconditional or conditional distribution of a spatial process given specific observations. Draws from the conditional distribution, known as conditional simulation in geostatistics, is a useful way to characterize the uncertainty in the predicted process from data. Note that exact simulation is limted by the number of locations but there are approximate strategies to handle simulation for large grids of locations.

\section*{Usage}
```

simSpatialData(object, M = 1, verbose = FALSE)
sim.spatialProcess(object, xp, M = 1, verbose = FALSE, ...)
sim.Krig(object, xp, M = 1, verbose = FALSE, ...)
simLocal.spatialProcess(mKrigObject, predictionGridList = NULL,
simulationGridList = NULL, gridRefinement = 1, np = 2,
M = 1, nx = 80, ny = 80, verbose = FALSE, delta =

```
```

 NULL, giveWarnings = TRUE, fast = FALSE, NNSize = 5,
 ...)
 checkPredictGrid(predictionGridList)
makePredictionGridList(mKrigObject, nx, ny, np)
makeSimulationGrid(predictionGridList, gridRefinement)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline delta & If the covariance has compact support the simulation method can take advantage of this. This is the amount of buffer added for the simulation domain in the circulant embedding method. A minimum size would be aRange for the Wendland but a multiple of this maybe needed to obtain a positive definite circulant covariance function. \\
\hline fast & If TRUE will use approximate, fast spatial prediction on grids. \\
\hline gridRefinement & Amount to increase the number of grid points for the simulation grid. \\
\hline giveWarnings & If true will warn when more than one observation is in a grid box. This is instead of giving an error and stopping. \\
\hline mKrigObject & An mKrig Object (or spatialProcess object) \\
\hline M & Number of draws from conditional distribution. \\
\hline np & Degree of nearest neighbors to use. In the 2D case, the default \(n p=2\) uses 16 points in a 4X4 grid for prediction of the off grid point. \\
\hline NNSize & Degree of neighborhood use for fast prediction. (See predictSurface.mKrig with fast= TRUE ) \\
\hline nx & Number of grid points in prediction locations for \(x\) coordinate. \\
\hline ny & Number of grid points in prediction locations for x coordinate. \\
\hline object & The spatial fit object. \\
\hline \multicolumn{2}{|l|}{predictionGridList} \\
\hline & A grid list specifying the grid locations for the conditional samples. \\
\hline \multicolumn{2}{|l|}{simulationGridList} \\
\hline & A gridlist describing grid for simulation. If missing this is created from the range of the locations, \(n x\), ny, gridRefinement, and gridExpansion or from the range and and \(n x\) Simulation, nySimulation. \\
\hline xp & Same as predictionPoints above. \\
\hline & Any other arguments to be passed to the predict function. Usually this is the \(Z\) or drop. \(Z\) argument when there are additional covariates in the fixed part of the model. (See example below.) \\
\hline verbose & If true prints out intermediate information. \\
\hline
\end{tabular}

\section*{Details}

These functions generate samples from an unconditional or conditional multivariate (spatial) distribution, or an approximate one. The unconditional simulation function, simSpatialData, is a handy way to generate synthetic observations from a fitted model. Typically one would use these for a parametric bootstrap. The functions that simulate conditional distributions are much more involved in their coding. They are useful for describing the uncertainty in predictions using the estimated spatial process under Gaussian assumptions. An important assumption throughout these functions is that all covariance parameters are fixed at their estimated or prescribed values from the passed object. Although these functions might be coded up easily by the users these versions have the advantage that they take the mKrig, spatialProcess or Krig objects as a way to specify the model in an unambiguous way.

Given a spatial process \(h(x)=P(x)+g(x)\) observed at
\(Y . k=Z(x . k) d+P(x . k)+g(x . k)+e . k\)
where \(P(x)\) is a low order, fixed polynomial and \(g(x)\) a Gaussian spatial process and \(Z(x . k)\) is a vector of covariates that are also indexed by space (such as elevation). \(\mathrm{Z}(\mathrm{x} . \mathrm{k}) \mathrm{d}\) is a linear combination of the covariates with the parameter vector \(d\) being a component of the fixed part of the model and estimated in the usual way by generalized least squares.
With \(\mathrm{Y}=\mathrm{Y} .1, \ldots\), Y.N, the goal is to sample the conditional distribution of the process.
\([\mathrm{h}(\mathrm{x}) \mid \mathrm{Y}]\) or the full prediction \(\mathrm{Z}(\mathrm{x}) \mathrm{d}+\mathrm{h}(\mathrm{x})\)
For fixed a covariance this is just a multivariate normal sampling problem. sim. spatialProcess samples this conditional process at the points \(x p\) and is exact for fixed covariance parameters.

The outline of the conditional simulation algorithm is given below and has the advantage that is only depends on the unconditional simulation of the spatial process and being able to make a spatial prediction - the conditional mean of the process given the observations and covariance function.

\section*{Conditional Simulation Algorithm:}

0 ) Find the spatial prediction at the unobserved locations based on the actual data. Call this h.hat(x) and this is also the conditional mean.
1) Generate a realization that includes both prediction and observation locations from the unconditional spatial process and from this process simluate synthetic observations.
2) Use the spatial prediction model (using the true covariance) to estimate the spatial process at unobserved locations.
3) Find the difference between the simulated process and its prediction based on synthetic observations. Call this \(e(x)\).
4) h.hat \((x)+e(x)\) is a draw from \([h(x) \mid Y]\).

The approximations for this simulation come in at step 1). Here the field at the observation locations is approximated using a local conditional simulation from the nearest grid points.
NOTE: A fixed part in the model is handled easily by simply making the prediction from the synthetic observations that have mean zero but include estimation of the fixed part as part of the prediction. Because the regression estimates are unbaised, this gives a valid draw from the correct mulitvariate distribution even though the synthetic observations do not include a fixed part.
sim. spatialProcess Follows this algorithm exactly. For the case of an addtional covariate this of course needs to be included. For a model with covariates use drop. Z=TRUE for the function to ignore prediction using the covariate and generate conditional samples for just the spatial process
and any low order polynomial. Finally, it should be noted that this function will also work with an mKrig object because the essential prediction information in the mKrig and spatialProcess objects are the same. The naming is through convenience.
sim.Krig Also follows this algorithm exactly but for the older Krig object. Note that the inclusion of drop. \(Z=T R U E\) or FALSE will determine whether the conditional simulation includes the covariates Z or not. (See example below.)
simLocal.spatialProcess This function is designed for conditional simulation for a large prediction grid and for a large number of observation s. The approximation will be accurate for fine grids that separate clusters of observation locations. E.g. multiple observations in a single gridbox are treated exactly. If observation location are separated by a grid box then due to the screening effect the approximation error will be negliable, especially if a nugget component (tau ) is present.
The 1D version of this function will not be much more efficient than an exact computation. However, it is included as easy to read source code and for checking (see examples.)
See the utility function offGridWeights for the function that creates weights used to generate the (approximate) conditional sample. The functions checkPredictGrid, makePredictionGridList and makeSimulationGrid are utilities to setup the grids when not specified.

\section*{Value}
sim. Krig and sim. spatialProcess a matrix with rows indexed by the locations in xp and columns being the \(M\) independent draws.
simLocal. spatialProcess a list with components \(x, y\) and \(z\) being the simulations at the prediction grid. The \(x\) and \(y\) are the typical image format specifying a regular grid. If \(n x\) and \(n y\) are the lengths of the grid values in \(X\) and \(Y\) then \(z\) is a array with dimension \(c(n x, n y, M)\). For the \(1 D\) case ny is set to 1 . The component hHat is the conditional mean ( as an \(n x X\) ny matrix) and the remaining arguments are various timing results for parts of the computation.

\section*{Author(s)}

Doug Nychka

\section*{See Also}
sim.rf, Krig, spatialProcess

\section*{Examples}
```


10 member ensemble for the 03 data

Not run:

data("ozone2")
fitObject<- spatialProcess(ozone2$lon.lat, ozone2$y[16,],
smoothness=.5)
nx<- 65
ny<- 55
xGridList<- fields.x.to.grid(fitObject\$x, nx=nx, ny=ny)

```
```

xGrid<- make.surface.grid(xGridList)
allTime0<- system.time(
look0<- sim.spatialProcess(fitObject, xp=xGrid, M=5)
)
print(allTime0)

for M=5 this does not make much sense ... however here are the

Monte Carlo based prediction standard deviations.

predictSE<- apply(look0, 1, sd)

compare to predictSE(fitObject, xp=xGrid)

Local simulation with extra refinement of the grid for embedding

and same grid size for prediction

this runs much faster compared to exact method above

as nx, ny are increased e.g. nx= 128, ny=128 is dramatic difference

allTime1<- system.time(
look<- simLocal.spatialProcess(fitObject, M=5,nx=nx, ny=ny,
gridRefinement = 3,
np=3)
)
print(allTime1)
print(look$timing)
allTime2<- system.time(
 look<- simLocal.spatialProcess(fitObject, M=5,nx=nx, ny=ny,
 gridRefinement = 3,
 np=3,
 fast=TRUE)
)
print(allTime2)
print(look$timing)

End(Not run)

Not run:

A simple example for setting up a bootstrap

M below should be

set to a much larger sample size, however, (e.g. M <- 200) for better

statistics

data(ozone2)
obj<- spatialProcess(ozone2$lon.lat,ozone2$y[16,])
aHat<- obj$summary["aRange"]
lambdaHat<- obj$summary["lambda"]
\#\#\#\#\#\#\#\#\# boot strap

create M independent copies of the observation vector

here we just grab the model information from the

```
```


spatialProcess object above.

However, one could just create the list

 obj<- list(x= ozone2$lon.lat,
 cov.function.name="stationary.cov",
 summary= c(tau= 9.47, sigma2= 499.79, aRange= .700),
 cov.args= list(Covariance="Matern", smoothness=1.0),
 weights= rep(1, nrow(ozone2$lon.lat))

)

Here summary component has the parameters

tau, sigma2 and aRange

and cov.args component has the remaining ones.

set.seed(223)
M<- 25
ySynthetic<- simSpatialData(obj, M)
bootSummary<- NULL
for(k in 1:M){
cat(k, " ")

here the MLEs are found using the easy top level level wrapper

see mKrigMLEJoint for a more efficient strategy

 newSummary<- spatialProcess(obj$x,ySynthetic[,k],
 cov.params.start= list(
 aRange = aHat,
 lambda = lambdaHat)
)$summary
 bootSummary<- rbind(bootSummary, newSummary)
 }
 cat(fill= TRUE)

the results and 95

 stats(bootSummary)
 obj$summary
 tmpBoot<- bootSummary[,c("lambda", "aRange")]
 confidenceInterval <- apply(tmpBoot, 2,
 quantile, probs=c(0.025,0.975))

compare to estimates used as the "true" parameters

 obj$summary[2:5]
 print(t(confidenceInterval))

compare to confidence interval using large sample theory

 print(obj$CITable)

End(Not run)

Not run:

conditional simulation with covariates

colorado climate example

 data(COmonthlyMet)
 fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev)

conditional simulation at missing data

 good<- !is.na(CO.tmin.MAM.climate)
    ```
```

 infill<- sim.spatialProcess(fit1E, xp=CO.loc[!good,],
 Z= CO.elev[!good], M= 10)

get an elevation grid ... NGRID<- 50 gives a nicer image but takes longer

 NGRID <- 25
 # get elevations on a grid
 COGrid<- list(x=seq(-109.5, -100.5, ,NGRID), y= seq(36, 41.75,,NGRID))
 COGridPoints<- make.surface.grid(COGrid)
 # elevations are a bilinear interpolation from the 4km
 # Rocky Mountain elevation fields data set.
 data(RMelevation)
 COElevGrid<- interp.surface(RMelevation, COGridPoints)

NOTE call to sim.spatialProcess treats the grid points as just a matrix

of locations the plot has to "reshape" these into a grid

to use with image.plot

 SEout<- sim.spatialProcess(fit1E, xp=COGridPoints, Z= COElevGrid, M= 30)

for just the smooth surface in lon/lat

SEout<- sim.spatialProcess(fit1E, xp=COGridPoints, drop.Z=TRUE, M= 30)

in practice M should be larger to reduce Monte Carlo error.

 surSE<- apply(SEout, 1, sd)
 image.plot(as.surface(COGridPoints, surSE))
 points(fit1E$x, col="magenta", pch=16)

End(Not run)

Approximate conditional simulation

Not run:

 # create larger lon/lat grid
 NGRID <- 200
 COGrid<- list(x=seq(-109.7, -100.5, ,NGRID),
 y= seq(36, 41.75,,NGRID))
 # interpolation elevations to this grid.
 # This took about 40 seconds
 COElevGrid<- interp.surface.grid(RMelevation, COGrid)
 system.time(
 SEout0<- simLocal.spatialProcess(fit1E,COGrid ,
 ZGrid= COElevGrid$z,
 M= 10)
)

End(Not run)

Approximate conditional simulation and with approximate prediction

increase np and NNSize to improve approximations

This takes about 8 seconds of course one would want more thatn 10 reps

to estimate the SE. Use drop.Z=TRUE to just get the spatial surface without \#\#\# the fixed part

Not run:

system.time(
SEout2<- simLocal.spatialProcess(fit1E, COGrid ,
ZGrid= COElevGrid\$z, np = 2,
fast= TRUE, NNSize=5, M= 10)
)

```
```

 look <- apply(SEout2$z,c(1,2), sd)
 imagePlot(SEout2$x, SEout2$y, look, col=viridis(256))
 points(fit1E$x, pch=16, cex=.5, col="magenta")
 title("Monte Carlo prediction SE")

End(Not run)

example using Krig object and exact conditional simulation.

Not run:

data(ozone2)
set.seed(399)

fit to day 16 from Midwest ozone data set.

 out<- Krig(ozone2$lon.lat, ozone2$y[16,], Covariance="Matern",
 aRange=1.0,smoothness=1.0, na.rm=TRUE)

NOTE aRange =1.0 is not the best choice but

the six missing data locations

 xp<- ozone2$lon.lat[is.na(ozone2$y[16,]),]

30 draws from process at xp given the data

 sim.out<- sim.Krig(out,xp, M=30)

End(Not run)

Not run:

testing the local method on a 1D case.

set.seed(124)

10 observations -- massive dataset!

s<- cbind(runif(10, 5,45))
y<- cbind(runif(10))
aRange<- 10
obj<- mKrig(s, y, aRange=aRange,Covariance="Matern",
smoothness=1.0,
lambda=.01, tau=sqrt(.01),
m=0)

M should be much larger for an accurate check on code

gridList<- list(x= seq(0,50, length.out=15))
look<- simLocal.spatialProcess(obj,
np=3,
predictionGridList = gridList,
gridRefinement = 3,
M=50, extrap=TRUE)

```
```

simSE<- apply(look$z, 1, sd)
checkSE<- predictSE(obj, xnew= cbind(look$x), drop.Z=TRUE)

percentage error from true SE at each location.

stats(100*abs(1- simSE/checkSE))

Maggie plot

plot(look$x, checkSE, type="b", col="blue",
xlab="Location", ylab="Prediction SE")
rug(look$x, col="blue", lwd=3)
points(look\$x, simSE, col="orange3", pch=16)
xline(s, col="grey", lwd=2)
title("Exact (blue) and Monte Carlo (orange)
for the prediction SE based on observations (grey) ")

End(Not run)

```

\section*{Description}

An approximate Nadaraya Watson kernel smoother is obtained by first discretizing the locations to a grid and then using convolutions to find and to apply the kernel weights. The main advantage of this function is a smoother that avoids explicit looping.

\section*{Usage}
smooth.2d(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL, \(x=\) NULL, nrow \(=64\), ncol \(=64\), surface \(=\) TRUE, cov.function \(=\) gauss.cov, Mwidth = NULL, Nwidth = NULL, ...)

\section*{Arguments}

Y
ind \(\quad\) Row and column indices that correspond to the locations of the data on regular grid. This is most useful when smoothing the same locations many times. (See also the x argument.)
weight. obj An object that has the FFT of the convolution kernel and other information (i.e. the result from calling this with setup=TRUE).
setup If true creates a list that includes the FFT of the convolution kernel. In this case the function will return this list. Default is false.
\begin{tabular}{|c|c|}
\hline grid & A list with components x and y being equally spaced values that define the grid. Default are integers 1:nrow, 1:ncol. If \(x\) is given the ranges will be used to define the grid. \\
\hline x & Actual locations of the Y values. Not needed if ind is specified. \\
\hline nrow & Number of points in the horizontal (x) axis of the grid. Not needed if grid is specified the default is 64 \\
\hline ncol & Number of points in the vertical (y) axis of the grid. Not needed if grid list is specified the default is 64 \\
\hline surface & If true (the default) a surface object is returned suitable for use by image, persp or contour functions. If false then just the nrowXncol matrix of smoothed values is returned. \\
\hline cov.function & S function describing the kernel function. To be consistent with the other spatial function this is in the form of a covariance function. The only assumption is that this be stationary. Default is the (isotropic) Gaussian. \\
\hline Nwidth & The size of the padding regions of zeroes when computing the (exact) convolution of the kernel with the data. The most conservative values are \(2 *\) nrow and \(2 *\) ncol, the default. If the kernel has support of say \(2 \mathrm{~L}+1\) grid points then the padding region need only be of size \(\mathrm{L}+1\). \\
\hline Mwidth & See Nwidth. \\
\hline & Parameters that are passed to the smoothing kernel. (e.g. the scale parameter aRange for the exponential or gaussian) \\
\hline
\end{tabular}

\section*{Details}

The irregular locations are first discretized to a regular grid ( using as.image) then a \(2 \mathrm{~d}-\mathrm{FFT}\) is used to compute a Nadaraya-Watson type kernel estimator. Here we take advantage of two features. The kernel estimator is a convolution and by padding the regular by zeroes where data is not obsevred one can sum the kernel over irregular sets of locations. A second convolutions to find the normalization of the kernel weights.
The kernel function is specified by an function that should evaluate with the kernel for two matrices of locations. Assume that the kernel has the form: \(\mathrm{K}(\mathrm{u}-\mathrm{v})\) for two locations u and v . The function given as the argument to cov.function should have the call myfun( \(\mathrm{x} 1, \mathrm{x} 2\) ) where x 1 and x 2 are matrices of \(2-\mathrm{d}\) locations if \(\operatorname{nrow}(\mathrm{x} 1)=\mathrm{m}\) and \(\operatorname{nrow}(\mathrm{x} 2)=\mathrm{n}\) then this function should return a mXn matrix where the ( \(\mathrm{i}, \mathrm{j}\) ) element is \(\mathrm{K}(\mathrm{x} 1[\mathrm{i}]-,\mathrm{x} 2[\mathrm{j}]\),\() . Optional arguments that are included in the ...\) arguments are passed to this function when it is used. The default kernel is the Gaussian and the argument aRange is the bandwidth. It is easy to write other other kernels, just use Exp.cov.simple as a template.

\section*{Value}

Either a matrix of smoothed values or a surface object. The surface object also has a component 'ind' that gives the subscripts of the image matrix where the data is present.

\section*{Examples}
```


Normal kernel smooth of the precip data with bandwidth of .5 (degree)

```
\#
```

look<- smooth.2d(RMprecip$y, x=RMprecip$x, aRange=.25)

finer resolution used in computing the smooth

look3<-smooth.2d(RMprecip$y, x=RMprecip$x, aRange=.25, nrow=256,
ncol=256,Nwidth=32,
Mwidth=32)

if the width arguments were omitted the padding would create a

512X 512 matrix with the data filled in the upper 256X256 part.

with a bandwidth of . }25\mathrm{ degrees the normal kernel is essentially zero

beyond 32 grid points from its center (about 6 standard deviations)

take a look:

\#set.panel(2,1)
\#image(look3, zlim=c(-8,12))
\#points(RMprecip$x, pch=".")
#image(look, zlim =c(-8,12))
#points(RMprecip$x, pch=".")

bandwidth changed to . 25, exponential kernel

look2<- smooth.2d(RMprecip$y, x=RMprecip$x, cov.function=Exp.cov,aRange=.25)


```
```

spam2lz Conversion of formats for sparse matrices

```

\section*{Description}

Some supporting functions that are internal to fields top level methods. These are used to convert between the efficient but opaque format used by spam and more easily checked format based directly on the row and column indices of non zero elements.

\section*{Usage}
spind2full(obj)
spam2full(obj)
spind2spam(obj, add.zero.rows=TRUE)
spam2spind(obj)

\section*{Arguments}
obj
add.zero.rows Either a list with the sparse index components (spind) or an obj of class spam.
If TRUE an entire row is zero add a hard zero value to the element in the first column for each zero row. The spam format requires at least one element in each row to have an explicit value. It is OK if this value is zero but one must be specified.

\section*{Details}

The differencee in formats is best illustarted by an example:
A 4X5 sparse matrix:
\begin{tabular}{lrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
{\([1]\),} & 1 & 9 & 0 & 0 & 33 \\
{\([2]\),} & 0 & 0 & 0 & 26 & 34 \\
{\([3]\),} & 3 & 11 & 0 & 27 & 35 \\
{\([4]\),} & 0 & 12 & 20 & 0 & 36
\end{tabular}
spind format is a list with components "ind", "ra" and "da" here is how the matrix above would be encoded:
ind
I
\([1]\),
\([2]\),
\([3]\),
[4,] 24
[5,] 25
\([6]\),
[7,] 32
\([8]\),
\([9]\),
\([10]\),
[11,] 43
[12,] 45
da
[1] 45
ra
[1] \(1 \begin{array}{lllllllllll}1 & 9 & 33 & 26 & 34 & 3 & 11 & 27 & 35 & 12 & 20\end{array} 36\)
spam format is an S4 class with slot names "entries", "colindices", "rowpointers" and "dimension". entries
[1] 193326343112735122036
colindices
[1] 125451245235
rowpointers
[1] 1461013
dimension
[1] 45
The row pointers are the position in the array of entries where the next row starts.
NOTE: It is possible for the spind format to have a missing row of all zeroes but this not allowed in spam format and produces an error message.

\section*{Author(s)}

Doug Nychka

\section*{See Also}
as.spam

\section*{spatialProcess Estimates a spatial process model.}

\section*{Description}

For a given covariance function estimates the covariance parameters by maximum likelihood and then evaluates the spatial model with these estimated parameters. The returned object can be used for spatial prediction, conditional simulation, and profiling the likelihood function. For fixed values of the covariance parameters this process estimate is also known as Kriging.

\section*{Usage}
spatialProcess(x, y, weights \(=\operatorname{rep}(1, \operatorname{nrow}(x)), \quad Z=N U L L, Z C o m m o n=N U L L\), mKrig.args = NULL, cov.function \(=\) NULL, cov.args \(=\) NULL, parGrid \(=\) NULL, reltol \(=1 \mathrm{e}-4\), na.rm = TRUE, verbose \(=\) FALSE, REML \(=\) FALSE, cov. params.start \(=\) NULL, gridN \(=5\), profileLambda = FALSE, profileARange = FALSE, profileGridN = 15, gridARange = NULL, gridLambda \(=\) NULL,
```

 CILevel = .95,
 iseed = 303,
 collapseFixedEffect = TRUE,
 ...)

S3 method for class 'spatialProcess'

summary(object, ...)

S3 method for class 'spatialProcess'

print(x, digits = 4, ...)

S3 method for class 'spatialProcessSummary'

print(x, digits = 4, ...)

S3 method for class 'spatialProcess'

plot(x, digits = 4, which = 1:4, ...)
spatialProcessSetDefaults(x, cov.function, cov.args, cov.params.start, parGrid,
mKrig.args, extraArgs = NULL, gridN = 5,
collapseFixedEffect = TRUE, verbose = FALSE)
confidenceIntervalMLE(obj, CILevel, verbose=FALSE)
profileMLE (obj, parName, parGrid=NULL, gridN=15,
cov.params.start=NULL, GCV=FALSE, REML=FALSE,
verbose=FALSE)

```

\section*{Arguments}
\begin{tabular}{ll}
x & Observation locations \\
y & Observation values \\
weights & \begin{tabular}{l} 
Weights for the error term (nugget) in units of reciprocal variance.
\end{tabular} \\
Z & \begin{tabular}{l} 
A matrix of extra covariates for the fixed part of spatial model. E.g. elevation \\
for fitting climate data over space.
\end{tabular} \\
A matrix of extra covariates for the fixed part of spatial model that pertain to \\
parameters that hold across all realizations. This covariates only makes sense \\
for multiple realizations (i.e. y is a matrix with more than one column).
\end{tabular}
\begin{tabular}{ll} 
cov.function & \begin{tabular}{l} 
A character string giving the name of the covariance function for the spatial \\
component. If NULL, the default, this is filled in as stationary. cov and then \\
if cov. args is also NULL this is filled in as list (Covariance = "Matern",
\end{tabular} \\
smoothness = 1.0) by the spatialProcessSetDefaults function.
\end{tabular}

\section*{Details}

This function makes many choices for the user in terms of defaults and it is important to be aware of these. The spatial model is
\[
\mathrm{Y} . \mathrm{k}=\mathrm{P}(\mathrm{x} . \mathrm{k})+\mathrm{Z}(\mathrm{x} . \mathrm{k}) \% * \% \text { beta } 2+\mathrm{g}(\mathrm{x} . \mathrm{k})+\text { e.k }
\]
where ".k" means subscripted by k, Y.k is the dependent variable observed at location x.k. P is a low degree polynomial (default is a linear function in the spatial coordinates, \(\mathrm{m}=2\) ) and Z is a matrix of covariates (optional) that enter as a linear model the fixed part. g is a mean zero, Gaussian stochastic process with a marginal variance of sigma and a scale (or range) parameter, aRange. The measurement errors, e.k, are assumed to be uncorrelated, normally distributed with mean zero and standard deviation tau. If weights are supplied then the variance of e is assumed to be tau^2/ weights. The polynomial if specified and extra covariates define the fixed part of this spatial model and the coefficients are found by generalized least squares (GLS).

Perhaps the most important aspect of this function is that the range parameter (aRange), nugget (tau**2) and process variance (sigma) parameters for the covariance are estimated by maximum likelihood and this is the model that is then used for spatial prediction. Geostatistics usually refers to \(\operatorname{tau}^{\wedge} 2+\operatorname{sigma}^{\wedge} 2\) as the "sill" and often these parameters are estimated by variogram fitting rather than maximum likelihood. To be consistent with spline models and to focus on the key part of model we reparametrize as lambda \(=t a u^{* *} 2 / \operatorname{sigma}{ }^{\wedge} 2\) and sigma. Thinking about \(h\) as the spatial signal and e as the noise \(1 / l a m b d a\) can be interpreted as the "signal to noise " ratio in this spatial context.(See also the comparison with fitting the geoR model in the examples section.)

For an isotropic covariance function, the likelihood and the cross-validation function can be concentrated to only depend on lambda and aRange and so in reporting the optimization of these two criterion we focus on this form of the parameters. Once lambda and aRange are found, the MLE for sigma has a closed form and of course then tau is then determined from lambda and sigma. The estimates of the coefficients for the fixed part of the model, determined by GLS, will also be the MLEs.
Often the lambda parameter is difficult to interpret when covariates and a linear function of the coordinates is included and also when the range becomes large relative to the size of the spatial domain. For this reason it is convenient to report the effective degrees of freedom (also referred to \(\operatorname{tr} \mathrm{A}\) in R code and the output summaries) associated with the predicted surface or curve. This measure has a one-to-one relationship with lambda and is easier to interpret. For example an eff degrees of freedom that is very small suggests that the surface is well represented by a low order polynomial. Degrees of freedom close to the number of locations indicates a surface that is close to interpolating the observations and suggests a small or zero value for the nugget variance.

The default covariance model is assumed to follow a Matern with smoothness set to 1.0. This is implemented using the stationary.cov covariance that can take a argument for the form of the covariance, a sill and range parameters and possibly additional parameter might control the shape.
See the example below how to switch to another model. (Note that the exponential is also part of the Matern family with smoothness set to .5. )

The parameter estimation is done by MLESpatialProcess and the returned list from this function is added to the Krig output object that is returned by this function. The estimate is a version of maximum likelihood where the observations are transformed to remove the fixed linear part of the model. If the user just wants to fix the range parameter aRange then Krig can be used.

NOTE: The defaults for the optim function used in MLESpatialProcess are:
```

list(method = "BFGS",
control=list(fnscale $=-1$,
ndeps $=$ rep(log(1.1),length(cov.params.start)+1),
reltol = reltol,
maxit = 20))

```

There is always a hazard in providing a simple to use method that makes many default choices for the spatial model. As in any analysis be aware of these choices and try alternative models and parameter values to assess the robustness of your conclusions. Also examine the residuals to check the adequacy of the fit. See the examples below for some help in how to do this easily in fields. Also see quilt.plot to get an quick plot of a spatial field to discern obvious spatial patterns.
summary method forms a list of class spatialProcessSummary that has a subset of information from the output object and also creates a table of the estimates of the linear parameters in the fixed part of the model. With replicated fields there is an option to estimate different linear parameters for each field ( collapseFixedEffect \(=\) FALSE ) and in this case a table is not created because there is more than one estimate. See (Omega and fixedEffectsCov) in the mKrig object to build the standard errors.
plot method provides potentially four diagnostic plots of the fit.Use the which to pick and choose among them or use set. panel to see them all. The third and fourth plots, however, are only available if the profile computations been done. If lambda is profiled (lambdaProfile is not NULL ) the third plot is the profile log likelihood for lambda and with the GCV function on a second vertical scale. This is based on the grid evaluations in the component lambdaProfile \(\backslash \$\) MLEProfileLambda . The fourth plot is a profile log likelihood trace for aRange based on aRangeProfile \(\backslash \$\) MLEProfileLambda.
print method prints the spatialProcessSummary object of the fit, adding some details and explanations.
spatialProcessSetDefaults This is a useful way to fill in defaults for the function in one place. The main choices are choosing the Matern family, smoothness and a default fixed model (aka spatial drift). The grids for profiling are also created if they have not been supplied.

\section*{Value}

An object of classes mKrig and SpatialProcess. The difference from mKrig are some extra components. The more useful ones are listed below
MLESummary A named array that has the fixed and estimated parameters along with likelihood values and some optim info.
profileSummaryLambda and profileSummaryARange The output list from mKrigMLEGrid for searching over over a grid of lambda and aRange.
CITable Approximate confidence intervals based on the inverse hessian of the log likelihood function.
MLEInfo A list that has a full documentation of the maximization including all parameters and likelihood values that were tried by the optim function.
InitialGridSearch Results from initial grid search to get good starting values for lambda and/or aRange.

\section*{Author(s)}

Doug Nychka

\section*{See Also}

Tps, mKrigMLEGrid, mKrigMLEJoint, plot.Krig, predict.mKrig, predictSE.mKrig

\section*{Examples}
```

data(ozone2)

x is a two column matrix where each row is a location in lon/lat

coordinates

 x<- ozone2$lon.lat

y is a vector of ozone measurements at day 16. Note some missing values.

 y<- ozone2$y[16,]

artifically reduce size of data for a quick example to pass CRAN ...

x<- x[1:75,]

y<- y[1:75]

lots of default choices made here -- see gridN to increase

the number of points in grid searches for MLEs

without specifying lambda or aRange both are found in a robust

way uses grid searches

the covariance is assumed to be stationary Matern with a smoothness of

1.0 (aka Whittle).

profiling over lambda and aRange is not required but completes the full

example. Omit this for a faster computation.

 obj<- spatialProcess(x, y, profileLambda=TRUE, profileARange=TRUE)

summary of model

 summary(obj)

diagnostic plots

 set.panel(2,2)
 plot(obj)

plot 1 data vs. predicted values

plot 2 residuals vs. predicted

plot 3 criteria to select the smoothing

parameter lambda = tau^2 / sigma

the x axis has log10 lambda

Note that here the GCV function is minimized

while the log profile likelihood is maximzed.

plot 4 the log profile likelihood used to

determine range parameter aRange.

set.panel()

predictions on a grid

surface(obj, xlab="longitude", ylab="latitude")
US(add=TRUE, col="grey", lwd=2)
title("Predicted ozone (in PPB) June 18, 1987 ")
\#(see also predictSurface for more control on evaluation grid, predicting

outside convex hull of the data. and plotting)

```
```


prediction standard errors, note two steps now to generate

and then plot surface

look<- predictSurfaceSE(obj)
surface(look, xlab="longitude", ylab="latitude")
points(x, col="magenta")
title("prediction standard errors (PPB)")

here is a sanity check -- call spatialProcess with the MLEs found

above, better get the same predictions!

objTest<- spatialProcess(x, y,
lambda=obj$MLESummary["lambda"],
 aRange=obj$MLESummary["aRange"]
)
test.for.zero(objTest$fitted.values, obj$fitted.values,
tag="sanity check")

swtiching to an exponential function

See Exponential for the definition.

objExponential <- spatialProcess(x, y,
Covariance="Exponential")
objExponential\$summary

```
```


Not run:

```
## Not run:
##################################
##################################
# working with covariates and filling in missing station data
# working with covariates and filling in missing station data
# using an ensemble method
# using an ensemble method
# see the example under help(sim.spatialProcess) to see how to
# see the example under help(sim.spatialProcess) to see how to
# handle a conditional simulation on a grid of predictions with
# handle a conditional simulation on a grid of predictions with
# covariates.
# covariates.
data(COmonthlyMet)
data(COmonthlyMet)
    fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev,
    fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev,
                                    profileLambda=TRUE, profileARange=TRUE
                                    profileLambda=TRUE, profileARange=TRUE
            )
            )
    set.panel( 2,2)
    set.panel( 2,2)
    plot( fit1E)
    plot( fit1E)
    set.panel(1,2)
    set.panel(1,2)
# plots of the fitted surface and surface of prediction standard errors
# plots of the fitted surface and surface of prediction standard errors
    out.p<-predictSurface( fit1E,CO.Grid,
    out.p<-predictSurface( fit1E,CO.Grid,
                                    ZGrid= CO.elevGrid, extrap=TRUE)
                                    ZGrid= CO.elevGrid, extrap=TRUE)
    imagePlot( out.p, col=larry.colors())
    imagePlot( out.p, col=larry.colors())
    US(add=TRUE, col="grey")
    US(add=TRUE, col="grey")
    contour( CO.elevGrid, add=TRUE, levels=seq(1000,3000,,5), col="black")
    contour( CO.elevGrid, add=TRUE, levels=seq(1000,3000,,5), col="black")
    title("Average Spring daily min. temp in CO")
```

 title("Average Spring daily min. temp in CO")
    ```
```

 out.p2<-predictSurfaceSE(fit1E,CO.Grid,
 ZGrid= CO.elevGrid,
 extrap=TRUE, verbose=FALSE)
 imagePlot(out.p2, col=larry.colors())
 US(add=TRUE, col="grey")
 points(fit1E$x, pch=".")
 title("Prediction SE")
 set.panel()

End(Not run)

Not run:

\#

conditional simulation

\#

first a small application at missing data

 notThere<- is.na(CO.tmin.MAM.climate)
 xp <- CO.loc[notThere,]
 Zp <- CO.elev[notThere]
 infill<- sim.spatialProcess(fit1E, xp=xp,
 Z= Zp,M= 10)
 dim(infill)

interpretation is that these infilled values are all equally plausible

given the observations and also given the estimated covariance model

EXTRA CREDIT: standardize the infilled values to have

conditional mean and variance from the exact computations

e.g. predict(fit1E, xp=CO.loc[!good,], Z= CO.elev[!good])

and predictSE(fit1E, xp=CO.loc[!good,], Z= CO.elev[!good])

with these standardization one would still preserve the correlations

among the infilled values that is also important for considering them as a

multivariate prediction.

conditional simulation on a grid but not using the covariate of elevation

fit2<- spatialProcess(CO.loc,CO.tmin.MAM.climate,
gridARange= seq(.25, 2.0, length.out=10)
)

note larger range parameter

create 2500 grid points using a handy fields function

 gridList <- fields.x.to.grid(fit2$x, nx=50,ny=50)
 xGrid<- make.surface.grid(gridList)
 ensemble<- sim.spatialProcess(fit2, xp=xGrid, M = 6)

this is an " n^3" computation so increasing the grid size

can slow things down for computation

The 6 ensemble members

 set.panel(3,2)
 for(k in 1:6){
 imagePlot(as.surface(xGrid, ensemble[,k]))
 }
 set.panel()
    ```
```


End(Not run)

Not run:

changing the covariance model.

data(ozone2)
x<- ozone2$lon.lat
 y<- ozone2$y[16,]

a comparison to using an exponential and Wendland covariance function

and great circle distance -- just to make range easier to interpret.

 obj <- spatialProcess(x, y,
 Distance = "rdist.earth")
 obj2<- spatialProcess(x, y,
 cov.args = list(Covariance = "Exponential"),
 Distance = "rdist.earth")
 obj3<- spatialProcess(x, y,
cov.args = list(Covariance = "Wendland",
dimension = 2,
k = 2),
Distance = "rdist.earth")

obj2 could be also be fit using the argument:

cov.args = list(Covariance = "Matern", smoothness=.5)

Note very different range parameters - BTW these are in miles

but similar nugget variances.

 rbind(Whittle= obj$summary,
 Exp= obj2$summary,
 Wendland= obj3\$summary
)

since the exponential is Matern with smoothness == . }5\mathrm{ the first two

fits can be compared in terms of their likelihoods

the ln likelihood value is slightly higher for obj verses obj2 (-613.9 > -614.9)

these are the _negative_ log likelihoods so suggests a preference for the

smoothness = 1.0 (Whittle) model

does it really matter in terms of spatial prediction?

set.panel(3,1)
surface(obj)
US(add=TRUE)
title("Matern sm= 1.0")
surface(obj2)
US(add=TRUE)
title("Matern sm= .5")
surface(obj3)
US(add=TRUE)
title("Wendland k =2")

prediction standard errors

these take a while because prediction errors are based

directly on the Kriging weight matrix

```
```

 # see mKrig for an alternative.
 set.panel(2,1)
 out.p<- predictSurfaceSE(obj, nx=40,ny=40)
 surface(out.p)
 US(add=TRUE)
 title("Matern sm= 1.0")
 points(x, col="magenta")
 #
 out.p<- predictSurfaceSE(obj, nx=40,ny=40)
 surface(out.p)
 US(add=TRUE)
 points(x, col="magenta")
 title("Matern sm= .5")
 set.panel(1,1)
 ## End(Not run)
    ```
    splint Cubic spline interpolation

\section*{Description}

A fast, FORTRAN based function for cubic spline interpolation.

\section*{Usage}
splint(x, y, xgrid, wt = NULL, derivative = 0, lam = 0, df = NA, lambda = NULL, nx = NULL, digits = 8)

\section*{Arguments}
x
\(y \quad\) The \(y\) values that are paired with the x 's.
xgrid
derivative
wt Weights for different obsrevations in the scale of reciprocal variance.
lam Value for smoothing parameter. Default value is zero giving interpolation.
lambda Same as lam just to make this easier to remember.
df \(\quad\) Effective degrees of freedom. Default is to use lambda \(=0\) or a df equal to the number of observations.
\(n x \quad\) If not NULL this should be the number of points to evaluate on an equally spaced grid in the range of \(x\)
digits \(\quad\) Number of significant digits uused to determine what is a replicate \(x\) value.

\section*{Details}

Fits a piecewise interpolating or smoothing cubic polynomial to the x and y values. This code is designed to be fast but does not many options in sreg or other more statistical implementations. To make the solution well posed the the second and third derivatives are set to zero at the limits of the \(x\) values. Extrapolation outside the range of the \(x\) values will be a linear function.
It is assumed that there are no repeated \(x\) values; use sreg followed by predict if you do have replicated data.

\section*{Value}

A vector consisting of the spline evaluated at the grid values in xgrid.

\section*{References}

See Additive Models by Hastie and Tibshriani.

\section*{See Also}
sreg, Tps

\section*{Examples}
```

x<- seq(0, 120,,200)

an interpolation

splint(rat.diet$t, rat.diet$trt,x)-> y
plot(rat.diet$t, rat.diet$trt)
lines(x,y)
\#(this is weird and not appropriate!)

the following two smooths should be the same

splint(rat.diet$t, rat.diet$con,x, df= 7)-> y1

sreg function has more flexibility than splint but will

be slower for larger data sets.

sreg(rat.diet$t, rat.diet$con, df= 7)-> obj
predict(obj, x)-> y2

in fact predict.sreg interpolates the predicted values using splint!

the two predicted lines (should) coincide

lines(x,y1, col="red",lwd=2)
lines(x,y2, col="blue", lty=2,lwd=2)

```

\section*{Description}

Fits a cubic smoothing spline to univariate data. The amount of smoothness can be specified or estimated from the data by GCV. <!-brief description->

\section*{Usage}
```

sreg(x, y, lambda = NA, df = NA, offset = 0, weights =
rep(1, length(x)), cost = 1, nstep.cv = 80, tol =
1e-05, find.diagA = TRUE, trmin = 2.01, trmax = NA,
lammin = NA, lammax = NA, verbose = FALSE, do.cv =
TRUE, method = "GCV", rmse = NA, na.rm = TRUE, digits
= 8)

S3 method for class 'sreg'

predict(object, x, derivative = 0, model = 1,...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline X & Vector of \(x\) value \\
\hline y & Vector of y values \\
\hline lambda & Single smoothing parameter or a vector of values. If omitted smoothing parameter estimated by GCV. NOTE: lam here is equivalent to the value lambda \(* \mathrm{~N}\) in \(\mathrm{Tps} / \mathrm{Krig}\) where N is the number of unique observations. See example below. \\
\hline object & An sreg object. \\
\hline derivative & Order of deriviatve to evaluate. Must be 0,1 , or 2 . \\
\hline df & Amount of smoothing in term of effective degrees of freedom for the spline \\
\hline offset & an offset added to the term cost*degrees of freedom in the denominator of the GCV function. (This would be used for adjusting the df from fitting other models such as in back-fitting additive models.) \\
\hline model & Specifies which model parameters to use. \\
\hline weights & A vector that is proportional to the reciprocal variances of the errors. \\
\hline cost & Cost value to be used in the GCV criterion. \\
\hline nstep.cv & Number of grid points of smoothing parameter for GCV grid search. \\
\hline tol & Tolerance for convergence in minimizing the GCV or other criteria to estimate the smoothing parameter. \\
\hline find.diagA & If TRUE calculates the diagonal elements of the smoothing matrix. The effective number of degrees of freedom is the sum of these diagonal elements. Default is true. This requires more stores if a grid of smoothing parameters is passed. See returned values below.) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
trmin & \begin{tabular}{l} 
Sets the minimum of the smoothing parameter range for the GCV grid search in \\
terms of effective degrees of freedom.
\end{tabular} \\
trmax & \begin{tabular}{l} 
Sets the maximum of the smoothing parameter range for the GCV grid search \\
in terms of effective degrees of freedom. If NA the range is set to .99 of number \\
of unique locations.
\end{tabular} \\
lammin & \begin{tabular}{l} 
Same function as trmin but in the lambda scale. \\
lammax \\
verbose
\end{tabular} \\
\begin{tabular}{l} 
Same function as trmax but in the lambda scale. \\
do.cv
\end{tabular} & \begin{tabular}{l} 
Print out all sorts of debugging info. Default is falseof course!
\end{tabular} \\
method & \begin{tabular}{l} 
A character string giving the method for determining the smoothing parameter. \\
Choices are "GCV", "GCV.one", "GCV.model", "pure error", "RMSE". Default
\end{tabular} \\
is "GCV". \\
rmse & \begin{tabular}{l} 
Value of the root mean square error to match by varying lambda.
\end{tabular} \\
na.rm & \begin{tabular}{l} 
If TRUE NA's are removed from y before analysis.
\end{tabular} \\
digits & \begin{tabular}{l} 
Number of significant digits used to determine replicate x values.
\end{tabular} \\
\(\ldots\) & Other optional arguments to pass to the predict function.
\end{tabular}

\section*{Details}

MODEL: The assumed model is \(\mathrm{Y} . \mathrm{k}=\mathrm{f}(\mathrm{x} . \mathrm{k})\) +e.k where e.k should be approximately normal and independent errors with variances tau**2/w.k
ESTIMATE: A smoothing spline is a locally weighted average of the y's based on the relative locations of the x values. Formally the estimate is the curve that minimizes the criterion:
\((1 / n) \operatorname{sum}(k=1, n)\) w.k( Y.k \(-\mathrm{f}(\mathrm{X} . \mathrm{k}))^{* *} 2+\) lambda \(\mathrm{R}(\mathrm{f})\)
where \(R(f)\) is the integral of the squared second derivative of \(f\) over the range of the \(X\) values. Because of the inclusion of the \((1 / \mathrm{n})\) in the sum of squares the lambda parameter in sreg corresponds to the a value of lambda*n in the Tps function and in the Krig function.

The solution to this minimization is a piecewise cubic polynomial with the join points at the unique set of \(X\) values. The polynomial segments are constructed so that the entire curve has continuous first and second derivatives and the second and third derivatives are zero at the boundaries. The smoothing has the range [0,infinity]. Lambda equal to zero gives a cubic spline interpolation of the data. As lambda diverges to infinity ( e.g lambda \(=1 \mathrm{e} 20\) ) the estimate will converge to the straight line estimated by least squares.

The values of the estimated function at the data points can be expressed in the matrix form:
predicted values \(=\mathrm{A}(\) lambda \() \mathrm{Y}\)
where A is an nXn symmetric matrix that does NOT depend on Y . The diagonal elements are the leverage values for the estimate and the sum of these (trace(A(lambda)) can be interpreted as the effective number of parameters that are used to define the spline function. IF there are replicate points the A matrix is the result of finding group averages and applying a weighted spline to the means. The A matrix is also used to find "Bayesian" confidence intervals for the estimate, see the example below.
CROSS-VALIDATION:The GCV criterion with no replicate points for a fixed value of lambda is
\((1 / \mathrm{n})(\) Residual sum of squares \() /((1-(\operatorname{tr}(\mathrm{A}) \text {-offset }) * \text { cost }+ \text { offset }) / \mathrm{n})^{*} * 2\),

Usually offset \(=0\) and cost \(=1\). Variations on GCV with replicate points are described in the documentation help file for Krig. With an appropriate choice for the smoothing parameter, the estimate of tau**2 is found by (Residual sum of squares) \(/ \operatorname{tr}(\mathrm{A})\).
COMPUTATIONS: The computations for 1-d splines exploit the banded structure of the matrices needed to solve for the spline coefficients. Banded structure also makes it possible to get the diagonal elements of A quickly. This approach is different from the algorithms in Tps and tremendously more efficient for larger numbers of unique x values ( say \(>200\) ). The advantage of Tps is getting "Bayesian" standard errors at predictions different from the observed \(x\) values. This function is similar to the S -Plus smooth.spline. The main advantages are more information and control over the choice of lambda and also the FORTRAN source code is available (css.f).
See also the function splint which is designed to be a bare bones but fast smoothing spline.

\section*{Value}

Returns a list of class sreg. Some of the returned components are
call Call to the function
\(y M \quad\) Vector of dependent variables. If replicated data is given these are the replicate group means.
\(x M \quad\) Unique \(x\) values matching the \(y\) 's.
weights Proportional to reciprocal variance of each data point.
weightsM Proportional to reciprocal pooled variance of each replicated mean data value (xM).
\(x \quad\) Original \(x\) data.
\(y \quad\) Original y data.
method Method used to find the smoothing parameter.
pure.ss Pure error sum of squares from replicate groups.
tauHat.pure.error
Estimate of tau from replicate groups.
tauHat.GCV Estimate of tau using estimated lambda from GCV minimization
trace Effective degrees of freedom for the spline estimate(s)
gcv.grid Values of trace, GCV, tauHat. etc. for a grid of smoothing parameters. If lambda ( or df) is specified those values are used.
lambda.est Summary of various estimates of the smoothing parameter
lambda If lambda is specified the passed vector, if missing the estimated value.
residuals \(\quad\) Residuals from spline(s). If lambda or df is specified the residuals from these values. If lambda and df are omitted then the spline having estimated lambda. This will be a matrix with as many columns as the values of lambda.
fitted.values Matrix of fitted values. See notes on residuals.
predicted A list with components x and y . x is the unique values of xraw in sorted order. \(y\) is a matrix of the spline estimates at these values.
eff.df Same as trace.
diagA Matrix containing diagonal elements of the smoothing matrix. Number of columns is the number of lambda values. WARNING: If there is replicated data the diagonal elements are those for the smoothing the group means at the unique x locations.

\section*{See Also}

Krig, Tps, splint

\section*{Examples}
```


fit a GCV spline to

control group of rats.

fit<- sreg(rat.diet$t,rat.diet$con)
summary(fit)
set.panel(2,2)
plot(fit) \# four diagnostic plots of fit
set.panel()
predict(fit) \# predicted values at data points
xg<- seq(0,110,,50)
sm<-predict(fit, xg) \# spline fit at 50 equally spaced points
der.sm<- predict(fit, xg, deriv=1) \# derivative of spline fit
set.panel(2,1)
plot(fitx, fity) \# the data
lines(xg, sm) \# the spline
plot(xg,der.sm, type="l") \# plot of estimated derivative
set.panel() \# reset panel to 1 plot

the same fit using the thin plate spline numerical algorithms

sreg does not scale the obs so instruct Tps not to sacel either

this will make lambda comparable within factor of n.

 fit.tps<-Tps(rat.diet$t,rat.diet$con, scale="unscaled")
 summary(fit.tps)

compare sreg and Tps results to show the adjustment to lambda.

 predict(fit)-> look
 predict(fit.tps, lambda=fit$lambda*fit$N)-> look2
 test.for.zero(look, look2) # silence means it checks to 1e-8

finding approximate standard errors at observations

SE<- fit$tauHat.GCV*sqrt(fit$diagA)

compare to predictSE(fit.tps) differences are due to

slightly different lambda values and using tauHat.MLE instad of tauHat.GCV

95% pointwise prediction intervals

Zvalue<- qnorm(.0975)
upper<- fit$fitted.values + Zvalue* SE
lower<- fit$fitted.values - Zvalue* SE


```
```


conservative, simultaneous Bonferroni bounds

ZBvalue<- qnorm(1- .025/fit$N)
upperB<- fit$fitted.values + ZBvalue* SE
lowerB<- fit\$fitted.values - ZBvalue* SE

take a look

plot(fitx, fity, type="n")
envelopePlot(fit$x, lowerB,fit$x, upperB, col = "grey90",
lineCol="grey")
envelopePlot(fit$x, lower,fit$x, upper, lineCol="grey")
lines(fit$predicted, col="red",lwd=2)
points(fit$x, fit\$y,pch=16)
title("95 pct pointwise and simultaneous intervals")

or try the more visually honest not connecting points

plot(fitx, fity, type="n")
segments(fit$x, lowerB, fit$x, upperB, col="grey",lwd=3)
segments(fit$x, lower, fit$x, upper, col="thistle3", lwd=6)
lines(fit$predicted, lwd=2,col="red")
points(fit$x, fit\$y,pch=16)
title("95 pct pointwise and simultaneous intervals")
set.panel(1,1)

```
stats Calculate summary statistics

\section*{Description}

Various summary statistics are calculated for different types of data.

\section*{Usage}
stats( \(x, b y\) )

\section*{Arguments}
x
The data structure to compute the statistics. This can either be a vector, matrix (data sets are the columns), or a list (data sets are the components).
by If x is a vector, an optional vector (either character or numerical) specifying the categories to divide \(x\) into separate data sets.

\section*{Details}

Stats breaks \(x\) up into separate data sets and then calls describe to calculate the statistics. Statistics are found by columns for matrices, by components for a list and by the relevent groups when a numeric vector and a by vector are given. The default set of statistics are the number of (nonmissing) observations, mean, standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of missing observations. If any data set is nonnumeric, missing values are returned for the statistics. The by argument is a useful way to calculate statistics on parts of a data set according to different cases.

\section*{Value}

A matrix where rows index the summary statistics and the columns index the separate data sets.

\section*{See Also}
stats.bin, stats.bplot, describe

\section*{Examples}
```

\#Statistics for 8 normal random samples:
zork<- matrix(rnorm(200), ncol=8)
stats(zork)
zork<- rnorm(200)
id<- sample(1:8, 200, replace=TRUE)
stats(zork, by=id)

```
stats.bin Bins data and finds some summary statistics.

\section*{Description}

Cuts up a numeric vector based on binning by a covariate and applies the fields stats function to each group

\section*{Usage}
stats.bin(x, y, \(N=10\), breaks = NULL, prettyBins=FALSE)

\section*{Arguments}
\(x \quad\) Values to use to decide bin membership
\(y \quad\) A vector of data
\(N \quad\) Number of bins. If the breaks is missing there are \(N\) bins equally spaced on the range of \(x\).
breaks The bin boundaries. If there are \(\mathrm{N}+1\) of these there will be N bins. The bin widths can be unequal.
prettyBins If FALSE creates exactly \(\mathrm{N}-1\) bins. If TRUE the number of bins is determined by N and the pretty function.

\section*{Value}

A list with several components. stats is a matrix with columns indexing the bins and rows being summary statistics found by the stats function. These are: number of obs, mean, sd, min, quartiles, max and number of NA's. (If there is no data for a given bin, NA's are filled in. ) breaks are the breaks passed to the function and centers are the bin centers.

\section*{See Also}
bplot, stats

\section*{Examples}
```

u<- rnorm(2000)
v<- rnorm(2000)
x<- u
y<- .7*u + sqrt(1-.7**2)*v
look<- stats.bin(x,y)
look\$stats["Std.Dev.",]
data(ozone2)

make up a variogram day 16 of Midwest daily ozone ...

look<- vgram(ozone2$lon.lat, c(ozone2$y[16,]), lon.lat=TRUE)

break points

brk<- seq(0, 250,,40)
out<-stats.bin(look$d, look$vgram, breaks=brk)

plot bin means, and some quantiles Q1, median, Q3

matplot(out$centers, t(out$stats[c("mean", "median","Q1", "Q3"),]),
type="l",lty=c(1,2,2,2), col=c(3,4,3,4), ylab="ozone PPB")

```

\section*{Description}

Creates a list of summary results including estimates for the nugget variance (tau) and the smoothing parameter (lambda). This list is usually printed using a "print.summary" function for nice formatting.

\section*{Usage}
```


S3 method for class 'Krig'

```
summary (object, digits=4,...)

\section*{Arguments}
object A Krig or spatialProcess object.
digits Number of significant digits in summary.
... Other arguments to summary

\section*{Details}

This function is a method for the generic function summary for class Krig. The results are formatted and printed using print.summary.Krig.

\section*{Value}

Gives a summary of the Krig object. The components include the function call, number of observations, effective degrees of freedom, residual degrees of freedom, root mean squared error, R-squared and adjusted R-squared, \(\log 10\) (lambda), cost, GCV minimum and a summary of the residuals.

\section*{See Also}

Krig, summary, print.summary.Krig, summary.spatialProcess

\section*{Examples}
```

fit<- Krig(Chicago03$x, Chicago03$y, aRange=100)
summary(fit) \# summary of fit

```
summary.ncdf Summarizes a netCDF file handle

\section*{Description}

Provides a summary of the variable names and sizes from the handle returned from netCDF file.

\section*{Usage}
\#\# S3 method for class 'ncdf'
summary (object,...)

\section*{Arguments}
object The "handle" returned by the read.ncdf function from the ncdf package.
\(\ldots \quad\) Other arguments to pass to this function. Currently, no other arguments are used.

\section*{Details}

This function is out of place in fields but was included because often large geophysical data sets are in netCDF format and the ncdf R package is also needed. To date the summary capability in the ncdf package is limited and this function is used to supplement it use. The function is also a a useful device to see how the ncdf object is structured.

\section*{Author(s)}
D. Nychka

\section*{See Also}
ncdf

Tests if function supports a given argument

\section*{Description}

Tests if the given function supports the given argument. Commonly used in fields code for determining if a covariance function supports precomputation of the distance matrix and evaluation of the covariance matrix over only the upper triangle.

\section*{Usage}
supportsArg(fun=stationary.cov, arg)

\section*{Arguments}
fun The function tested for support for whether it supports the argument arg as input arg The argument to check if fun supports using as input

\section*{Details}

Currently only stationary.cov and Exp.cov support evaluation of the covariance matrix over the upper triangle (and diagonal) only via the onlyUpper argument and distance matrix precomputation via the distMat argument.

\section*{Value}

A logical indicating whether the given function supports use of the given argument

\section*{Author(s)}

John Paige

\section*{See Also}
stationary.cov, Exp.cov These covariance functions have the onlyUpper option allowing the user to evaluate the covariance matrix over the upper triangle and diagonal only and to pass a precomputed distance matrix

\section*{Examples}
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#Test covariance function to see if it supports evaluation of
\#covariance matrix over upper triangle only
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
supportsArg(Rad.cov, "distMat")
supportsArg(Rad.cov, "onlyUpper")
supportsArg(stationary.cov, "distMat")
supportsArg(stationary.cov, "onlyUpper")
supportsArg(Exp.cov, "distMat")
supportsArg(Exp.cov, "onlyUpper")

```
```

surface.Krig
Plots a surface and contours

```

\section*{Description}

Creates different plots of the fitted surface of a Krig object. This is a quick way to look at the fitted function over reasonable default ranges.

\section*{Usage}
```


S3 method for class 'Krig'

surface(object, grid.list = NULL, extrap = FALSE,
graphics.reset = NULL, xlab = NULL, ylab = NULL, main
= NULL, zlab = NULL, zlim = NULL, levels = NULL, type
= "C", nx = 80, ny = 80, col = viridisLite::viridis(256), ...)
\#\# S3 method for class 'mKrig'
surface(
object, grid.list = NULL, extrap = FALSE,
graphics.reset = NULL, xlab = NULL, ylab = NULL, main
= NULL, zlab = NULL, zlim = NULL, levels = NULL, type
= "C", nx = 80, ny = 80, col = viridisLite::viridis(256), ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A Krig object or an mKrig object. \\
grid.list & \begin{tabular}{l} 
A list with as many components as variables describing the surface. All com- \\
ponents should have a single value except the two that give the grid points for \\
evaluation. If the matrix or data frame has column names, these must appear in \\
the grid list. If grid.list is missing an the surface has just two dimensions the \\
grid is based on the ranges of the observed data.
\end{tabular} \\
extrap & \begin{tabular}{l} 
Extrapolation beyond the range of the data. If false only the convex hull of the \\
observations is plotted. Default is false.
\end{tabular}
\end{tabular}
graphics.reset Reset to original graphics parameters after function plotting.
\begin{tabular}{ll} 
type & \begin{tabular}{l} 
Type of plot as a character. "p" perspective plot (persp). "c" contour plot (con- \\
tour). "b" a two panel figure with perspective and contour plots. "I" image plot \\
with legend strip (image.plot). "C" image plot with contours overlaid. Image \\
with contour is the default.
\end{tabular} \\
main & Title of plot \\
xlab & x axis label \\
ylab & y axis label \\
zlab & z axis label if "p" or "b" type is used. \\
zlim & Z limits passed to persp \\
levels & Contour levels passed to contour. \\
nx & Number of grid points to evaluate surface on the horizontal axis (the x-axis). \\
ny & Number of grid points to evaluate surface on the vertical axis (the y-axis). \\
col & Color scale. \\
\(\ldots\) & Any other plotting options.
\end{tabular}

\section*{Details}

This function is essentially a combination of predictSurface and plot.surface. It may not always give a great rendition but is easy to use for checking the fitted surface. The default of extrap=F is designed to discourage looking at the estimated surface outside the range of the observations.
NOTE: that any Z covariates will b edropped and only the spatial part of the model will be evaluated.

\section*{See Also}

Krig predictSurface, plot.surface, image.plot

\section*{Examples}
```

fit<- Krig(Chicago03$x,Chicago03$y, aRange=30) \# krig fit
\#Image plot of surface with nice, smooth contours and shading
surface(fit, type="C", nx=128, ny=128)

```

The Engines: Basic linear algebra utilities and other computations supporting the Krig function.

\section*{Description}

These are internal functions to Krig that compute the basic matrix decompositions or solve the linear systems needed to evaluate the Krig/Tps estimate. Others listed below do some simple housekeeping and formatting. Typically they are called from within Krig but can also be used directly if passed a Krig object list.

\section*{Usage}

Krig.engine.default (out, verbose = FALSE)
Krig.engine.fixed( out, verbose=FALSE, lambda=NA)
Krig.coef(out, lambda = out\$lambda, \(y=\) NULL, \(y M=\) NULL, verbose \(=\) FALSE)
Krig.make.u(out, \(y=\) NULL, \(y M=\) NULL, verbose \(=\) FALSE)
Krig.check. \(x Y(x, Y, Z\), weights, na.rm, verbose \(=\) FALSE)
Krig.transform. xY (obj, knots, verbose \(=\) FALSE)
Krig.make.W( out, verbose=FALSE)
Krig.make.Wi ( out, verbose=FALSE)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline out & A complete or partial Krig object. If partial it must have all the information accumulated to this calling point within the Krig function. \\
\hline obj & Same as out. \\
\hline verbose & If TRUE prints out intermediate results for debugging. \\
\hline lambda & Value of smoothing parameter "hard wired" into decompositions. Default is NA, i.e. use the value in out \(\backslash \$ 1\) ambda. \\
\hline y & New y vector for recomputing coefficients. OR for \%d*\% a vector or matrix. \\
\hline yM & New y vector for recomputing coefficients but the values have already been collapsed into replicate group means. \\
\hline Y & raw data Y vector \\
\hline x & raw \(x\) matrix of spatial locations OR In the case of \(\% \mathrm{~d} * \%, \mathrm{y}\) is either a matrix or a vector. As a vector, \(y\), is interpreted to be the elements of a digaonal matrix. \\
\hline weights & Raw weights vector passed to Krig \\
\hline Z & Raw vector or matrix of additional covariates. \\
\hline na.rm & NA action logical values passed to Krig \\
\hline knots & Raw knots matrix passed to Krig \\
\hline
\end{tabular}

\section*{Details}

\section*{ENGINES:}

The engines are the code modules that handle the basic linear algebra needed to computed the estimated curve or surface coefficients. All the engine work on the data that has been reduced to unique locations and possibly replicate group means with the weights adjusted accordingly. All information needed for the decomposition are components in the Krig object passed to these functions.
Krig.engine.default finds the decompositions for a Universal Kriging estimator by simultaneously diagonalizing the linear system system for the coefficients of the estimator. The main advantage of this form is that it is fairly stable numerically, even with ill-conditioned covariance matrices with lambda \(>0\). (i.e. provided there is a "nugget" or measure measurement error. Also the eigendecomposition allows for rapid evaluation of the likelihood, GCV and coefficients for new data vectors under different values of the smoothing parameter, lambda.

Krig.engine.knots This code has been omitted from verisions \(>=12.0\). See 11.6 too recover this functionality.
Finds the decompositions in the case that the covariance is evaluated at arbitrary locations possibly different than the data locations (called knots). The intent of these decompositions is to facilitate the evaluation at different values for lambda.

Krig.engine.fixed are specific decomposition based on the Cholesky factorization assuming that the smoothing parameter is fixed. This is the only case that works in the sparse matrix. Both knots and the full set of locations can be handled by this case. The difference between the "knots" engine above is that only a single value of lambda is considered in the fixed engine.

\section*{OTHER FUNCTIONS:}

Krig. coef Computes the "c" and "d" coefficients to represent the estimated curve. These coefficients are used by the predict functions for evaluations. Krig.coef can be used outside of the call to Krig to recompute the fit with different \(Y\) values and possibly with different lambda values. If new y values are not passed to this function then the yM vector in the Krig object is used. The internal function Krig. ynew sorts out the logic of what to do and use based on the passed arguments.
Krig.make.u Computes the "u" vector, a transformation of the collapsed observations that allows for rapid evaluation of the GCV function and prediction. This only makes sense when the decomposition is WBW or DR, i.e. an eigen decomposition. If the decompostion is the Cholesky based then this function returns NA for the \(u\) component in the list.

Krig. check. xY Checks for removes missing values (NAs).
Krig. cor. Y This code has been omitted from verisions \(>=12.0\). See 11.6 too recover this functionality.

Krig.transform. xY Finds all replicates and collapse to unique locations and mean response and pooled variances and weights. These are the \(\mathrm{xM}, \mathrm{yM}\) and weightsM used in the engines. Also scales the x locations and the knots according to the transformation.
Krig.make. W and Krig.make. Wi These functions create an off-diagonal weight matrix and its symmetric square root or the inverse of the weight matrix based on the information passed to Krig. If out\$nondiag is TRUE W is constructed based on a call to the passed function wght.function along with additional arguments. If this flag is FALSE then W is just diag(out\$weightsM) and the square root and inverse are computed directly.
\(\% \mathrm{~d} * \%\) Is a simple way to implement efficient diagonal multiplications. \(\mathrm{x} \% \mathrm{~d} * \% \mathrm{y}\) is interpreted to mean \(\operatorname{diag}(\mathrm{x}) \% * \% \mathrm{y}\) if x is a vector. If x is a matrix then this becomes the same as the usual matrix multiplication.

\section*{Returned Values}

\section*{ENGINES:}

The returned value is a list with the matrix decompositions and other information. These are incorporated into the complete Krig object.
Common to all engines:
decomp Type of decomposition
nt dimension of T matrix
np number of knots

Krig.engine.default:
u Transformed data using eigenvectors.
D Eigenvalues
G Reduced and weighted matrix of the eigenvectors
qr.T QR decomposition of fixed regression matrix
\(\mathbf{V}\) The eigenvectors
Krig.engine.fixed:
d estimated coefficients for the fixed part of model
c estimated coefficients for the basis functions derived from the covariance function.
Using all data locations
qr.VT QR decomposition of the inverse Cholesky factor times the T matrix.
MC Cholesky factor
Using knot locations
qr.Treg QR decomposition of regression matrix modified by the estimate of the nonparametric (or spatial) component.
lambda.fixed Value of lambda used in the decompositions
OTHER FUNCTIONS:
Krig.coef
\(\mathbf{y M}\) Y values as replicate group means
tauHat.rep Sample standard deviation of replicates
tauHat.pure.error Same as tauHat.rep
pure.ss Pure error sums of squares based on replicates
c The "c" basis coefficients associated with the covariance or radial basis functions.
d The " d " regression type coefficients that are from the fixed part of the model or the linear null space.
u When the default decomposition is used the data vector transformed by the orthogonal matrices. This facilitates evaluating the GCV function at different values of the smoothing parameter.

Krig.make. W
W The weight matrix
W2 Symmetric square root of weight matrix
Krig.make.Wi
Wi The inverse weight matrix
W2i Symmetric square root of inverse weight matrix

\section*{Author(s)}

Doug Nychka

\section*{See Also}

Krig, Tps

\section*{Examples}

Krig( Chicago03\$x, Chicago03\$y, aRange=100)-> out

Krig.engine.default( out)-> stuff
\# compare "stuff" to components in out\$matrices
look1<- Krig.coef( out)
look1\$c
\# compare to out\$c
look2<- Krig.coef( out, \(\mathrm{yM}=\) Chicago03\$y)
look2\$c
\# better be the same even though we pass as new data!
tim. colors Some useful color tables for images and tools to handle them.

\section*{Description}

Several color scales useful for image plots: a pleasing rainbow style color table patterned after that used in Matlab by Tim Hoar and also some simple color interpolation schemes between two or more colors. There is also a function that converts between colors and a real valued vector.

\section*{Usage}
tim.colors( \(\mathrm{n}=64\), alpha=1.0)
larry.colors()
snow.colors(n=256, alpha=1)
two.colors(n=256, start="darkgreen", end="red", middle="white", alpha=1.0)
designer.colors( n=256, col= c("darkgreen", "white", "darkred"), x= seq(0,1,, length(col)) ,alpha=1.0)
color.scale(z, col = tim.colors, NC = 256, zlim = NULL,
```

 transparent.color = "white", eps = 1e-08)
 fieldsPlotColors(col,...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline alpha & The transparency of the color -1.0 is opaque and 0 is transparent. This is useful for overlays of color and still being able to view the graphics that is covered. \\
\hline n & Number of color levels. The setting \(\mathrm{n}=64\) is the orignal definition. \\
\hline start & Starting color for lowest values in color scale \\
\hline end & Ending color. \\
\hline middle & Color scale passes through this color at halfway \\
\hline col & A list of colors (names or hex values) to interpolate. But for the color. scale function this can be also be a function that returns NC colors when called with just the NC argument. \\
\hline X & Positions of colors on a \([0,1]\) scale. Default is to assume that the x values are equally spacesd from 0 to 1 . \\
\hline z & Real vector to encode in a color table. \\
\hline zlim & Range to use for color scale. Default is the range(z) inflated by 1-eps and \(1+\) eps. \\
\hline \multicolumn{2}{|l|}{transparent.color} \\
\hline & Color value to use for NA's or values outside zlim \\
\hline eps & A small inflation of the range to avoid the boundary values of \(z\) being coded as NAs. \\
\hline NC & The number of colors to return from calling the function passed in the col argument. This is only used if col is a function. \\
\hline & Additional plotting arguments that are passed to image.plot. \\
\hline
\end{tabular}

\section*{Details}

The color in R can be represented as three vectors in RGB coordinates and these coordinates are interpolated separately using a cubic spline to give color values that intermediate to the specified colors.

Ask Tim Hoar about tim. colors! He is a Mattlab black belt and this is his favorite scale in that system. two. colors is really about three different colors. For other colors try fields.color. picker to view possible choices. start="darkgreen", end="azure4" are the options used to get a nice color scale for rendering aerial photos of ski trails. (See https://github.com/dnychka/MJProject.) larry. colors is a 13 color palette used by Larry McDaniel (retired software engineer from NCAR) and is particularly useful for visualizing fields of climate variables.
snow. colors is the scale used by Will Klieber's team for visualizing snow cover from remotely sensed data products. See the commented code for the script as to how how this was formed from an orignal raw 256 level scale. Note the that first color in this table is grey and is desigend to represent the minimum value of the range (e.g. 0). If the image in in percent snow cover then \(z \lim =c(0,100)\) would make sense as a range to fit grey pixels to zero and white to 100 percent.
designer. color is the master function for the other scales. It can be useful if one wants to customize the color table to match quantiles of a distribution. e.g. if the median of the data is at .3 with respect to the range then set \(x\) equal to \(c(0, .3,1)\) and specify two colors to provide a transtion that matches the median value. In fields language this function interpolates between a set of colors at locations x . While you can be creative about these colors just using another color scale as the basis is easy. For example
designer.color (256, rainbow(4), \(x=c(0, .2, .8,1.0)\) )
leaves the choice of the colors to Dr. R after a thunderstorm. See also colorBrewer to choose sequences of colors that form a good palette.
color.scale assigns colors to a numerical vector in the same way as the image function. This is useful to kept the assigment of colors consistent across several vectors by specifiying a common zlim range.
plotColorScale A simple function to plot a vector of colors to examine their values.

\section*{Value}

A vector giving the colors in a hexadecimal format, two extra hex digits are added for the alpha channel.

\section*{See Also}
topo.colors, terrain.colors, image.plot, quilt.plot, grey.scale, fields.color.picker

\section*{Examples}
```

tim.colors(10)

returns an array of 10 character strings encoding colors in hex format

e.g. (red, green, blue) values of (16,255, 239)

translates to "\#10FFEF"

rgb(16/255, 255/255, 239/255, alpha=.5)

gives "\#10FFEF80" note extra "alpha channel"

view some color table choices

set.panel(4,1)
fieldsPlotColors(tim.colors())
title("tim.colors")
fieldsPlotColors(larry.colors())
title("larry.colors")
fieldsPlotColors(two.colors())
title("two.colors")
fieldsPlotColors(snow.colors())
title("snow.colors")

a bubble plot with some transparency for overlapping dots

set.seed(123)
loc<- matrix(rnorm(200), 100,2)
Z<- loc[,1] + loc[,2]
colorMap<- color.scale(Z, col=tim.colors(10, alpha=.8))
par(mar=c(5,5,5,5)) \# extra room on right for color bar

```
```

plot(loc, col=colorMap, pch=16, cex=2)

add a color scale

 image.plot(legend.only=TRUE, zlim=range(Z), col=tim.colors(10))

using tranparency without alpha the image plot would cover points

obj<- list(x= 1:8, y=1:10, z= outer(1:8, 1:10, "+"))
plot(1:10,1:10)
image(obj, col=two.colors(alpha=.5), add=TRUE)
coltab<- designer.colors(col=c("blue", "grey", "green"),
x= c(0,.3,1))
image(obj, col= coltab)

peg colors at some desired quantiles of data.

NOTE need 0 and 1 for the color scale to make sense

x<- quantile(c(obj\$z), c(0,.25,.5,.75,1.0))

scale these to [0,1]

zr<- range(c(obj$z))
x<- (x-zr[1])/ (zr[2] - zr[1])
coltab<- designer.colors(256,rainbow(5), x)
image(obj$z, col= coltab)

see image.plot for adding all kinds of legends

set.panel()

```

\section*{Description}

Fits a thin plate spline surface to irregularly spaced data. The smoothing parameter is chosen as a default by generalized cross-validation. The assumed model is additive \(Y=f(X)+e\) where \(f(X)\) is a d dimensional surface.

\section*{Usage}
\[
\begin{aligned}
& \text { Tps(x, Y, m = NULL, p = NULL, scale.type = "range", lon.lat = FALSE, } \\
& \text { miles = TRUE, method = "GCV", GCV = TRUE, ...) } \\
& \text { fastTps(x, Y, m = NULL, p = NULL, aRange, lon.lat = FALSE, } \\
& \text { find.trA }=\text { FALSE, REML }=\text { FALSE, theta=NULL, } . . \text { ) }
\end{aligned}
\]

\section*{Arguments}

X

Y
m
p
scale.type
aRange
method

GCV
miles If TRUE great circle distances are in miles if FALSE distances are in kilometers
find.trA If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method (random trace). This will add to the computational burden by approximately NtrA solutions of the linear system but the cholesky decomposition is reused.

REML If TRUE find the MLE for lambda using restricted maximum likelihood instead of the full version.
theta
Same as aRange.
For Tps any argument that is valid for the Krig function. Some of the main ones are listed below.

For fastTps any argument that is suitable for the mKrig function see help on mKrig for these choices. The most common would be lambda fixing the value of this parameter ( \(\operatorname{tau}^{\wedge} 2 /\) sigma \({ }^{\wedge} 2\) ), Z linear covariates or mKrig. args= list ( \(m=1\) ) setting the regression model to be just a constant function.

Arguments for Tps:
lambda Smoothing parameter that is the ratio of the error variance (tau**2) to the scale parameter of the covariance function. If omitted this is estimated by GCV.
\(\mathbf{Z}\) Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \(x\)
df The effective number of parameters for the fitted surface. Conversely, Ndf, where N is the total number of observations is the degrees of freedom associated with the residuals. This is an alternative to specifying lambda and much more interpretable.
cost Cost value used in GCV criterion. Corresponds to a penalty for increased number of parameters. The default is 1.0 and corresponds to the usual GCV.
weights Weights are proportional to the reciprocal variance of the measurement error. The default is no weighting i.e. vector of unit weights.
nstep.cv Number of grid points for minimum GCV search.
x.center Centering values are subtracted from each column of the x matrix. Must have scale.type="user".
x.scale Scale values that divided into each column after centering. Must have scale.type="user".
sigma Scale factor for covariance.
tau2 Variance of errors or if weights are not equal to 1 the variance is tau**2/weight.
verbose If true will print out all kinds of intermediate stuff.
mean.obj Object to predict the mean of the spatial process.
sd.obj Object to predict the marginal standard deviation of the spatial process.
null.function An R function that creates the matrices for the null space model. The default is fields.mkpoly, an R function that creates a polynomial regression matrix with all terms up to degree \(\mathrm{m}-1\). (See Details)
offset The offset to be used in the GCV criterion. Default is 0 . This would be used when Krig/Tps is part of a backfitting algorithm and the offset has to be included to reflect other model degrees of freedom.

\section*{Details}

\section*{Overview}

This is the classic nonparametric curve/surface estimate pioneered in statistics by Grace Wahba. The computational algorithm is based around a QR decomposition followed by an eigen decomposition on a reduced matrix derived from the spline radial basis functions. This insures a stable computation - basically bombproof - but is not the fastest. See the function mKrig and examples for fitting a thin plate spline using spatialProcess that uses a different linear algebra approach. This is implemented in the "fast" version albeit approximate version to exploit sparse matrices.
This function also works for just a single dimension and reproduces the well known cubic smoothing spline for \(m==2\) Finally we note that a thin plate spline is a limiting case of a Gaussian process estimate as the range parameter in the Matern family increases to infinity. (Kriging).

A "fast" version of this function uses a compactly supported Wendland covariance and sparse linear algebra for handling larger datta sets. Although a good approximation to Tps for sufficiently large aRange its actual form is very different from the textbook thin-plate definition. The user will see
that fastTps is largely a wrapper for a call to spatialProcess with the Wendland covariance function.

Background on the thin plate spline function, Tps A thin plate spline is the result of minimizing the residual sum of squares subject to a constraint that the function have a certain level of smoothness (or roughness penalty). Roughness is quantified by the integral of squared m -th order derivatives. For one dimension and \(m=2\) the roughness penalty is the integrated square of the second derivative of the function. For two dimensions the roughness penalty is the integral of
\((\operatorname{Dxx}(\mathrm{f}))^{* *} 22+2(\mathrm{Dxy}(\mathrm{f}))^{* *} 2+(\mathrm{Dyy}(\mathrm{f}))^{* *} 22\)
(where Duv denotes the second partial derivative with respect to \(u\) and v.) Besides controlling the order of the derivatives, the value of m also determines the base polynomial that is fit to the data. The degree of this polynomial is (m-1).

The smoothing parameter controls the amount that the data is smoothed. In the usual form this is denoted by lambda, the Lagrange multiplier of the minimization problem. Although this is an awkward scale, lambda \(=0\) corresponds to no smoothness constraints and the data is interpolated. lambda=infinity corresponds to just fitting the polynomial base model by ordinary least squares.
This estimator is implemented by passing the right generalized covariance function based on radial basis functions to the more general function Krig. One advantage of this implementation is that once a \(\mathrm{Tps} /\) Krig object is created the estimator can be found rapidly for other data and smoothing parameters provided the locations remain unchanged. This makes simulation within R efficient (see example below). Tps does not currently support the knots argument where one can use a reduced set of basis functions. This is mainly to simplify the code and a good alternative using knots would be to use a valid covariance from the Matern family and a large range parameter.

Using a great circle distance function The option to use great circle distance to define the radial basis functions (lon.lat=TRUE) is very useful for small geographic domains where the spherical geometry is well approximated by a plane. However, for large domains the spherical distortion be large enough that the radial basis functions no longer define a positive definite system and Tps will report a numerical error. An alternative is to switch to a three dimensional thin plate spline with the locations being the direction cosines. This will give approximate great circle distances for locations that are close and also the numerical methods will always have a positive definite matrices. There are other radial basis functions that are specific to a spherical geometry but these are not implemented in fields.

Here is an example using this idea for RMprecip and also some examples of building grids and evaluating the Tps results on them:
```


a useful function:

 dircos<- function(x1){
 coslat1 <- cos((x1[, 2] * pi)/180)
 sinlat1 <- sin((x1[, 2] * pi)/180)
 coslon1 <- cos((x1[, 1] * pi)/180)
 sinlon1 <- sin((x1[, 1] * pi)/180)
 cbind(coslon1*coslat1, sinlon1*coslat1, sinlat1)}

fit in 3-d to direction cosines

 out<- Tps(dircos(RMprecip$x),RMprecip$y)
 xg<-make.surface.grid(fields.x.to.grid(RMprecip$x))
 fhat<- predict(out, dircos(xg))

coerce to image format from prediction vector and grid points.

```
```

 out.p<- as.surface(xg, fhat)
 surface(out.p)

compare to the automatic

out0<- Tps(RMprecip$x,RMprecip$y, lon.lat=TRUE)
surface(out0)

```

The function fastTps is really a convenient wrapper function that calls spatialProcess with a suitable Wendland covariance function. This means one can use all the additional functions for prediction and simulation built for the spatialProcess and mKrig objects. Some care needs to exercised in specifying the support aRange - a Goldilocks problem - where aRange is large enough so that every location has a reasonable number (say 10 or more ) of neighboring locations that have non-zero covariances but also the number of neighbors is not so large that the sparsity of the covariance matrix is compromised. To figure out the neighborhood pattern are the spatial locations one can use the function nearest. dist, sparse matrix format, and table function.
```

set.seed(222)
s<- cbind(runif(1e4),runif(1e4))
look<- nearest.dist(s,s, delta = .03)
look<- spam2spind(look)
stats(table(look\$ind[,1]))

```

Here one has asummary of the number of nearest neighbors within a distance of .03 for these (randomly generated) locations. I see a minimum of 7 for at least one location so aRange should be larger than .03. Trial and error with different deltas can lead to a better choice.
Note that unlike Tps the locations are not scaled to unit range and this can cause havoc in smoothing problems with variables in very different units. So rescaling the locations \(x<-\operatorname{scale}(x)\) is a good idea for putting the variables on a common scale for smoothing. A conservative rule of thumb is to make aRange large enough so that about 50 nearest neighbors are within this distance for every observation location.
This function does have the potential to approximate estimates of Tps for very large spatial data sets. See wendland.cov and help on the SPAM package, and the friendly spind format for more background. Also, the function predictSurface.fastTps has been made more efficient for the case of \(\mathrm{k}=2\) and \(\mathrm{m}=2-\) a common choice for parameters.

\section*{Value}

A list of class Krig. This includes the fitted values, the predicted surface evaluated at the observation locations, and the residuals. The results of the grid search minimizing the generalized cross validation function are returned in gcv.grid. Note that the GCV/REML optimization is done even if lambda or df is given. Please see the documentation on Krig for details of the returned arguments.

\section*{References}

See "Nonparametric Regression and Generalized Linear Models"
by Green and Silverman. See "Additive Models" by Hastie and Tibshirani.
See Wahba, Grace. "Spline models for observational data." Society for industrial and applied mathematics, 1990.

\section*{See Also}

Krig, mKrig, spatialProcess, Tps.cov sim.spatialProcess, summary.Krig, predict.Krig, predictSE.Krig, predictSurface, predictSurface.fastTps, plot.Krig, surface.Krig, sreg

\section*{Examples}
```

\#2-d example
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
fit<- Tps(x,y) \# fits a surface to ozone measurements.
set.panel(2,2)
plot(fit) \# four diagnostic plots of fit and residuals.
set.panel()

summary of fit and estiamtes of lambda the smoothing parameter

summary(fit)
surface(fit) \# Quick image/contour plot of GCV surface.

NOTE: the predict function is quite flexible:

 look<- predict(fit, lambda=2.0)

evaluates the estimate at lambda =2.0 _not_ the GCV estimate

it does so very efficiently from the Krig fit object.

 look<- predict(fit, df=7.5)

evaluates the estimate at the lambda values such that

the effective degrees of freedom is 7.5

compare this to fitting a thin plate spline with

lambda chosen so that there are 7.5 effective

degrees of freedom in estimate

Note that the GCV function is still computed and minimized

but the lambda values used correpsonds to 7.5 df.

fit1<- Tps(x, y,df=7.5)
set.panel(2,2)
plot(fit1) \# four diagnostic plots of fit and residuals.
\# GCV function (lower left) has vertical line at 7.5 df.
set.panel()

The basic matrix decompositions are the same for

both fit and fit1 objects.

predict(fit1) is the same as predict(fit, df=7.5)

predict(fit1, lambda= fit\$lambda) is the same as predict(fit)

```
```


predict onto a grid that matches the ranges of the data.

out.p<-predictSurface(fit)
imagePlot(out.p)

the surface function (e.g. surface(fit)) essentially combines

the two steps above

predict at different effective

number of parameters

out.p<-predictSurface(fit, df=10)

Not run:

predicting on a grid along with a covariate

 data(COmonthlyMet)

predicting average daily minimum temps for spring in Colorado

NOTE to create an 4km elevation grid:

data(PRISMelevation); CO.elev1 <- crop.image(PRISMelevation, CO.loc)

then use same grid for the predictions: CO.Grid1<- CO.elev1[c("x","y")]

 obj<- Tps(CO.loc, CO.tmin.MAM.climate, Z= CO.elev)
 out.p<-predictSurface(obj,
 CO.Grid, ZGrid= CO.elevGrid)
 imagePlot(out.p)
 US(add=TRUE, col="grey")
 contour(CO.elevGrid, add=TRUE, levels=c(2000), col="black")

End(Not run)

Not run:

\#A 1-d example with confidence intervals
out<-Tps(rat.diet$t, rat.diet$trt) \# lambda found by GCV
out
plot(outx, outy)
xgrid<- seq(min(out$x), max(out$x),,100)
fhat<- predict(out,xgrid)
lines(xgrid, fhat,)
SE<- predictSE(out, xgrid)
lines(xgrid,fhat + 1.96* SE, col="red", lty=2)
lines(xgrid, fhat - 1.96*SE, col="red", lty=2)

compare to the (much faster) B spline algorithm

sreg(rat.diet$t, rat.diet$trt)

Here is a 1-d example with 95 percent CIs where sreg would not

work:

sreg would give the right estimate here but not the right CI's

 x<- seq(0,1,,8)
 y<- sin(3*x)
 out<-Tps(x, y) # lambda found by GCV
 plot(outx, outy)
 xgrid<- seq(min(out$x), max(out$x),,100)
    ```
```

 fhat<- predict(out,xgrid)
 lines(xgrid, fhat, lwd=2)
 SE<- predictSE(out, xgrid)
 lines(xgrid,fhat + 1.96* SE, col="red", lty=2)
 lines(xgrid, fhat - 1.96*SE, col="red", lty=2)

End(Not run)

More involved example adding a covariate to the fixed part of model

Not run:

set.panel(1,3)

without elevation covariate

 out0<-Tps(RMprecip$x,RMprecip$y)
 surface(out0)
 US(add=TRUE, col="grey")

with elevation covariate

 out<- Tps(RMprecip$x,RMprecip$y, Z=RMprecip$elev)

NOTE: out\$d[4] is the estimated elevation coefficient

it is easy to get the smooth surface separate from the elevation.

 out.p<-predictSurface(out, drop.Z=TRUE)
 surface(out.p)
 US(add=TRUE, col="grey")

and if the estimate is of high resolution and you get by with

a simple discretizing -- does not work in this case!

 quilt.plot(outx, outfitted.values)

the exact way to do this is evaluate the estimate

on a grid where you also have elevations

An elevation DEM from the PRISM climate data product (4km resolution)

 data(RMelevation)
 grid.list<- list(x=RMelevation$x, y= RMelevation$y)
 fit.full<- predictSurface(out, grid.list, ZGrid= RMelevation)

this is the linear fixed part of the second spatial model:

lon,lat and elevation

 fit.fixed<- predictSurface(out, grid.list, just.fixed=TRUE,
 ZGrid= RMelevation)

This is the smooth part but also with the linear lon lat terms.

 fit.smooth<-predictSurface(out, grid.list, drop.Z=TRUE)

set.panel(3,1)
fit0<- predictSurface(out0, grid.list)
image.plot(fit0)
title(" first spatial model (w/o elevation)")
image.plot(fit.fixed)
title(" fixed part of second model (lon,lat,elev linear model)")

```
```

 US(add=TRUE)
 image.plot(fit.full)
 title("full prediction second model")
 set.panel()

End(Not run)

fast Tps

m=2 p= 2m-d= 2

Note: aRange = 3 degrees is a very generous taper range.

Use some trial aRange value with rdist.nearest to determine a

a useful taper. Some empirical studies suggest that in the

interpolation case in 2 d the taper should be large enough to

about 20 non zero nearest neighbors for every location.

 out2<- fastTps(RMprecip$x,RMprecip$y,m=2, aRange=3.0,
 profileLambda=FALSE)

note that fastTps produces a object of classes spatialProcess and mKrig

so one can use all the

the overloaded functions that are defined for these classes.

predict, predictSE, plot, sim.spatialProcess

summary of what happened note estimate of effective degrees of

freedom

profiling on lambda has been turned off to make this run quickly

but it is suggested that one examines the the profile likelihood over lambda

 print(out2)

Not run:

set.panel(1,2)
surface(out2)

now use great circle distance for this smooth

Here "aRange" for the taper support is the great circle distance in degrees latitude.

Typically for data analysis it more convenient to think in degrees. A degree of

latitude is about 68 miles (111 km).

fastTps(RMprecip$x,RMprecip$y,m=2, lon.lat=TRUE, aRange= 210) -> out3
print(out3) \# note the effective degrees of freedom is different.
surface(out3)
set.panel()

End(Not run)

Not run:

simulation reusing Tps/Krig object

fit<- Tps(rat.diet$t, rat.diet$trt)

```
```

true<- fit$fitted.values
N<- length(fit$y)
temp<- matrix(NA, ncol=50, nrow=N)
tau<- fit$tauHat.GCV
for (k in 1:50){
ysim<- true + tau* rnorm(N)
temp[,k]<- predict(fit, y= ysim)
}
matplot(fit$x, temp, type="l")

End(Not run)

\#4-d example
fit<- Tps(BD[,1:4],BD\$lnya,scale.type="range")

plots fitted surface and contours

default is to hold 3rd and 4th fixed at median values

surface(fit)

```
transformx Linear transformation

\section*{Description}

Linear transformation of each column of a matrix. There are several choices of the type of centering and scaling.

\section*{Usage}
transformx (x, scale.type = "unit.sd", x.center, x.scale)

\section*{Arguments}
x
scale.type
x.center
x.scale

Matrix with columns to be transformed.
Type of transformation the default is "unit.sd": subtract the mean and divide by the standard deviation. Other choices are "unscaled" (do nothing), "range" (transform to [0,1]),"user" (subtract a supplied location and divide by a scale).

A vector of centering values to subtract from each column.
A vector of scaling values to subtract from each column.

\section*{Details}

After deciding what the centering and scaling values should be for each column of x , this function just calls the standard utility scale. This function was created partly to attach the transformation information as attributes to the transformed matrix. It is used in Krig, cover.design, krig.image etc. to transform the independent variables.

\section*{Value}

A matrix whose columns have between transformed. This matrix also has the attributes: scale.type, x.center and y.center with the transformation information.

\section*{See Also}

> scale

\section*{Examples}
```


newx<-transformx(Chicago03\$x, scale.type="range")

```
US Plot of the US with state boundaries

\section*{Description}

Plots quickly, medium resolution outlines of the US with the states and bodies of water. A simple wrapper for the map function from the maps package.

\section*{Usage}

US( ...)

\section*{Arguments}
... These are the arguments that are passed to the map function from the maps package.

\section*{Details}

The older version of this function (fields <6.7.2) used the FIELDS dataset US.dat for the coordinates. Currenty this has been switched to use the maps package.

\section*{See Also}
world

\section*{Examples}
\# Draw map in device color \# 3
US( col=3)

US.dat
Outline of coterminous US and states.

\section*{Description}

This data set is used by the fields function US to draw a map. It is the medium resolution outline that is produced by drawing the US from the maps package.
vgram Traditional or robust variogram methods for spatial data

\section*{Description}
vgram computes pairwise squared differences as a function of distance. Returns an S3 object of class "vgram" with either raw values or statistics from binning. crossCoVGram is the same as vgram but differences are taken across different variables rather than the same variable.
plot.vgram and boxplotVGram create lineplots and boxplots of vgram objects output by the vgram function. boxplotVGram plots the base R boxplot function, and plots estimates of the mean over the boxplot.
The getVGMean function returns the bin centers and means of the vgram object based on the bin breaks provided by the user.

\section*{Usage}
```

vgram(loc, y, id $=$ NULL, $d=$ NULL, lon.lat $=$ FALSE,
dmax $=$ NULL, $N=$ NULL, breaks $=$ NULL, prettyBins $=$ FALSE,
type=c("variogram", "covariogram", "correlogram"))
crossCoVGram(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE,
dmax $=$ NULL, $N=$ NULL, breaks = NULL,
type=c("cross-covariogram", "cross-correlogram"),
prettyBins = FALSE)
boxplotVGram(x, N=10, breaks = pretty (x\$d, N, eps.correct = 1), plot=TRUE, plot.args, ...)
\#\# S3 method for class 'vgram'
plot(x, N=10, breaks = pretty ($\mathrm{x} \$ \mathrm{~d}, \mathrm{~N}$, eps.correct = 1), add=FALSE, ...)
getVGMean(x, $N=10$, breaks $=$ pretty (x\$d, N, eps.correct $=1)$)

```

\section*{Arguments}


\section*{Value}
vgram and crossCoVGram return a "vgram" object containing the following values:
vgram Variogram or covariogram values
d Pairwise distances
call Calling string
stats Matrix of statistics for values in each bin. Rows are the summaries returned by the stats function or describe. If not either breaks or N arguments are not supplied then this component is not computed.
centers Bin centers.
If boxplotVGram is called with plot=FALSE, it returns a list with the same components as returned by bplot.xy

\section*{References}

See any standard reference on spatial statistics. For example Cressie, Spatial Statistics

\section*{Author(s)}

John Paige, Doug Nychka

\section*{See Also}
vgram.matrix, bplot.xy, bplot

\section*{Examples}
```


compute variogram for the midwest ozone field day 16

(BTW this looks a bit strange!)

data(ozone2)
good<- !is.na(ozone2$y[16,])
x<- ozone2$lon.lat[good,]
y<- ozone2\$y[16,good]
look<-vgram(x,y, N=15, lon.lat=TRUE) \# locations are in lon/lat so use right
\#distance

take a look:

plot(look, pch=19)
\#lines(look$centers, look$stats["mean",], col=4)
brk<- seq(0, 250,, (25 + 1)) \# will give 25 bins.

or some boxplot bin summaries

boxplotVGram(look, breaks=brk, plot.args=list(type="o"))
plot(look, add=TRUE, breaks=brk, col=4)

compute equivalent covariogram, but leave out the boxplots

look<-vgram(x,y, N=15, lon.lat=TRUE, type="covariogram")
plot(look, breaks=brk, col=4)

compute equivalent cross-covariogram of the data with itself

\#(it should look almost exactly the same as the covariogram of
\#the original data, except with a few more points in the
\#smallest distance boxplot and points are double counted)


```
```

look = crossCoVGram(x, x, y, y, N=15, lon.lat=TRUE, type="cross-covariogram")
plot(look, breaks=brk, col=4)

```
```

vgram.matrix Computes a variogram from an image

```

\section*{Description}

Computes a variogram for an image taking into account different directions and returning summary information about the differences in each of these directions.

\section*{Usage}
vgram.matrix(dat, \(R=N U L L, d x=N U L L, d y=N U L L)\)
\#\# S3 method for class 'vgram.matrix'
plot \((x, \ldots)\)

\section*{Arguments}
dat Either a matrix spacing of rows and columns are assumed to have the same distance or a list in image format with components \(\mathrm{x}, \mathrm{y}\) and z .
\(R \quad\) Maximum radius for finding variogram differences assuming that the grid points are spaced one unit a part. Default is go out to a radius of \(5 * \max (c(d x, d y))\).
\(\mathrm{dx} \quad\) The spacing of grid points on the X axis. This is used to calculate the correct distance between grid points. If \(d x\) is not equal to dy then the collapse argument must be FALSE. If an image object is passed and dx and dy are not specified they will be calculated from the x and y components of the image list.
dy The spacing of grid points on the Y axis. See additional notes for dx .
\(x \quad\) Returned object from vgram.matrix
... Arguments for image.plot

\section*{Details}

For the "full" case the statistics can summarize departures from isotropy by separating the variogram differences according to orientation. For small R this runs efficiently because the differences are found by sub-setting the image matrix.

For example, suppose that a row of the ind matrix is \((2,3)\). The variogram value associated with this row is the mean of the differences \((1 / 2) *(X(i, j)-X(i+2, j+3)) * * 2\) for all i and j . (Here \(\mathrm{X}(.,\).\() are\) the values for the spatial field.) In this example \(d=\operatorname{sqrt}(13)\) and there will be another entry with the same distance but corresponding to the direction \((3,2)\). plot.vgram.matrix attempts to organize all the different directions into a coherent image plot.

\section*{Value}

An object of class vgram.matrix with the following components: d, a vector of distances for the differences, and vgram, the variogram values. This is the traditional variogram ignoring direction.
d.full, a vector of distances for all possible shifts up distance R, ind, a two column matrix giving the x and y increment used to compute the shifts, and vgram.full, the variogram at each of these separations. Also computed is vgram.robust, Cressie's version of a robust variogram statistic.

Also returned is the component N the number of differences found for each separation csae.

\section*{See Also}
vgram

\section*{Examples}
```


variogram for Lennon image.

data(lennon)
out<-vgram.matrix(lennon)
plot(outd, outvgram, xlab="separation distance", ylab="variogram")

image plot of vgram values by direction.

look at different directions

out<-vgram.matrix(lennon, R=8)
plot(outd, outvgram)

add in different orientations

points(out$d.full, out$vgram.full, col="red")
\#image plot of variogram values for different directions.
set.panel(1,1)
plot.vgram.matrix(out)

John Lennon appears remarkably isotropic!

```

Wendland family of covariance functions and supporting numerical functions

\section*{Description}

Computes the compactly supported, stationatry Wendland covariance function as a function ofdistance. This family is useful for creating sparse covariance matrices.

\section*{Usage}
```

Wendland(d, aRange = 1, dimension, k,derivative=0, phi=NA, theta=NULL)
Wendland2.2(d, aRange=1, theta=NULL)
Wendland.beta(n, k)
wendland.eval(r, n, k, derivative $=0$)
fields.pochup(q, k)
fields.pochdown(q, k)
fields.D(f, name,order = 1)

```

\section*{Arguments}
d Distances between locations. Or for wendland.coef the dimension of the locations.
aRange Scale for distances. This is the same as the range parameter.
theta Same as aRange.
dimension Dimension of the locations
\(\mathrm{n} \quad\) Dimension for computing Wendland polynomial coefficients
\(k \quad\) Order of covariance function.
derivative Indicates derivative of covariance function
phi Depreciated argument will give stop if not an NA. (Formerly the scale factor to multiply the function. Equivalent to the marginal variance or sill if viewed as a covariance function.)
\(r \quad\) Real value in [0,1] to evaluate Wendland function.
q Order of Pochhammer symbol
f Numerical expression to differentiate.
name Variable with which to take derivative.
order Order of derivative.

\section*{Details}

This is the basic function applied to distances and called by the wendland.cov function. It can also be used as the Covariance or Taper specifications in the more general stationary.cov and station.taper.cov functions. The proofs and construction of the Wendland family of positive definite functions can be found in the work of Wendland(1995). (H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp 389-396.)

The Wendland covariance function is a positive polynomial on [0,aRange] and zero beyond aRange. It is further normalized in these fields functions to be 1 at 0 . The parameter \(k\) detemines the smoothness of the covariance at zero. The additional parameter \(n\) or dimension is needed because the property of positive definitness for radial functions depends on the dimension being considered.

The polynomial terms of the Wenland function. are computed recursively based on the values of \(k\) and dimension in the function wendland. eval. The matrix of coefficients found by Wendland.beta is used to weight each polynomial term and follows Wendland's original construction of these functions. The recursive definition of the Wendland coefficients depends on Pochhammer symbols akin to binomial coefficients:
fields. pochup ( \(q, k\) ) calculates the Pochhammer symbol for rising factorial \(q(q+1)(q+2) \ldots(q+k-\) 1)
and
fields.pochdown ( \(q, k\) ) calculates the Pochhammer symbol for falling factorial \(q(q-1)(q-2) \ldots(q-\) \(\mathrm{k}+1\) ).
Derivatives are found symbolically using a recursive modification of the base function D (fields.D) and then evaluated numerically based on the polynomial form.
A specific example of the Wendland family is Wendland2.2 ( \(\mathrm{k}=2\), dimension=2). This is included mainly for testing but the explicit formula may also be enlightening.

\section*{Value}

A vector of the covariances or its derivative.

\section*{Author(s)}

\author{
Doug Nychka, Ling Shen
}

\section*{See Also}
wendland.cov, stationary.taper.cov

\section*{Examples}
```

dt<- seq(0,1.5,, 200)
y<- Wendland(dt, k=2, dimension=2)
plot(dt, y, type="l")

should agree with

y.test<- Wendland2.2(dt)
points(dt, y.test)

second derivative

plot(dt, Wendland(dt, k=4, dimension=2, derivative=2), type="l")

a radial basis function using the Wendland the "knot" is at (.25,.25)

gl<- list(x= seq(-1,1,,60), y = seq(-1,1,,60))
bigD<- rdist(make.surface.grid(gl), matrix(c(.25,.25), nrow=1))
RBF<- matrix(Wendland(bigD, k=2, dimension=2), 60,60)

```
\# perspective with some useful settings for shading.
persp( gl\$x, gl\$y, RBF, theta =30, phi=20, shade=.3, border=NA, col="grey90")

Plot of the world

\section*{Description}

Plots quickly, medium resolution outlines of large land masses. This is a simple wrapper for the map function from the maps package.

\section*{Usage}
world(...)
world.land( ...)
world.color( ... )
in.land.grid(...)

\section*{Arguments}
... Same arguments used by the map function from the maps package.

\section*{Details}

See the longstanding maps package for documentation on this function. The functions world.land, world.color and in.land.grid have been depreciated but can be recovered from versions of fields 6.7.1 or older.

\section*{See Also}

US, in.poly, in.poly.grid

\section*{Examples}
```


Not run:

world()

add the US

US(add=TRUE,col="blue")
world(fill=TRUE) \# land filled in black

Western Europe

world(xlim=c(-10,18),ylim=c(36,60),fill=TRUE, col="darkgreen",
border="green1")

End(Not run)

```

WorldBankC02 Carbon emissions and demographic covariables by country for 1999.

\section*{Description}

These data are a small subset of the demographic data compiled by the World Bank. The data has been restricted to 1999 and to countries with a population larger than 1 million. Also, only countries reporting all the covariables are included.

\section*{Usage}
data(WorldBankCO2)

\section*{Format}

This a 75X5 matrix with the row names identifying countries and columns the covariables: "GDP. cap" "Pop.mid" "Pop. urb" "CO2. cap" "Pop"
- GDP.cap: Gross domestic product (in US dollars) per capita.
- Pop.mid: percentage of the population within the ages of 15 through 65.
- Pop.urb: Precentage of the population living in an urban environment
- CO2.cap: Equivalent CO2 emmissions per capita
- Pop: Population

\section*{Reference}

Romero-Lankao, P., J. L. Tribbia and D. Nychka (2008) Development and greenhouse gas emissions deviate from the modernization theory and convergence hypothesis. Cli- mate Research 38, 17-29.

\section*{Creating dataset}

Listed below are scripts to create this data set from spread sheet on the World Bank CDs:
```


read in comma delimited spread sheet

 read.csv("climatedemo.csv", stringsAsFactors=FALSE)->hold

convert numbers to matrix of data

 Ddata<- as.matrix(hold[,5:51])
 Ddata[Ddata==".."] <- NA

still in character form parse as numeric

 Ddata<- matrix(as.numeric(Ddata), nrow=1248, ncol=ncol(Ddata),
 dimnames=list(NULL, format(1960:2006)))

these are the factors indicating the different variables

unique(Fac) gives the names of factors

 Fac<- as.character(hold[,1])
 years<- 1960:2006

create separate tables of data for each factor

```
```

 temp<- unique(Fac)

also subset Country id and name

 Country.id<- as.character(hold[Fac== temp[1],3])
 Country<- as.character(hold[Fac== temp[1],4])
 Pop<- Ddata[Fac== temp[2],]
 CO2<- Ddata[Fac== temp[1],]
 Pop.mid<- Ddata[Fac== temp[3],]
 GDP.cap<- Ddata[Fac== temp[4],]
 Pop.urb<- Ddata[Fac== temp[5],]
 CO2.cap<- CO2/Pop
 dimnames(Pop)<- list(Country.id,format(years))
 dimnames(CO2)<- list(Country.id,format(years))
 dimnames(Pop.mid)<- list(Country.id,format(years))
 dimnames(Pop.urb)<- list(Country.id,format(years))
 dimnames(CO2.cap)<- list(Country.id,format(years))

delete temp data sets

 rm(temp)
 rm(hold)
 rm(Fac)

define year to do clustering.

 yr<- "1999"

variables for clustering combined as columns in a matrix

 temp<-cbind(GDP.cap[,yr], Pop.mid[,yr], Pop.urb[,yr],CO2[,yr],Pop[,yr])

add column names and figure how many good data rows there are.

 dimnames(temp)<-list(Country, c("GDP.cap","Pop.mid","Pop.urb",
 "CO2.cap", "Pop"))
 good<-complete.cases(temp)
 good<- good & Pop[,yr] > 10e6

subset with only the complete data rows

 WorldBankCO2<- temp[good,]
 save(WorldBankCO2, file="WorldBankCO2.rda")
    ```

\section*{Examples}
```

data(WorldBankCO2)
plot(WorldBankC02[,"GDP.cap"], WorldBankC02[,"CO2.cap"], log="xy")

```
xline Draw a vertical line

\section*{Description}

Adds vertical lines in the plot region.

\section*{Usage}
xline(x, ...)

\section*{Arguments}

X
... Any ploting options for abline.

\section*{See Also}
yline, abline

\section*{Examples}
```

plot(1:10)
xline(6.5, col=2)
world(col=3)
yline(seq(-80,80,10),col=4, lty=2)
xline(seq(-180,180,10),col=4,lty=2)
yline(0, lwd=2, col=4)

```
yline Draw horizontal lines

\section*{Description}

Adds horizontal lines in the plot region.

\section*{Usage}
yline(y, ...)

\section*{Arguments}
\(\begin{array}{ll}y & \text { Values on y axis specifying location of vertical lines. } \\ \ldots & \text { Any ploting options for abline. }\end{array}\)

\section*{See Also}
xline, abline

\section*{Examples}
world ( col=3)
yline( seq( \(-80,80,10\) ), col=4, lty=2)
xline( seq( \(-180,180,10\) ), col=4,1ty=2)
yline( 0, lwd=2, col=4)

\section*{Index}

\section*{* IO}
summary.ncdf, 204
* aplot
arrow.plot, 5
tim. colors, 211
xline, 234
yline, 235
* compact
compactToMat, 25
* covariance

CovarianceUpper, 36
* datasets

BD, 10
Chicago ozone test data, 13
C02, 17
Colorado Monthly Meteorological
Data, 19
fields, 49
flame, 60
glacier, 60
lennon, 114
minitri, 114
NorthAmericanRainfall, 129
ozone2, 135
rat.diet, 163
RCMexample, 164
registeringCode, 169
RMprecip, 171
US.dat, 225
WorldBankCO2, 233
* hplot
add.image, 4
bplot, 11
bplot.xy, 12
colorbar.plot, 23
drape.plot, 43
fields.grid, 56
fields.hints, 57
image.plot, 71
image2lz, 83
imagePlot, 86
plot.surface, 137
pushpin, 151
quilt.plot, 159
ribbon.plot, 170
set.panel, 173
US, 224
world, 232
* manip
as.image, 6
as.surface, 8
transformx, 223
* matrix
compactToMat, 25
* misc
fields testing scripts, 52
grid list, 63
* smooth
image.smooth, 80
qsreg, 152
smooth. 2d, 182
splint, 195
sreg, 197
Tps, 214
* spatial
circulantEmbedding, 14
Covariance functions, 26
cover. design, 37
Exponential, Matern, Radial Basis, 46
fields-stuff, 54
image.cov, 67
interp.surface, 97
Krig, 100
Krig.Amatrix, 107
Krig.null.function, 109
Krig.replicates, 110
KrigFindLambda, 111
mKrig, 114
mKrigMLE, 122
offGridWeights, 131
plot.Krig, 136
poly.image, 138
predict.Krig, 141
predictSE, 143
predictSurface, 145
print.Krig, 150
QTps, 155
rdist, 165
rdist.earth, 167
sim. spatialProcess, 174
spam2lz, 184
spatialProcess, 186
summary.Krig, 203
surface.Krig, 206
The Engines:, 207
vgram, 225
vgram.matrix, 228
Wendland, 229
* univar
stats, 201
stats.bin, 202
\%d*\% (The Engines:), 207
add.image, 4, 50, 76
addColorBarTriangle (imagePlot), 86
addLegend, 162
addLegend (imagePlot), 86
addMarginsGridList (offGridWeights), 131
addToDiagC (registeringCode), 169
arrow.plot, 5
as.image, 6,50
as.surface, 8
average.image, 50
average.image (image2lz), 83
BD, 10
boxplotVGram (vgram), 225
bplot, 11, 227
bplot. xy, 12, 227
bubblePlot, 75, 76, 91
bubblePlot (quilt.plot), 159
checkPredictGrid (sim.spatialProcess), 174
Chicago ozone test data, 13
Chicago03 (Chicago ozone test data), 13
circulantEmbedding, 14
circulantEmbeddingSetup (circulantEmbedding), 14
CO.elev (Colorado Monthly
Meteorological Data), 19
CO.elevGrid (Colorado Monthly Meteorological Data), 19
CO.Grid (Colorado Monthly Meteorological Data), 19
CO.id (Colorado Monthly Meteorological Data), 19
CO.loc (Colorado Monthly
Meteorological Data), 19
CO. names (Colorado Monthly
Meteorological Data), 19
C0.ppt (Colorado Monthly
Meteorological Data), 19
CO.tmax (Colorado Monthly
Meteorological Data), 19
CO.tmean.MAM.climate (Colorado Monthly
Meteorological Data), 19
CO.tmin (Colorado Monthly
Meteorological Data), 19
CO. years (Colorado Monthly
Meteorological Data), 19
C02, 17, 51
coef.Krig (Krig), 100
color.scale, 50
color.scale (tim.colors), 211
Colorado Monthly Meteorological Data, 19
colorBar, 76
colorBar (imagePlot), 86
colorbar.plot, 23
COmonthlyMet, 51
COmonthlyMet (Colorado Monthly
Meteorological Data), 19
compactToMat, 25
compactToMatC (registeringCode), 169
confidenceIntervalMLE (spatialProcess), 186
Covariance functions, 26
CovarianceUpper, 36
cover.design, 37, 50
crop.image, 50
crop. image (image2lz), 83
crossCoVGram (vgram), 225
cubic.cov (Covariance functions), 26
designer.colors, 50, 76
designer.colors (tim.colors), 211
discretize.image (grid list), 63
dist, 166
distMatHaversin (registeringCode), 169
distMatHaversin2 (registeringCode), 169
drape. color (drape.plot), 43
drape.plot, 43, 50
envelopePlot, 45
Exp.cov, 166, 205
Exp.cov (Covariance functions), 26
Exp.image.cov (image.cov), 67
Exp.simple.cov (Covariance functions), 26

Exponential, 36
Exponential (Exponential, Matern, Radial Basis), 46
Exponential, Matern, Radial Basis, 46
ExponentialUpper (CovarianceUpper), 36
ExponentialUpperC (registeringCode), 169
fastTps, 50
fastTps (Tps), 214
fields, 49
fields testing scripts, 52
fields-package (fields), 49
fields-stuff, 54
fields.color.picker (fields.hints), 57
fields.convert.grid(grid list), 63
fields.D (Wendland), 229
fields.derivative.poly (fields-stuff), 54
fields.duplicated.matrix
(fields-stuff), 54
fields.evlpoly (fields-stuff), 54
fields.evlpoly2 (fields-stuff), 54
fields.grid, 56
fields.hints, 57
fields.mkpoly (fields-stuff), 54
fields. pochdown (Wendland), 229
fields. pochup (Wendland), 229
fields.rdist.near, 168
fields.rdist.near (rdist), 165
fields.style (fields.hints), 57
fields.tests (fields testing scripts), 52
fields.x.to.grid (grid list), 63
fieldsPlotColors(tim.colors), 211
filled.contour, 76
fillGrid (interp. surface), 97
findGridBox (offGridWeights), 131
fitted.Krig (Krig), 100
flame, 60
gcv.sreg (KrigFindLambda), 111
get. rectangle (image2lz), 83
getVGMean (vgram), 225
glacier, 51, 60
grid list, 63
grid.list, 50, 132
grid.list (grid list), 63
half.image, 50
half.image (image2lz), 83
image, 76
image.cov, 67
image.plot, 71, 86, 161
image.smooth, 80
image2lz, 83
imagePlot, 50, 71, 76, 86
in.land.grid (world), 232
in.poly, 50
in. poly (image2lz), 83
interp. surface, 97, 134
Krig, 100, 113, 126, 207, 211, 219
Krig.Amatrix, 107
Krig. check. xY (The Engines:), 207
Krig.coef (The Engines:), 207
Krig.engine.default (The Engines:), 207
Krig.engine.fixed (The Engines:), 207
Krig.make.u (The Engines:), 207
Krig.make.W (The Engines:), 207
Krig.make. Wi (The Engines:), 207
Krig.null.function, 109
Krig.replicates, 110, 117
Krig.transform.xY (The Engines:), 207
KrigFindLambda, 111
larry.colors (tim.colors), 211
lennon, 5l, 114
make.surface.grid (grid list), 63
makeMultiIndex (grid list), 63
makePredictionGridList
(sim.spatialProcess), 174
makeSimulationGrid
(sim.spatialProcess), 174
Matern (Exponential, Matern, Radial Basis), 46
matern.image.cov (image.cov), 67
minitri, 114
mKrig, 50, 114, 126, 188, 216, 219
mKrig.grid, 119
mKrig.grid (fields.grid), 56
mKrig.trace, 125
mKrigCheckXY (mKrig), 114
mKrigFastPredict, 134
mKrigFastPredict (predictSurface), 145
mKrigFastPredictSetup, 147
mKrigFastPredictSetup (offGridWeights), 131
mKrigJointTemp.fn (mKrigMLE), 122
mKrigMLE, 122
mKrigMLEGrid, 50, 191
mKrigMLEGrid (mKrigMLE), 122
mKrigMLEJoint, 50, 191
mKrigMLEJoint (mKrigMLE), 122
mltdrb (registeringCode), 169
multebC (registeringCode), 169
multwendlandg (registeringCode), 169
NativeSymbolInfo, 169
NorthAmericanRainfall, 51, 129
NorthAmericanRainfall2
(NorthAmericanRainfall), 129
offGridWeights, 131, 177
offGridWeights1D (offGridWeights), 131
offGridWeights2D (offGridWeights), 131
optim, 124-126
ozone (Chicago ozone test data), 13
ozone2, 51, 135
Paciorek.cov (Covariance functions), 26
parse.grid.list (grid list), 63
plot.Krig, 136, 191, 219
plot.spatialProcess (spatialProcess), 186
plot.sreg (plot.Krig), 136
plot.surface, 76, 137
plot.vgram (vgram), 225
plot.vgram.matrix (vgram.matrix), 228
plotMatrix (imagePlot), 86
poly.image, 76, 138
predict.fastTps (predict.Krig), 141
predict.Krig, 113, 141, 219
predict.mKrig, 191
predict.mKrig (mKrig), 114
predict.sreg (sreg), 197
predict.Tps (predict.Krig), 141
predictDerivative.Krig (predict.Krig), 141
predictSE, 51, 143
predictSE.Krig, 219
predictSE.mKrig, 191
predictSEUsingKrigA (predictSE), 143
predictSurface, 145, 219
predictSurface.fastTps, 219
predictSurfaceSE (predictSurface), 145
print.Krig, 150
print.mKrig (mKrig), 114
print.mKrigSummary (mKrig), 114
print.spatialProcess (spatialProcess), 186
print.spatialProcessSummary
(spatialProcess), 186
PRISMelevation, 51
PRISMelevation (RMprecip), 171
profileCI (mKrigMLE), 122
profileMLE (spatialProcess), 186
pushpin, 151
QSreg (QTps), 155
qsreg, 152
QTps, 50, 154, 155
quilt.plot, 50, 76, 159
Rad.cov (Covariance functions), 26
Rad.image.cov (image.cov), 67
Rad.simple.cov (Covariance functions), 26
RadialBasis (Exponential, Matern, Radial Basis), 46
rat.diet, 51, 163
RCMexample, 51, 164
rdist, 26, 165, 168
rdist.earth, 166, 167, 226
RdistC (registeringCode), 169
RdistEarth (rdist.earth), 167
registeringCode, 169
resid.Krig (Krig), 100
ribbon.plot, 170
RMelevation, 51

RMelevation (RMprecip), 171
RMprecip, 171
set.panel, 173
setup.image.smooth (image.smooth), 80
setupLegend, 162
setupLegend (imagePlot), 86
sim.Krig (sim.spatialProcess), 174
sim.rf, 47, 51
sim.rf (circulantEmbedding), 14
sim.spatialProcess, 50, 174, 219
simLocal.spatialProcess, 50
simLocal.spatialProcess
(sim.spatialProcess), 174
simSpatialData(sim.spatialProcess), 174
smooth. 2d, 182
snow.colors, 91
snow. colors (tim.colors), 211
spam2full (spam2lz), 184
spam2lz, 184
spam2spind (spam2lz), 184
spatialProcess, 50, 51, 117, 186, 216, 219
spatialProcessSetDefaults
(spatialProcess), 186
spind2full (spam2lz), 184
spind2spam (spam2lz), 184
splint, 50, 195
sreg, 50, 154, 197, 219
stationary.cov, 16, 50, 126, 166, 168, 205
stationary.cov (Covariance functions), 26
stationary.image.cov, 16
stationary.image.cov (image.cov), 67
stationary.taper.cov (Covariance functions), 26
stats, 201
stats.bin, 202
summary.Krig, 203, 219
summary.mKrig (mKrig), 114
summary.ncdf, 204
summary.spatialProcess
(spatialProcess), 186
supportsArg, 205
surface, 51
surface.Krig, 206, 219
surface.mKrig (surface.Krig), 206
test.for.zero(fields testing scripts), 52

The Engines:, 207
tim. colors, 76, 211
topo. colors, 91
Tps, 50, 51, 113, 191, 211, 214
Tps.cov, 219
Tps.cov (Covariance functions), 26
transformx, 223
two.colors (tim.colors), 211
unrollZGrid (grid list), 63
US, 50, 224
US. dat, 225
vgram, 50, 225, 229
vgram.matrix, 50, 227, 228
Wendland, 229
wendland.cov (Covariance functions), 26
wendland.eval (Wendland), 229
wendland.image.cov (image.cov), 67
Wendland2. 2 (Wendland), 229
which.max. image (image2lz), 83
which.max.matrix (image2lz), 83
world, 50, 232
WorldBankCO2, 51, 233
xline, 234
yline, 235```

